NCCN Task Force Report: Bone Health in Cancer Care

Bone health and maintenance of bone integrity are important components of comprehensive cancer care in both early and late stages of disease. Risk factors for osteoporosis are increased in patients with cancer, including women with chemotherapy-induced ovarian failure, those treated with aromatase inhibitors for breast cancer, men receiving androgen-deprivation therapy for prostate cancer, and patients undergoing glucocorticoid therapy. The skeleton is a common site of metastatic cancer recurrence, and skeletal-related events are the cause of significant morbidity. The National Comprehensive Cancer Network (NCCN) convened a multidisciplinary task force on Bone Health in Cancer Care to discuss the progress made in identifying effective screening and therapeutic options for management of treatment-related bone loss; understanding the factors that result in bone metastases; managing skeletal metastases; and evolving strategies to reduce bone recurrences. This report summarizes presentations made at the meeting.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Jemal A, Siegel R, Ward E. Cancer statistics, 2008. CA Cancer J Clin 2008;58:7196.

  • 2

    Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006;12:6243s6249s.

  • 3

    Johnell O, Kanis JA, Oden A. Predictive value of BMD for hip and other fractures. J Bone Miner Res 2005;20:11851194.

  • 4

    Kanis JA, Borgstrom F, De Laet C. Assessment of fracture risk. Osteoporosis Int 2005;16:581589.

  • 5

    Mohler J, Amling CL, Bahnson RR. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer, version 2.2009. Available at: http://www.nccn.org. Last accessed 8 June 2009.

    • Search Google Scholar
    • Export Citation
  • 6

    Carlson RW, Allred DC, Anderson BO. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer, version I.2009. Available at: http://www.nccn.org. Last accessed 8 June 2009.

    • Search Google Scholar
    • Export Citation
  • 7

    U.S. Preventive Services Task Force. Screening for osteoporosis in postmenopausal women: recommendations and rationale. Ann Intern Med 2002;137:526528.

    • Search Google Scholar
    • Export Citation
  • 8

    Hillner BE, Ingle JN, Chlebowski RT. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 2003;21:40424057.

    • Search Google Scholar
    • Export Citation
  • 9

    Kanis JA, Melton LJ III, Christiansen C. The diagnosis of osteoporosis. J Bone Miner Res 1994;9:11371141.

  • 10

    World Health Organization Collaborating Centre for Metabolic Bone Diseases. FRAX WHO fracture risk assessment tool. Available at: http://www.shef.ac.uk/FRAX/. Accessed May 31, 2009.

    • Search Google Scholar
    • Export Citation
  • 11

    Garnero P, Delmas PD. Biochemical markers of bone turnover in osteoporosis. In: Marcus M, Feldman D, Kelsey J. eds. Osteoporosis. Vol 2. Academic Press; New York;459477.

    • Search Google Scholar
    • Export Citation
  • 12

    Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 2000;15:15261536.

    • Search Google Scholar
    • Export Citation
  • 13

    Ross PD, Kress BC, Parson RE. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 2000;11:7682.

    • Search Google Scholar
    • Export Citation
  • 14

    Sornay-Rendu E, Munoz F, Garnero P. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 2005;20:18131819.

    • Search Google Scholar
    • Export Citation
  • 15

    Christgau S, Bitsch-Jensen O, Hanover Bjarnason N. Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 2000;26:505511.

    • Search Google Scholar
    • Export Citation
  • 16

    Christgau S. Circadian variation in serum CrossLaps concentration is reduced in fasting individuals. Clin Chem 2000;46:431.

  • 17

    Eastell R, Mallinak N, Weiss S. Biological variability of serum and urinary N-telopeptides of type I collagen in postmenopausal women. J Bone Miner Res 2000;15:594598.

    • Search Google Scholar
    • Export Citation
  • 18

    Clowes JA, Hannon RA, Yap TS. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 2002;30:886890.

    • Search Google Scholar
    • Export Citation
  • 19

    Cauley JA, Palermo L, Vogt M. Prevalent vertebral fractures in black women and white women. J Bone Miner Res 2008;23:14581467.

  • 20

    Black DM, Arden NK, Palermo L. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1999;14:821828.

    • Search Google Scholar
    • Export Citation
  • 21

    Melton LJ III, Atkinson EJ, Cooper C. Vertebral fractures predict subsequent fractures. Osteoporos Int 1999;10:214221.

  • 22

    Genant HK, Li J, Wu CY, Shepherd JA. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 2000;3:281290.

  • 23

    Physicians guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation guideline. Belle Mead, NJ:Excerpta Medica, Inc;1999.

    • Search Google Scholar
    • Export Citation
  • 24

    Feskanich D, Willett W, Colditz G. Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 2002;288:23002306.

    • Search Google Scholar
    • Export Citation
  • 25

    Centers for Disease Control and Prevention. Fatalities and injuries from falls among older adults—United States, 1993-2003 and 2001-2005. MMWR Morb Mortal Wkly Rep 2006;55:12211224.

    • Search Google Scholar
    • Export Citation
  • 26

    Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Eng J Med 1988;317:17011707.

  • 27

    Tinetti ME, Williams CS. The effect of falls and fall injuries on functioning in community-dwelling older persons. J Gerontol A Biol Sci Med Sci 1998;53:M112M119.

    • Search Google Scholar
    • Export Citation
  • 28

    National Osteoporosis Foundation. Patient info: fall prevention. Available at: http://www.nof.org/patientinfo/fall_prevention.htm. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 29

    Parker MJ, Gillespie WJ, Gillespie LD. Effectiveness of hip protectors for preventing hip fractures in elderly people: systematic review. BMJ 2006;332:571574.

    • Search Google Scholar
    • Export Citation
  • 30

    Sawka AM, Boulos P, Beattie K. Hip protectors decrease hip fracture risk in elderly nursing home residents: a Bayesian meta-analysis. J Clin Epidemiol 2007;60:336344.

    • Search Google Scholar
    • Export Citation
  • 31

    Chapuy MC, Arlot ME, Duboeuf F. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992;327:16371642.

  • 32

    Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997;337:670676.

    • Search Google Scholar
    • Export Citation
  • 33

    National Institutes of Health: Office of Dietary Supplements. Dietary supplement fact sheet: calcium. Available at: http://ods.od.nih.gov/factsheets/calcium.asp. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 34

    National Institutes of Health: Office of Dietary Supplements. Dietary supplement fact sheet: vitamin D. Available at: http://ods.od.nih.gov/factsheets/vitamind.asp. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 35

    Office of the Surgeon General. Bone health and osteoporosis: a report of the surgeon general. Issued October 14, 2004. Available at: http://www.surgeongeneral.gov/library/bonehealth/index.html. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 36

    Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC; National Academy Press; 1997.

    • Search Google Scholar
    • Export Citation
  • 37

    Curhan GC, Willett WC, Speizer FE. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 1997;126:497504.

    • Search Google Scholar
    • Export Citation
  • 38

    Adams JS, Kantorovich V, Wu C. Resolution of vitamin D insufficiency in osteopenic patients results in rapid recovery of bone mineral density. J Clin Endocrinol Metab 1999;84:27292730.

    • Search Google Scholar
    • Export Citation
  • 39

    Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC. Effect of vitamin D on falls: a meta-analysis. JAMA 2004;291:19992006.

  • 40

    Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266281.

  • 41

    Cranney C, Horsely T, O’Donnell S. Effectiveness and safety of vitamin D. Evidence Report/Technology Assessment No. 158 AHRQ Publication No. 07-E013. Rockville: Agency for Healthcare Research and Quality; 2007.

    • Search Google Scholar
    • Export Citation
  • 42

    Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr 2006;84:694697.

  • 43

    Holick MF, Biancuzzo RM, Chen TC. Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. J Clin Endocrinol Metab 2008;93:677681.

    • Search Google Scholar
    • Export Citation
  • 44

    MacLean C, Newberry S, Maglione M. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med 2008;148:197213.

    • Search Google Scholar
    • Export Citation
  • 45

    Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998;19:80100.

  • 46

    Smith MR, Eastham J, Gleason DM. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol 2003;169:20082012.

    • Search Google Scholar
    • Export Citation
  • 47

    Smith MR, McGovern FJ, Zeitman AL. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N Engl J Med 2001;345:948955.

    • Search Google Scholar
    • Export Citation
  • 48

    Tauchmanova L, Colao A, Lombardi G. Bone loss and its management in long-term survivors from allogeneic stem cell transplantation. J Clin Endocrinol Metab 2007;92:45364545.

    • Search Google Scholar
    • Export Citation
  • 49

    Rossouw JE, Anderson GL, Prentice RL. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321333.

    • Search Google Scholar
    • Export Citation
  • 50

    Khan MN, Khan AA. Cancer treatment-related bone loss: a review and synthesis of the literature. Curr Oncol 2008;15:S3040.

  • 51

    Chang JT, Green L, Beitz J. Renal failure with the use of zoledronic acid. N Engl J Med 2003;349:16761679.

  • 52

    Van Poznak C, Estilo C. Osteonecrosis of the jaw in cancer patients receiving IV bisphosphonates. Oncology (Williston Park) 2006;20:10531062.

    • Search Google Scholar
    • Export Citation
  • 53

    Khosla S, Burr D, Cauley J. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2007;22:14791491.

    • Search Google Scholar
    • Export Citation
  • 54

    Woo SB, Hellstein JW, Kalmar JR. Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 2006;144:753761.

    • Search Google Scholar
    • Export Citation
  • 55

    Brufsky A, Bundred N, Coleman R. Integrated analysis of zoledronic acid for prevention of aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole. Oncologist 2008;13:503514.

    • Search Google Scholar
    • Export Citation
  • 56

    Gnant MF, Mlineritsch B, Luschin-Ebengreuth G. Zoledronic acid prevents cancer treatment-induced bone loss in premenopausal women receiving adjuvant endocrine therapy for hormone-responsive breast cancer: a report from the Austrian Breast and Colorectal Cancer Study Group. J Clin Oncol 2007;25:820828.

    • Search Google Scholar
    • Export Citation
  • 57

    Weitzman R, Sauter N, Eriksen EF. Critical review: updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients—May 2006. Crit Rev Oncol Hematol 2007;62:148152.

    • Search Google Scholar
    • Export Citation
  • 58

    Lyles KW, Colon-Emeric CS, Magaziner JS. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007;357:17991809.

    • Search Google Scholar
    • Export Citation
  • 59

    U.S. Food and Drug Administration. Update of safety review follow-up to the October 1, 2007 early communication about the ongoing safety review of biophosphonates. Available at: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm136201.htm. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 60

    Goh SK, Yang KY, Koh JS. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br 2007;89:349353.

    • Search Google Scholar
    • Export Citation
  • 61

    Kwek EB, Goh SK, Koh JS. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury 2008;39:224231.

    • Search Google Scholar
    • Export Citation
  • 62

    Olson K, Van Poznak C. Significance and impact of bisphosphonate-induced acute phase responses. J Oncol Pharm Pract 2007;13:223229.

  • 63

    Holmberg L, Anderson H. HABITS (hormonal replacement therapy after breast cancer—is it safe?), a randomised comparison: trial stopped. Lancet 2004;363:453455.

    • Search Google Scholar
    • Export Citation
  • 64

    Christin-Maitre S. The role of hormone replacement therapy in the management of premature ovarian failure. Nat Clin Pract Endocrinol Metab 2008;4:6061.

    • Search Google Scholar
    • Export Citation
  • 65

    Ettinger B, Black DM, Mitlak BH. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999;282:637645.

    • Search Google Scholar
    • Export Citation
  • 66

    Barrett-Connor E, Mosca L, Collins P. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med 2006;355:125137.

    • Search Google Scholar
    • Export Citation
  • 67

    Martino S, Cauley JA, Barrett-Connor E. Continuing outcomes relevant to EVISTA: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 2004;96:17511761.

    • Search Google Scholar
    • Export Citation
  • 68

    Vogel VG, Costantino JP, Wickerham DL. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 2006;295:27272741.

    • Search Google Scholar
    • Export Citation
  • 69

    Cauley JA, Norton L, Lippman ME. Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple Outcomes of Raloxifene Evaluation. Breast Cancer Res Treat 2001;65:125134.

    • Search Google Scholar
    • Export Citation
  • 70

    O’Regan RM, Gajdos C, Dardes RC. Effects of raloxifene after tamoxifen on breast and endometrial tumor growth in athymic mice. J Natl Cancer Inst 2002;94:274283.

    • Search Google Scholar
    • Export Citation
  • 71

    Stewart HJ, Forrest AP, Everington D. Randomised comparison of 5 years of adjuvant tamoxifen with continuous therapy for operable breast cancer. The Scottish Cancer Trials Breast Group. Br J Cancer 1996;74:297299.

    • Search Google Scholar
    • Export Citation
  • 72

    Eng-Wong J, Reynolds JC, Venzon D. Effect of raloxifene on bone mineral density in premenopausal women at increased risk of breast cancer. J Clin Endocrinol Metab 2006;91:39413946.

    • Search Google Scholar
    • Export Citation
  • 73

    Baum M, Buzdar A, Cuzick J. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 2003;98:18021810.

    • Search Google Scholar
    • Export Citation
  • 74

    Goss P, Bondarenko IN, Manikhas GN. Phase III, double-blind, controlled trial of atamestane plus toremifene compared with letrozole in postmenopausal women with advanced receptor-positive breast cancer. J Clin Oncol 2007;25:49614966.

    • Search Google Scholar
    • Export Citation
  • 75

    Refer http://www.accessdata.fda.gov/Scripts/cder/DrugsatFDA/index.cfm?fuseaction=Search.DrugDetails for latest package insert.

  • 76

    Braun S, Vogl FD, Naume B. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005;353:793802.

  • 77

    Farooki A, Fornier M, Girotra M. Anabolic therapies for osteoporosis. N Engl J Med 2007;357:24102411.

  • 78

    Cummings SR, McClung MR, Christiansen C. A phase III study of the effects of denosumab on vertebral, nonvertebral, and hip fracture in women with osteoporosis: results from the FREEDOM trial [abstract]. Presented at the American Society of Bone and Mineral Research 30th Annual Meeting; September 12–16, 2008; Montreal, Quebec, Canada. Abstract 1286.

    • Search Google Scholar
    • Export Citation
  • 79

    Brown JP, Deal C, de Gregorin LH. Effect of densoumab vs alendronate on bone turnover markers and bone mineral density changes at 12 months based on baseline bone turnover level [abstract]. Presented at the American Society of Bone and Mineral Research 30th Annual Meeting; September 12–16, 2008; Montreal, Quebec, Canada. Abstract 1285.

    • Search Google Scholar
    • Export Citation
  • 80

    Kendler DL, Benhamou CL, Brown JP. Effects of denosumab vs. alendronate on bone mineral density (BMD), bone turnover markers (BTM), and safety in women previously treated with alendronate [abstract]. Presented at the American Society of Bone and Mineral Research 30th Annual Meeting; September 12–16, 2008; Montreal, Quebec, Canada. Abstract 138.

    • Search Google Scholar
    • Export Citation
  • 81

    Chesnut CH III, Bell NH, Clark GS. Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med 1997;102:2937.

    • Search Google Scholar
    • Export Citation
  • 82

    Ravn P, Clemmesen B, Christiansen C. Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate Osteoporosis Prevention Study Group. Bone 1999;24:237244.

    • Search Google Scholar
    • Export Citation
  • 83

    Tonino RP, Meunier PJ, Emkey R. Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women. Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab 2000;85:31093115.

    • Search Google Scholar
    • Export Citation
  • 84

    Black DM, Schwartz AV, Ensrud KE. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 2006;296:29272938.

    • Search Google Scholar
    • Export Citation
  • 85

    Pfeilschifter J, Diel IJ. Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol 2000;18:15701593.

  • 86

    Fornier MN, Modi S, Panageas KS. Incidence of chemotherapy-induced, long-term amenorrhea in patients with breast carcinoma age 40 years and younger after adjuvant anthracycline and taxane. Cancer 2005;104:15751579.

    • Search Google Scholar
    • Export Citation
  • 87

    Burstein HJ, Winer EP. Primary care for survivors of breast cancer. N Engl J Med 2000;343:10861094.

  • 88

    Goodwin PJ, Ennis M, Pritchard KI. Risk of menopause during the first year after breast cancer diagnosis. J Clin Oncol 1999;17:23652370.

  • 89

    Petrek JA, Naughton MJ, Case LD. Incidence, time course, and determinants of menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol 2006;24:10451051.

    • Search Google Scholar
    • Export Citation
  • 90

    Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 2001;19:33063311.

    • Search Google Scholar
    • Export Citation
  • 91

    Headley JA, Theriault RL, LeBlanc AD. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy. Cancer Invest 1998;16:611.

    • Search Google Scholar
    • Export Citation
  • 92

    Powles TJ, McCloskey E, Paterson AH. Oral clodronate and reduction in loss of bone mineral density in women with operable primary breast cancer. J Natl Cancer Inst 1998;90:704708.

    • Search Google Scholar
    • Export Citation
  • 93

    Saarto T, Blomqvist C, Valimaki M. Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes rapid bone loss that is reduced by clodronate: a randomized study in premenopausal breast cancer patients. J Clin Oncol 1997;15:13411347.

    • Search Google Scholar
    • Export Citation
  • 94

    Hershman DL, McMahon DJ, Crew KD. Zoledronic acid prevents bone loss in premenopausal women undergoing adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 2008;26:47394745.

    • Search Google Scholar
    • Export Citation
  • 95

    Delmas PD, Balena R, Confravreux E. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol 1997;15:955962.

    • Search Google Scholar
    • Export Citation
  • 96

    Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 2002;13:105112.

    • Search Google Scholar
    • Export Citation
  • 97

    Eastell R, Hannon RA, Cuzick J. Effect of an aromatase inhibitor on bmd and bone turnover markers: 2-year results of the Anastrozole, Tamoxifen, Alone or in Combination (ATAC) trial (18233230). J Bone Miner Res 2006;21:12151223.

    • Search Google Scholar
    • Export Citation
  • 98

    Fogelman I, Blake GM, Blamey R. Bone mineral density in premenopausal women treated for node-positive early breast cancer with 2 years of goserelin or 6 months of cyclophosphamide, methotrexate and 5-fluorouracil (CMF). Osteoporos Int 2003;14:10011006.

    • Search Google Scholar
    • Export Citation
  • 99

    Hershman DL, McMahon DJ, Crew KD. Zoledronic acid prevents bone loss in premenopausal women undergoing adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 2008;26:47394745.

    • Search Google Scholar
    • Export Citation
  • 100

    Ripps BA, VanGilder K, Minhas B. Alendronate for the prevention of bone mineral loss during gonadotropin-releasing hormone agonist therapy. J Reprod Med 2003;48:761766.

    • Search Google Scholar
    • Export Citation
  • 101

    Gnant M, Mlineritsch B, Schippinger W. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 2009;360:679691.

  • 102

    Goss P, Wu M. Application of aromatase inhibitors in endocrine responsive breast cancers. Breast 2007;16(Suppl 2):S114119.

  • 103

    Geisler J, Lonning PE. Endocrine effects of aromatase inhibitors and inactivators in vivo: review of data and method limitations. J Steroid Biochem Mol Biol 2005;95:7581.

    • Search Google Scholar
    • Export Citation
  • 104

    Simpson ER, Dowsett M. Aromatase and its inhibitors: significance for breast cancer therapy. Recent Prog Horm Res 2002;57:317338.

  • 105

    Khan MN, Khan AA. Cancer treatment-related bone loss: a review and synthesis of the literature. Curr Oncol 2008;15:S3040.

  • 106

    Chowdhury S, Pickering LM, Ellis PA. Adjuvant aromatase inhibitors and bone health. J Br Menopause Soc 2006;12:97103.

  • 107

    Body JJ, Bergmann P, Boonen S. Management of cancer treatment-induced bone loss in early breast and prostate cancer—a consensus paper of the Belgian Bone Club. Osteoporos Int 2007;18:14391450.

    • Search Google Scholar
    • Export Citation
  • 108

    Perez EA. Safety of aromatase inhibitors in the adjuvant setting. Breast Cancer Res Treat 2007;105(Suppl 1):7589.

  • 109

    Forbes JF, Cuzick J, Buzdar A. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: 100-month analysis of the ATAC trial. Lancet Oncol 2008;9:4553.

    • Search Google Scholar
    • Export Citation
  • 110

    Thurlimann B, Keshaviah A, Coates AS. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 2005;353:27472757.

    • Search Google Scholar
    • Export Citation
  • 111

    Coombes RC, Hall E, Gibson LJ. Intergroup Exemestane Study: a randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 2004;350:10811092.

    • Search Google Scholar
    • Export Citation
  • 112

    Coleman RE, Banks LM, Girgis SI. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol 2007;8:119127.

    • Search Google Scholar
    • Export Citation
  • 113

    National Cancer Institute. Phase III randomized adjuvant study of exemestane versus anastrozole in postmenopausal women receptor-positive primary breast cancer. Available at: http://www.cancer.gov/clinicaltrials/CAN-NCIC-MA27. Last accessed 8 June 2009.

    • Search Google Scholar
    • Export Citation
  • 114

    Goss PE, Ingle JN, Martino S. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 2003;349:17931802.

    • Search Google Scholar
    • Export Citation
  • 115

    Coleman RE. Effect of anastrozole on bone mineral density: 5-year results from the ‘Arimidex’, Tamoxifen, Alone or in Combination (ATAC) trial [abstract]. J Clin Oncol 2006;24(Suppl 1):5s. Abstract 511.

    • Search Google Scholar
    • Export Citation
  • 116

    Van Poznak C, Hannon RA, Clack G. The SABRE study: effects of risedronate on bone mineral density and bone metabolism in postmenopausal women using anastrozole as adjuvant therapy for hormone receptor-positive early stage breast cancer—first results [abstract]. Breast Cancer Res Treat 2006;100(Suppl 1):Abstract 4061.

    • Search Google Scholar
    • Export Citation
  • 117

    Van Poznak C, Hannon R, Clack G. Managing cancer treatment-induced bone loss: 24-month results from the Study of Anastrozole with the Bisphosphonate RisedronatE (SABRE). San Antonio Breast Cancer symposium, Abstract 1137.

    • Search Google Scholar
    • Export Citation
  • 118

    Lester JE, Gutcher SA, Ellis S. Use of monthly oral ibandronate to prevent anastrozole-induced bone loss during adjuvant treatment for breast cancer: two-year results from the ARIBON study [abstract]. J Clin Oncol 2008;26(Suppl 1):Abstract 554.

    • Search Google Scholar
    • Export Citation
  • 119

    Bundred NJ, Campbell ID, Davidson N. Effective inhibition of aromatase inhibitor-associated bone loss by zoledronic acid in postmenopausal women with early breast cancer receiving letrozole: ZO-FAST study results. Cancer 2008;112:10011010.

    • Search Google Scholar
    • Export Citation
  • 120

    Schenk N, Llombart A. The E-ZO-FAST trial: zoledronic acid (ZA) effectively inhibits aromatase inhibitor associated bone loss (AIBL) in postmenopausal women (PMW) with early breast cancer (EBC) receiving adjuvant letrozole [abstract]. Presented at the 14th European Cancer Conference; September 23–27, 2007; Barcelona, Spain. Abstract 2008.

    • Search Google Scholar
    • Export Citation
  • 121

    Ellis GK, Bone HG, Chlebowski R. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 2008;26:48754882.

    • Search Google Scholar
    • Export Citation
  • 122

    Guise TA, Oefelein MG, Eastham JA. Estrogenic side effects of androgen deprivation therapy. Rev Urol 2007;9:163180.

  • 123

    Basaria S, Lieb J II, Tang AM. Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol (Oxf) 2002;56:779786.

    • Search Google Scholar
    • Export Citation
  • 124

    Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001;86:35553561.

    • Search Google Scholar
    • Export Citation
  • 125

    Mellstrom D, Vandenput L, Mallmin H. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 2008;23:15521560.

    • Search Google Scholar
    • Export Citation
  • 126

    Smith MR, Lee WC, Brandman J. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol 2005;23:78977903.

    • Search Google Scholar
    • Export Citation
  • 127

    Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 2005;352:154164.

  • 128

    Mittan D, Lee S, Miller E. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 2002;87:36563661.

    • Search Google Scholar
    • Export Citation
  • 129

    Maillefert JF, Sibilia J, Michel F. Bone mineral density in men treated with synthetic gonadotropin-releasing hormone agonists for prostatic carcinoma. J Urol 1999;161:12191222.

    • Search Google Scholar
    • Export Citation
  • 130

    Diamond T, Campbell J, Bryant C, Lynch W. The effect of combined androgen blockade on bone turnover and bone mineral densities in men treated for prostate carcinoma: longitudinal evaluation and response to intermittent cyclic etidronate therapy. Cancer 1998;83:15611566.

    • Search Google Scholar
    • Export Citation
  • 131

    Daniell HW, Dunn SR, Ferguson DW. Progressive osteoporosis during androgen deprivation therapy for prostate cancer. J Urol 2000;163:181186.

  • 132

    Berruti A, Dogliotti L, Terrone C. Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J Urol 2002;167:23612367; discussion 2367.

    • Search Google Scholar
    • Export Citation
  • 133

    Smith MR, McGovern FJ, Zietman AL. Pamidronate to prevent bone loss in men receiving gonadotropin releasing hormone agonist therapy for prostate cancer. N Engl J Med 2001;345:948955.

    • Search Google Scholar
    • Export Citation
  • 134

    Smith MR, Eastham J, Gleason D. Randomized controlled trial of zoledronic acid to prevent bone loss in men undergoing androgen deprivation therapy for nonmetastatic prostate cancer. J Urol 2003;169:20082012.

    • Search Google Scholar
    • Export Citation
  • 135

    Michaelson MD, Kaufman DS, Lee H. Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol 2007;25:10381042.

    • Search Google Scholar
    • Export Citation
  • 136

    Greenspan SL, Nelson JB, Trump DL, Resnick NM. Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: a randomized trial. Ann Intern Med 2007;146:416424.

    • Search Google Scholar
    • Export Citation
  • 137

    Smith MR, Fallon MA, Lee H, Finkelstein JS. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab 2004;89:38413846.

    • Search Google Scholar
    • Export Citation
  • 138

    Smith MR, Malkowicz SB, Chu F. Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter phase III clinical study. J Urol 2008;179:152155.

    • Search Google Scholar
    • Export Citation
  • 139

    Smith MR, Malkowicz SB, Chu F. Toremifene improves lipid profiles in men receiving androgen-deprivation therapy for prostate cancer: interim analysis of a multicenter phase III study. J Clin Oncol 2008;26:18241829.

    • Search Google Scholar
    • Export Citation
  • 140

    Senaratne SG, Mansi JL, Colston KW. The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. Br J Cancer 2002;86:14791486.

    • Search Google Scholar
    • Export Citation
  • 141

    van der Pluijm G, Vloedgraven H, van Beek E. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 1996;98:698705.

    • Search Google Scholar
    • Export Citation
  • 142

    Boissier S, Ferreras M, Peyruchaud O. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000;60:29492954.

    • Search Google Scholar
    • Export Citation
  • 143

    Teronen O, Konttinen YT, Salo T. [Bisphosphonates inhibit matrix metalloproteinases—a new possible mechanism of action]. Duodecim 1999;115:1315 [in Finnish].

    • Search Google Scholar
    • Export Citation
  • 144

    Boissier S, Magnetto S, Frappart L. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 1997;57:38903894.

    • Search Google Scholar
    • Export Citation
  • 145

    Sasaki A, Boyce BF, Story B. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995;55:35513557.

    • Search Google Scholar
    • Export Citation
  • 146

    Powles T, Paterson A, McCloskey E. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res 2006;8:R13.

    • Search Google Scholar
    • Export Citation
  • 147

    Diel IJ, Solomayer EF, Costa SD. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. New Engl J Med 1998;339:357363.

    • Search Google Scholar
    • Export Citation
  • 148

    Diel IJ, Jaschke A, Solomayer EF. Adjuvant oral clodronate improves the overall survival of primary breast cancer patients with micrometastases to the bone marrow: a long-term follow-up. Ann Oncol 2008;19:20072011.

    • Search Google Scholar
    • Export Citation
  • 149

    Saarto T, Blomqvist C, Virkkunen P, Elomaa I. Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 2001;19:1017.

    • Search Google Scholar
    • Export Citation
  • 150

    Ha TC, Li H. Meta-analysis of clodronate and breast cancer survival. Br J Cancer 2007;96:17961801.

  • 151

    Smith MR, Kabbinavar F, Saad F. Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. J Clin Oncol 2005;23:29182925.

    • Search Google Scholar
    • Export Citation
  • 152

    Mason MD, Sydes MR, Glaholm J. Oral sodium clodronate for nonmetastatic prostate cancer--results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J Natl Cancer Inst 2007;99:765776.

    • Search Google Scholar
    • Export Citation
  • 153

    Roudier MP, Vesselle H, True LD. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis 2003;20:171180.

    • Search Google Scholar
    • Export Citation
  • 154

    Guise TA, Mohammad KS, Clines G. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 2006;12:6213s6216s.

    • Search Google Scholar
    • Export Citation
  • 155

    Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004;350:16551664.

  • 156

    Witham TF, Khavkin YA, Gallia GL. Surgery insight: current management of epidural spinal cord compression from metastatic spine disease. Nat Clin Pract Neurol 2006;2:8794; quiz 116.

    • Search Google Scholar
    • Export Citation
  • 157

    Coleman RE. Skeletal complications of malignancy. Cancer 1997;80:15881594.

  • 158

    Theriault RL, Lipton A, Hortobagyi GN. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999;17:846854.

    • Search Google Scholar
    • Export Citation
  • 159

    Hortobagyi GN, Theriault RL, Porter L. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 1996;335:17851791.

    • Search Google Scholar
    • Export Citation
  • 160

    Rosen LS, Gordon D, Kaminski M. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001;7:377387.

    • Search Google Scholar
    • Export Citation
  • 161

    Kohno N, Aogi K, Minami H. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 2005;23:33143321.

    • Search Google Scholar
    • Export Citation
  • 162

    Body JJ, Diel IJ, Lichinitzer M. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br J Cancer 2004;90:11331137.

    • Search Google Scholar
    • Export Citation
  • 163

    Tubiana-Hulin M, Beuzeboc P, Mauriac L. [Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases]. Bull Cancer 2001;88:701707 [in French].

    • Search Google Scholar
    • Export Citation
  • 164

    Diel IJ, Body JJ, Lichinitser MR. Improved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer. Eur J Cancer 2004;40:17041712.

    • Search Google Scholar
    • Export Citation
  • 165

    Body JJ, Diel IJ, Bell R. Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 2004;111:306312.

    • Search Google Scholar
    • Export Citation
  • 166

    Lipton A, Theriault RL, Hortobagyi GN. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 2000;88:10821090.

    • Search Google Scholar
    • Export Citation
  • 167

    Saad F, Gleason DM, Murray R. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 2004;96:879882.

    • Search Google Scholar
    • Export Citation
  • 168

    Kyle RA, Yee GC, Somerfield MR. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 2007;25:24642472.

    • Search Google Scholar
    • Export Citation
  • 169

    Aapro M, Abrahamsson PA, Body JJ. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol 2008;19:420432.

    • Search Google Scholar
    • Export Citation
  • 170

    Major P, Lortholary A, Hon J. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558567.

    • Search Google Scholar
    • Export Citation
  • 171

    Rosen LS, Gordon D, Kaminski M. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 2003;98:17351744.

    • Search Google Scholar
    • Export Citation
  • 172

    Kohno N, Aogi K, Minami H. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 2005;23:33143321.

    • Search Google Scholar
    • Export Citation
  • 173

    Dearnaley DP, Sydes MR, Mason MD. A double-blind, placebo-controlled, randomized trial of sodium clodronate for metastatic prostate cancer (MRC PR05 trial). J Natl Cancer Inst 2003;95:13001311.

    • Search Google Scholar
    • Export Citation
  • 174

    Ernst DS, Tannock IF, Winquist EW. Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol 2003;21:33353342.

    • Search Google Scholar
    • Export Citation
  • 175

    Small EJ, Smith MR, Seaman JJ. Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol 2003;21:42774284.

    • Search Google Scholar
    • Export Citation
  • 176

    Saad F, Gleason DM, Murray R. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:14581468.

    • Search Google Scholar
    • Export Citation
  • 177

    ClinicalTrials.gov. Study to evaluate zoledronic acid on quality of life and skeletal-related events as adjuvant treatment in patients with hormone-naïve prostate cancer and bone metastasis who have undergone orchiectomy. Available at: http://www.clinicaltrial.gov/ct2/show/NCT00237146?term=hormone+naive+prostate+cancer&rank=4. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 178

    ClinicalTrials.gov. Double-blind study of denosumab compared with zoledronic acid in the treatment of bone metastases in men with hormone-refractory prostate cancer. Available at: http://www.clinicaltrial.gov/ct2/show/NCT00321620?term=denosumab+and+prostate+cancer&rank=2. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 179

    Fizazi K, Lipton A, Mariette X. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 2009;27:15641571.

    • Search Google Scholar
    • Export Citation
  • 180

    Lipton A, Steger GG, Figueroa J. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol 2007;25:44314437.

    • Search Google Scholar
    • Export Citation
  • 181

    ClinicalTrials.gov. Dasatinib in treating patients with stage IV breast cancer that has spread to the bone. Available at: http://clinicaltrials.gov/ct2/show/NCT00410813. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 182

    ClinicalTrials.gov. Dasatinib in combination with zoledronic acid for the treatment of breast cancer with bone metastasis. Available at: http://clinicaltrials.gov/ct2/show/NCT00566618?show_desc=Y. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 183

    ClinicalTrials.gov. Trial of dasatinib (Sprycel®) in subjects with hormone-refractory prostate cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT00570700. Accessed May 2009.

    • Search Google Scholar
    • Export Citation
  • 184

    Le Gall C, Bonnelye E, Clezardin P. Cathepsin K inhibitors as treatment of bone metastasis. Curr Opin Support Palliat Care 2008;2:218222.

  • 185

    Le Gall C, Bellahcene A, Bonnelye E. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden. Cancer Res 2007;67:98949902.

    • Search Google Scholar
    • Export Citation
  • 186

    ClinicalTrials.gov. Archive: view of NCT00692458 on 2008_12_07. Available at: http://clinicaltrials.gov/archive/NCT00692458/2008_12_07. AccessedMay 2009.

    • Search Google Scholar
    • Export Citation
  • 187

    Muindi J, Coombes RC, Golding S. The role of computed tomography in the detection of bone metastases in breast cancer patients. Br J Radiol 1983;56:233236.

    • Search Google Scholar
    • Export Citation
  • 188

    Durning P, Best JJ, Sellwood RA. Recognition of metastatic bone disease in cancer of the breast by computed tomography. Clin Oncol 1983;9:343346.

    • Search Google Scholar
    • Export Citation
  • 189

    Hanna SL, Fletcher BD, Fairclough DL. Magnetic resonance imaging of disseminated bone marrow disease in patients treated for malignancy. Skeletal Radiol 1991;20:7984.

    • Search Google Scholar
    • Export Citation
  • 190

    Krishnamurthy GT, Tubis M, Hiss J, Blahd WH. Distribution pattern of metastatic bone disease. A need for total body skeletal image. JAMA 1977;237:25042506.

    • Search Google Scholar
    • Export Citation
  • 191

    Zelinka T, Timmers HJ, Kozupa A. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations. Endocr Relat Cancer 2008;15:311323.

    • Search Google Scholar
    • Export Citation
  • 192

    Daldrup-Link HE, Franzius C, Link TM. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. Am J Roentgenol 2001;177:229236.

    • Search Google Scholar
    • Export Citation
  • 193

    Ohta M, Tokuda Y, Suzuki Y. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 2001;22:875879.

    • Search Google Scholar
    • Export Citation
  • 194

    Kao CH, Hsieh JF, Tsai SC. Comparison and discrepancy of 18F-2-deoxyglucose positron emission tomography and Tc-99m MDP bone scan to detect bone metastases. Anticancer Res 2000;20:21892192.

    • Search Google Scholar
    • Export Citation
  • 195

    Hamaoka T, Madewell JE, Podoloff DA. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22:29422953.

  • 196

    Chow E, Harris K, Fan G. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 2007;25:14231436.

  • 197

    Wu JS, Wong R, Johnston M. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys 2003;55:594605.

    • Search Google Scholar
    • Export Citation
  • 198

    Hartsell WF, Scott CB, Bruner DW. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst 2005;97:798804.

    • Search Google Scholar
    • Export Citation
  • 199

    van den Hout WB, van der Linden YM, Steenland E. Single-versus multiple-fraction radiotherapy in patients with painful bone metastases: cost-utility analysis based on a randomized trial. J Natl Cancer Inst 2003;95:222229.

    • Search Google Scholar
    • Export Citation
  • 200

    Bradley NM, Husted J, Sey MS. Review of patterns of practice and patients’ preferences in the treatment of bone metastases with palliative radiotherapy. Support Care Cancer 2007;15:373385.

    • Search Google Scholar
    • Export Citation
  • 201

    Gerszten PC, Burton SA, Welch WC. Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 2005;104:22442254.

  • 202

    Quilty PM, Kirk D, Bolger JJ. A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol 1994;31:3340.

    • Search Google Scholar
    • Export Citation
  • 203

    Porter AT, McEwan AJB, Powe JE. Results of a randomized phase III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 1993;25:805813.

    • Search Google Scholar
    • Export Citation
  • 204

    Robinson RG. Strontium-89-precursor targeted therapy for pain relief of blastic metastatic disease. Cancer 1993;72:34333435.

  • 205

    Sartor O, Reid RH, Hoskin PJ. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 2004;63:940945.

    • Search Google Scholar
    • Export Citation
  • 206

    Maxon HR, Schroder LE, Hertzberg VS. Rhenium-186(Sn)-HEDP for treatment of painful osseous metastases: results of a double blind crossover comparison with placebo. J Nucl Med 1991;32:18771881.

    • Search Google Scholar
    • Export Citation
  • 207

    Palmedo H, Manka-Waluch A, Albers P. Repeated bone-targeted therapy for hormone-refractory prostate carcinoma: randomized phase II trial with the new, high-energy radiopharmaceutical rhenium-188 hydroxyethylidenediphosphonate. J Clin Oncol 2003;21:28692875.

    • Search Google Scholar
    • Export Citation
  • 208

    Tu S, Millikan RE, Mengistu B. Bone targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 2001;357:336341.

    • Search Google Scholar
    • Export Citation
  • 209

    Ward WG, Holsenbeck S, Dorey FJ. Metastatic disease of the femur: surgical treatment. Clin Orthop Relat Res 2003:S230244.

  • 210

    Redmond BJ, Biermann JS, Blasier RB. Interlocking intramedullary nailing of pathological fractures of the shaft of the humerus. J Bone Joint Surg Am 1996;78A:891896.

    • Search Google Scholar
    • Export Citation
  • 211

    Franck WM, Olivieri M, Jannasch O, Hennig FF. An expandable nailing system for the management of pathological humerus fractures. Arch Orthop Trauma Surg 2002;122:400405.

    • Search Google Scholar
    • Export Citation
  • 212

    Samsani SR, Panikkar V, Venu KM. Breast cancer bone metastasis in femur: surgical considerations and reconstruction with Long Gamma Nail. Eur J Surg Oncol 2004;30:993997.

    • Search Google Scholar
    • Export Citation
  • 213

    Moholkar K, Mohan R, Grigoris P. The Long Gamma Nail for stabilisation of existing and impending pathological fractures of the femur: an analysis of 48 cases. Acta Orthop Belg 2004;70:429434.

    • Search Google Scholar
    • Export Citation
  • 214

    Marco RA, Sheth DS, Boland PJ. Functional and oncological outcome of acetabular reconstruction for the treatment of metastatic disease. J Bone Joint Surg Am 2000;82:642651.

    • Search Google Scholar
    • Export Citation
  • 215

    Benevenia J, Cyran FP, Biermann JS. Treatment of advanced metastatic lesions of the acetabulum using the saddle prosthesis. Clin Orthop Relat Res 2004:2331.

    • Search Google Scholar
    • Export Citation
  • 216

    Goetz MP, Callstrom MR, Charboneau JW. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 2004;22:300306.

    • Search Google Scholar
    • Export Citation
  • 217

    Fourney DR, Schomer DF, Nader R. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003;98:2130.

    • Search Google Scholar
    • Export Citation
  • 218

    Lane JM, Hong R, Koob J. Kyphoplasty enhances function and structural alignment in multiple myeloma. Clin Orthop Relat Res 2004;426:4953.

  • 219

    Kelekis A, Lovblad KO, Mehdizade A. Pelvic osteoplasty in osteolytic metastases: technical approach under fluoroscopic guidance and early clinical results. J Vasc Interv Radiol 2005;16:8188.

    • Search Google Scholar
    • Export Citation
  • 220

    Callstrom MR, Charboneau JW, Goetz MP. Image-guided ablation of painful metastatic bone tumors: a new and effective approach to a difficult problem. Skeletal Radiol 2006;35:115.

    • Search Google Scholar
    • Export Citation
  • 221

    Kalantaridou SN, Davis SR, Nelson LM. Premature ovarian failure. Endocrinol Metab Clin North Am 1998;27:9891006.

  • 222

    Berenson JR, Lichtenstein A, Porter L. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998;16:593602.

    • Search Google Scholar
    • Export Citation
  • 223

    Rosen LS, Gordon D, Tchekmedyian NS. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer 2004;100:26132621.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 188 57
PDF Downloads 181 127 49
EPUB Downloads 0 0 0