Epigenetic Modulation in Hematologic Malignancies: Challenges and Progress

Authors: Constantine S. Mitsiades MD, PhD and Kenneth C. Anderson MD
View More View Less

Genetic alterations, including gene mutations, and chromosomal amplifications, deletions, inversions, and translocations, are hallmarks of the molecular biology of cancer. These events lead to oncogene activation, formation of chimeric oncoproteins, and/or inactivation of tumor suppressor genes. Such genetic changes contribute to the neoplastic transformation of cells, as well as the eventual acquisition by malignant cells of a more aggressive biologic and clinical behavior. However, in recent years, it has become apparent that these genetic events are not the sole determinants of the biologic behavior of tumor cells. Indeed, it is becoming increasingly apparent that tumor cells with a given genotype exhibit a differential phenotype depending on the microenvironment in which they reside. Furthermore, extensive data have shown that derivative daughter cells of neoplastic, as well as normal cells, inherit changes in the patterns of gene expression that are not associated with changes in the primary DNA sequence but are instead related to changes in chromatin structure and its accessibility for transcriptional activity. These heritable gene expression changes that are not associated with changes in the primary nucleotide sequence are referred to as epigenetic changes. This review provides an overview of the regulation of the “epigenome” in neoplastic cells, with particular emphasis on DNA methylation and histone acetylation as therapeutic targets for hematologic malignancies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet 2003;33:238-244.

  • 2.

    Parsons DW, Jones S, Zhang X. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-1812.

  • 3.

    Piekarz RL, Bates SE. Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 2009;15:3918-3926.

  • 4.

    Mitsiades CS, McMillin DW, Klippel S. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 2007;21:1007-1034, vii–viii.

    • Search Google Scholar
    • Export Citation
  • 5.

    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415-428.

  • 6.

    Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-1080.

  • 7.

    Luger K, Mader AW, Richmond RK. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-260.

  • 8.

    Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987;196:261-282.

  • 9.

    Constancia M, Pickard B, Kelsey G, Reik W. Imprinting mechanisms. Genome Res 1998;8:881-900.

  • 10.

    Robertson KD, Jones PA. Dynamic interrelationships between DNA replication, methylation, and repair. Am J Hum Genet 1997;61:1220-1224.

  • 11.

    Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 1983;111:47-54.

  • 12.

    Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983;301:89-92.

  • 13.

    Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002;21:5427-5440.

  • 14.

    Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003;349:2042-2054.

  • 15.

    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001;61:3225-3229.

  • 16.

    Eng C, Herman JG, Baylin SB. A bird's eye view of global methylation. Nat Genet 2000;24:101-102.

  • 17.

    Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457-463.

  • 18.

    Gaudet F, Hodgson JG, Eden A. Induction of tumors in mice by genomic hypomethylation. Science 2003;300:489-492.

  • 19.

    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003;300:455.

  • 20.

    Howell CY, Bestor TH, Ding F. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 2001;104:829-838.

  • 21.

    Ulaner GA, Vu TH, Li T. Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet 2003;12:535-549.

    • Search Google Scholar
    • Export Citation
  • 22.

    Roman-Gomez J, Castillejo JA, Jimenez A. 5' CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 2002;99:2291-2296.

    • Search Google Scholar
    • Export Citation
  • 23.

    Boldt DH. p21(CIP1/WAF1/SDI1) hypermethylation: an exciting new lead in ALL biology. Blood 2002;99:2283.

  • 24.

    Sakai T, Toguchida J, Ohtani N. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet 1991;48:880-888.

  • 25.

    Chim CS, Wong KY, Loong F. Frequent epigenetic inactivation of Rb1 in addition to p15 and p16 in mantle cell and follicular lymphoma. Hum Pathol 2007;38:1849-1857.

    • Search Google Scholar
    • Export Citation
  • 26.

    Verdone L, Agricola E, Caserta M, Di Mauro E. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006;5:209-221.

  • 27.

    Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol 2005;83:344-353.

  • 28.

    Yang XJ. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 2004;26:1076-1087.

  • 29.

    Fuks F, Burgers WA, Brehm A. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000;24:88-91.

  • 30.

    Bachman KE, Park BH, Rhee I. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 2003;3:89-95.

    • Search Google Scholar
    • Export Citation
  • 31.

    Espada J, Ballestar E, Fraga MF. Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 2004;279:37175-37184.

    • Search Google Scholar
    • Export Citation
  • 32.

    Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 2002;14:286-298.

  • 33.

    Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci 2003;116:2117-2124.

  • 34.

    Hake SB, Xiao A, Allis CD. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer 2004;90:761-769.

  • 35.

    Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148-1159.

  • 36.

    Stirzaker C, Millar DS, Paul CL. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 1997;57:2229-2237.

  • 37.

    Esteller M, Tortola S, Toyota M. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 2000;60:129-133.

    • Search Google Scholar
    • Export Citation
  • 38.

    Foster SA, Wong DJ, Barrett MT, Galloway DA. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 1998;18:1793-1801.

    • Search Google Scholar
    • Export Citation
  • 39.

    Esteller M, Fraga MF, Guo M. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 2001;10:3001-3007.

    • Search Google Scholar
    • Export Citation
  • 40.

    Kikuchi T, Toyota M, Itoh F. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene 2002;21:2741-2749.

    • Search Google Scholar
    • Export Citation
  • 41.

    Corn PG, Kuerbitz SJ, van Noesel MM. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5' CpG island methylation. Cancer Res 1999;59:3352-3356.

    • Search Google Scholar
    • Export Citation
  • 42.

    Kawano S, Miller CW, Gombart AF. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999;94:1113-1120.

  • 43.

    Takita J, Yang HW, Chen YY. Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene 2001;20:4424-4432.

    • Search Google Scholar
    • Export Citation
  • 44.

    Galm O, Wilop S, Reichelt J. DNA methylation changes in multiple myeloma. Leukemia 2004;18:1687-1692.

  • 45.

    Banelli B, Casciano I, Croce M. Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med 2002;8:1333-1335; author reply 1335.

    • Search Google Scholar
    • Export Citation
  • 46.

    Conway KE, McConnell BB, Bowring CE. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 2000;60:6236-6242.

    • Search Google Scholar
    • Export Citation
  • 47.

    Stimson KM, Vertino PM. Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem 2002;277:4951-4958.

    • Search Google Scholar
    • Export Citation
  • 48.

    Galm O, Yoshikawa H, Esteller M. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 2003;101:2784-2788.

    • Search Google Scholar
    • Export Citation
  • 49.

    Yoshikawa H, Matsubara K, Qian GS. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28:29-35.

    • Search Google Scholar
    • Export Citation
  • 50.

    He B, You L, Uematsu K. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 2003;100:14133-14138.

    • Search Google Scholar
    • Export Citation
  • 51.

    Niwa Y, Kanda H, Shikauchi Y. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 2005;24:6406-6417.

    • Search Google Scholar
    • Export Citation
  • 52.

    Esteller M, Guo M, Moreno V. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res 2002;62:5902-5905.

    • Search Google Scholar
    • Export Citation
  • 53.

    Taniguchi T, Tischkowitz M, Ameziane N. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003;9:568-574.

    • Search Google Scholar
    • Export Citation
  • 54.

    Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res 1999;59:3730-3740.

  • 55.

    Hegi ME, Liu L, Herman JG. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 2008;26:4189-4199.

    • Search Google Scholar
    • Export Citation
  • 56.

    Paz MF, Yaya-Tur R, Rojas-Marcos I. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 2004;10:4933-4938.

    • Search Google Scholar
    • Export Citation
  • 57.

    Herman JG, Latif F, Weng Y. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 1994;91:9700-9704.

    • Search Google Scholar
    • Export Citation
  • 58.

    Calvisi DF, Ladu S, Gorden A. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007;117:2713-2722.

    • Search Google Scholar
    • Export Citation
  • 59.

    Kuzmin I, Geil L, Ge H. Analysis of aberrant methylation of the VHL gene by transgenes, monochromosome transfer, and cell fusion. Oncogene 1999;18:5672-5679.

    • Search Google Scholar
    • Export Citation
  • 60.

    Bachman KE, Herman JG, Corn PG. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 1999;59:798-802.

    • Search Google Scholar
    • Export Citation
  • 61.

    Kramer A, Schultheis B, Bergmann J. Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma. Leukemia 2002;16:1844-1851.

  • 62.

    Cameron EE, Bachman KE, Myohanen S. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999;21:103-107.

    • Search Google Scholar
    • Export Citation
  • 63.

    Bruserud O, Stapnes C, Ersvaer E. Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Curr Pharm Biotechnol 2007;8:388-400.

    • Search Google Scholar
    • Export Citation
  • 64.

    Bruserud O, Stapnes C, Tronstad KJ. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert Opin Ther Targets 2006;10:51-68.

    • Search Google Scholar
    • Export Citation
  • 65.

    Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 2008;20:341-348.

    • Search Google Scholar
    • Export Citation
  • 66.

    Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006;75:243-269.

    • Search Google Scholar
    • Export Citation
  • 67.

    Esteller M, Gaidano G, Goodman SN. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst 2002;94:26-32.

    • Search Google Scholar
    • Export Citation
  • 68.

    Esteller M, Garcia-Foncillas J, Andion E. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000;343:1350-1354.

    • Search Google Scholar
    • Export Citation
  • 69.

    Hegi ME, Diserens AC, Gorlia T. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997-1003.

  • 70.

    Gorlia T, van den Bent MJ, Hegi ME. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 2008;9:29-38.

    • Search Google Scholar
    • Export Citation
  • 71.

    Chim CS, Wong SY, Kwong YL. Aberrant gene promoter methylation in acute promyelocytic leukaemia: profile and prognostic significance. Br J Haematol 2003;122:571-578.

    • Search Google Scholar
    • Export Citation
  • 72.

    Shen L, Toyota M, Kondo Y. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood 2003;101:4131-4136.

    • Search Google Scholar
    • Export Citation
  • 73.

    Uchida T, Kinoshita T, Ohno T. Hypermethylation of p16INK4A gene promoter during the progression of plasma cell dyscrasia. Leukemia 2001;15:157-165.

    • Search Google Scholar
    • Export Citation
  • 74.

    Mateos MV, Garcia-Sanz R, Lopez-Perez R. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol 2002;118:1034-1040.

    • Search Google Scholar
    • Export Citation
  • 75.

    Ng MH, To KW, Lo KW. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin Cancer Res 2001;7:1724-1729.

  • 76.

    Rosenfeld CS. Clinical development of decitabine as a prototype for an epigenetic drug program. Semin Oncol 2005;32:465-472.

  • 77.

    Fenaux P, Mufti GJ, Hellstrom-Lindberg E. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label-phase III study. Lancet Oncol 2009;10:223-232.

    • Search Google Scholar
    • Export Citation
  • 78.

    Kantarjian HM, O'Brien S, Huang X. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer 2007;109:1133-1137.

    • Search Google Scholar
    • Export Citation
  • 79.

    Issa JP, Garcia-Manero G, Giles FJ. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103:1635-1640.

    • Search Google Scholar
    • Export Citation
  • 80.

    Muller-Thomas C, Schuster T, Peschel C, Gotze KS. A limited number of 5-azacitidine cycles can be effective treatment in MDS. Ann Hematol 2009;88:213-219.

    • Search Google Scholar
    • Export Citation
  • 81.

    Maslak P, Chanel S, Camacho LH. Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia 2006;20:212-217.

    • Search Google Scholar
    • Export Citation
  • 82.

    Nand S, Godwin J, Smith S. Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: results from a pilot trial. Leuk Lymphoma 2008;49:2141-2147.

    • Search Google Scholar
    • Export Citation
  • 83.

    Griffiths EA, Gore SD. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 2008;45:23-30.

    • Search Google Scholar
    • Export Citation
  • 84.

    De Padua Silva L, de Lima M, Kantarjian H. Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marrow Transplant 2009;43:839-843.

    • Search Google Scholar
    • Export Citation
  • 85.

    Oki Y, Kantarjian HM, Gharibyan V. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer 2007;109:899-906.

    • Search Google Scholar
    • Export Citation
  • 86.

    Blum W, Klisovic RB, Hackanson B. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007;25:3884-3891.

    • Search Google Scholar
    • Export Citation
  • 87.

    Soriano AO, Yang H, Faderl S. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 2007;110:2302-2308.

    • Search Google Scholar
    • Export Citation
  • 88.

    Quintas-Cardama A, Tong W, Kantarjian H. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 2008;22:965-970.

    • Search Google Scholar
    • Export Citation
  • 89.

    Wijermans PW, Ruter B, Baer MR. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res 2008;32:587-591.

    • Search Google Scholar
    • Export Citation
  • 90.

    Garcia-Manero G. Demethylating agents in myeloid malignancies. Curr Opin Oncol 2008;20:705-710.

  • 91.

    Lozzio CB, Lozzio BB, Machado EA. Effects of sodium butyrate on human chronic myelogenous leukaemia cell line K562. Nature 1979;281:709-710.

  • 92.

    Hoffman R, Murnane MJ, Benz EJ Jr. Induction of erythropoietic colonies in a human chronic myelogenous leukemia cell line. Blood 1979;54:1182-1187.

    • Search Google Scholar
    • Export Citation
  • 93.

    Baker PN, Morser J, Burke DC. Effects of sodium butyrate on a human lymphoblastoid cell line (Namalwa) and its interferon production. J Interferon Res 1980;1:71-77.

    • Search Google Scholar
    • Export Citation
  • 94.

    Bode J, Hochkeppel HK, Maass K. Links between effects of butyrate on histone hyperacetylation and regulation of interferon synthesis in Namalva and FS-4 cell lines. J Interferon Res 1982;2:159-166.

    • Search Google Scholar
    • Export Citation
  • 95.

    Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem 1982;42:65-82.

  • 96.

    Gore SD, Carducci MA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs 2000;9:2923-2934.

    • Search Google Scholar
    • Export Citation
  • 97.

    Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 2009;15:3958-3969.

  • 98.

    Piekarz RL, Robey R, Sandor V. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001;98:2865-2868.

    • Search Google Scholar
    • Export Citation
  • 99.

    Duvic M, Talpur R, Ni X. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007;109:31-39.

    • Search Google Scholar
    • Export Citation
  • 100.

    Olsen EA, Kim YH, Kuzel TM. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007;25:3109-3115.

    • Search Google Scholar
    • Export Citation
  • 101.

    Mann BS, Johnson JR, Cohen MH. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007;12:1247-1252.

    • Search Google Scholar
    • Export Citation
  • 102.

    Ellis L, Pan Y, Smyth GK. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 2008;14:4500-4510.

    • Search Google Scholar
    • Export Citation
  • 103.

    Mitsiades CS, Mitsiades NS, McMullan CJ. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 2004;101:540-545.

    • Search Google Scholar
    • Export Citation
  • 104.

    Mitsiades N, Mitsiades CS, Richardson PG. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003;101:4055-4062.

    • Search Google Scholar
    • Export Citation
  • 105.

    Richardson P, Mitsiades C, Colson K. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 2008;49:502-507.

    • Search Google Scholar
    • Export Citation
  • 106.

    Badros A, Philip S, Niesvizky R. Phase I trial of suberoylanilide hydroxamic acid (SAHA) plus bortezomib (Bort) in relapsed multiple myeloma (MM) patients (pts). Blood 2007;110:354A-354A.

    • Search Google Scholar
    • Export Citation
  • 107.

    Weber DM, Jagannath S, Mazumder A. Phase I trial of oral vorinostat (Suberoylanilide hydroxamic acid, SAHA) in combination with bortezomib in patients with advanced multiple myeloma. Blood 2007;110:355A-355A.

    • Search Google Scholar
    • Export Citation
  • 108.

    Catley L, Weisberg E, Tai YT. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003;102:2615-2622.

    • Search Google Scholar
    • Export Citation
  • 109.

    Catley L, Weisberg E, Kiziltepe T. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006;108:3441-3449.

    • Search Google Scholar
    • Export Citation
  • 110.

    Hideshima T, Bradner JE, Wong J. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005;102:8567-8572.

    • Search Google Scholar
    • Export Citation
  • 111.

    Haggarty SJ, Koeller KM, Wong JC. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 2003;100:4389-4394.

    • Search Google Scholar
    • Export Citation
  • 112.

    Bali P, Pranpat M, Bradner J. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 2005;280:26729-26734.

    • Search Google Scholar
    • Export Citation
  • 113.

    Garcia-Manero G, Yang H, Bueso-Ramos C. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008;111:1060-1066.

    • Search Google Scholar
    • Export Citation
  • 114.

    Odenike OM, Alkan S, Sher D. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res 2008;14:7095-7101.

    • Search Google Scholar
    • Export Citation
  • 115.

    Giles F, Fischer T, Cortes J. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006;12:4628-4635.

    • Search Google Scholar
    • Export Citation
  • 116.

    Byrd JC, Marcucci G, Parthun MR. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105:959-967.

    • Search Google Scholar
    • Export Citation
  • 117.

    Klimek VM, Fircanis S, Maslak P. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 2008;14:826-832.

    • Search Google Scholar
    • Export Citation
  • 118.

    Kelly WK, Richon VM, O'Connor O. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003;9:3578-3588.

    • Search Google Scholar
    • Export Citation
  • 119.

    Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009;8:1409-1420.

  • 120.

    Bots M, Johnstone RW. Rational combinations using HDAC inhibitors. Clin Cancer Res 2009;15:3970-3977.

  • 121.

    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Disc 2006;5:769-784.

  • 122.

    Aoyagi S, Archer TK. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 2005;15:565-567.

  • 123.

    Jeong JW, Bae MK, Ahn MY. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709-720.

  • 124.

    O'Shea JJ, Kanno Y, Chen X, Levy DE. Cell signaling. Stat acetylation—a key facet of cytokine signaling? Science 2005;307:217-218.

  • 125.

    Luo J, Su F, Chen D. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377-381.

  • 126.

    Insinga A, Monestiroli S, Ronzoni S. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. Embo J 2004;23:1144-1154.

    • Search Google Scholar
    • Export Citation
  • 127.

    Quivy V, Van Lint C. Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol 2004;68:1221-1229.

    • Search Google Scholar
    • Export Citation
  • 128.

    Fu M, Rao M, Wang C. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 2003;23:8563-8575.

    • Search Google Scholar
    • Export Citation
  • 129.

    Mazumdar A, Wang RA, Mishra SK. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 2001;3:30-37.

    • Search Google Scholar
    • Export Citation
  • 130.

    Wang C, Fu M, Angeletti RH. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 2001;276:18375-18383.

    • Search Google Scholar
    • Export Citation
  • 131.

    Robey RW, Zhan Z, Piekarz RL. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res 2006;12:1547-1555.

    • Search Google Scholar
    • Export Citation
  • 132.

    Jin S, Scotto KW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 1998;18:4377-4384.

    • Search Google Scholar
    • Export Citation
  • 133.

    Tabe Y, Konopleva M, Contractor R. Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 2006;107:1546-1554.

    • Search Google Scholar
    • Export Citation
  • 134.

    To KK, Polgar O, Huff LM. Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 2008;6:151-164.

    • Search Google Scholar
    • Export Citation
  • 135.

    Yatouji S, El-Khoury V, Trentesaux C. Differential modulation of nuclear texture, histone acetylation, and MDR1 gene expression in human drug-sensitive and -resistant OV1 cell lines. Int J Oncol 2007;30:1003-1009.

    • Search Google Scholar
    • Export Citation
  • 136.

    Hauswald S, Duque-Afonso J, Wagner MM. Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res 2009;15:3705-3715.

    • Search Google Scholar
    • Export Citation
  • 137.

    Chan AT, Tao Q, Robertson KD. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol 2004;22:1373-1381.

  • 138.

    Ritchie D, Piekarz RL, Blombery P. Reactivation of DNA viruses in association with histone deacetylase inhibitor (HDI) therapy: a case series report. Haematologica 2009; in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 28 0
PDF Downloads 20 10 1
EPUB Downloads 0 0 0