Principles and Techniques of Radiation Therapy for Esophageal and Gastroesophageal Junction Cancers

View More View Less
  • a From the Department of Radiation Oncology, Huntsman Cancer Hospital, Salt Lake City, Utah; Department of Radiation Oncology, Roswell Park Cancer Institute, Buffalo, New York; Department of Radiation Oncology, M. D. Anderson Cancer Center, University of Texas, Houston, Texas; Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan; and Department of Radiation Oncology, Duke Comprehensive Cancer Center, Durham, North Carolina.

Radiation therapy serves an integral role in the primary and adjuvant treatment of esophagus cancer. Radiation techniques continue to improve, providing more accurate localization of the tumor while limiting dose to normal structures. This article reviews current practices and recommendations for radiation therapy technique for esophageal and gastroesophageal malignancies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Lisa Hazard, MD, Department of Radiation Oncology, Huntsman Cancer Hospital, 1950 Circle of Hope, Salt Lake City, UT 84112-5560. E-mail: lisa.hazard@hci.utah.edu
  • 1.

    Surveillance Epidemiology and End Results. Available at: http://seer.cancer.gov/cgi-bin/csr/1975_2005/search.pl#results. Accessed April 18, 2008.

    • Search Google Scholar
    • Export Citation
  • 2.

    ICRU 62. International Commission on Radiation Units and Measurements, prescribing, recording, and reporting photon beam therapy. Bethesda, MD. 1999.

    • Search Google Scholar
    • Export Citation
  • 3.

    Gao XS, Qiao X, Wu F. Pathological analysis of clinical target volume margin for radiotherapy in patients with esophageal and gastroesophageal junction carcinoma. Int J Radiat Oncol Biol Phys 2007;67:389396.

    • Search Google Scholar
    • Export Citation
  • 4.

    Luketich JD, Friedman DM, Weigel TL. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg 1999;68:11331136; discussion 1136–1137.

    • Search Google Scholar
    • Export Citation
  • 5.

    van Westreenen HL, Westerterp M, Bossuyt PM. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 2004;22:38053812.

    • Search Google Scholar
    • Export Citation
  • 6.

    DeYoung C, Suntharalingam M, Line BR. The ability of whole body FDG18 PET imaging to predict pathologic response to induction chemoradiotherapy in locally advanced esophageal cancer: a prospective phase II trial. Int J Radiat Oncol Biol Phys 2003;57:S165166.

    • Search Google Scholar
    • Export Citation
  • 7.

    Fukunaga T, Okazumi S, Koide Y. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med 1998;39:10021007.

  • 8.

    Zhong X, Yu JM, Zhang BJ. Optimal SUV threshold of gross tumor volume delineation validated by pathological examination in patients with esophageal cancer. Int J Radiat Oncol Biol Phys 2007;69:S108109.

    • Search Google Scholar
    • Export Citation
  • 9.

    Konski A, Doss M, Milestone B. The integration of 18-fluorodeoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;61:11231128.

    • Search Google Scholar
    • Export Citation
  • 10.

    Leong T, Everitt C, Yuen K. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 2006;78:254261.

    • Search Google Scholar
    • Export Citation
  • 11.

    Vesprini D, Ung Y, Kamra J. The addition of 18-fluorodeoxyglucose positron emission tomography (FDG-PET) to CT based radiotherapy planning of carcinoma of the esophagus decreases both the intra- and interobserver variability of GTV delineation. Int J Radiat Oncol Biol Phys 2006;66:S299300.

    • Search Google Scholar
    • Export Citation
  • 12.

    Radiation Therapy Oncology Group. RTOG 1103: non-operative therapy of local-regional carcinoma of the esophagus: a randomized phase II study of two paclitaxel-based chemoradiotherapy regimens. Available at: http://www.rtog.org/members/protocols/E0113/E0113.pdf. Accessed 3 September 2008.

    • Search Google Scholar
    • Export Citation
  • 13.

    Tachibana M, Kinugasa S, Yoshimura H. Clinical outcomes of extended esophagectomy with three-field lymph node dissection for esophageal squamous cell carcinoma. Am J Surg 2005;189:98109.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lerut T, Flamen P, Ectors N. Histopathologic validation of lymph node staging with FDG-PET scan in cancer of the esophagus and gastroesophageal junction: a prospective study based on primary surgery with extensive lymphadenectomy. Ann Surg 2000;232:743752.

    • Search Google Scholar
    • Export Citation
  • 15.

    McAteer D, Wallis F, Couper G. Evaluation of 18F-FDG positron emission tomography in gastric and oesophageal carcinoma. Br J Radiol 1999;72:525529.

    • Search Google Scholar
    • Export Citation
  • 16.

    Skehan SJ, Brown AL, Thompson M. Imaging features of primary and recurrent esophageal cancer at FDG PET. Radiographics 2000;20:713723.

  • 17.

    Wren SM, Stijns P, Srinivas S. Positron emission tomography in the initial staging of esophageal cancer. Arch Surg 2002;137:10011006; discussion 1006–1007.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kato H, Kuwano H, Nakajima M. Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 2002;94:921928.

    • Search Google Scholar
    • Export Citation
  • 19.

    Shimizu S, Hosokawa M, Itoh K. Can FDG-PET detect subclinical lymph node metastasis of esophageal cancer and contribute to the radiation treatment planning compared with images and pathological findings? Int J Radiat Oncol Biol Phys 2006;66:S279.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hashimoto T, Shirato H, Kato M. Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys 2005;61:15591564.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dieleman EM, Senan S, Vincent A. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. Int J Radiat Oncol Biol Phys 2007;67:775780.

    • Search Google Scholar
    • Export Citation
  • 22.

    Yaremko BP, Guerrero TM, McAleer MF. Determination of respiratory motion for distal esophagus cancer using four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2008;70:145153.

    • Search Google Scholar
    • Export Citation
  • 23.

    Chen YJ, Han C, Liu A. Setup variations in radiotherapy of esophageal cancer: evaluation by daily megavoltage computed tomographic localization. Int J Radiat Oncol Biol Phys 2007;68:15371545.

    • Search Google Scholar
    • Export Citation
  • 24.

    Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 2004;14:8190.

  • 25.

    Wang SL, Liao Z, Vaporciyan AA. Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 2006;64:692699.

    • Search Google Scholar
    • Export Citation
  • 26.

    Chandra A, Guerrero TM, Liu HH. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 2005;77:247253.

    • Search Google Scholar
    • Export Citation
  • 27.

    Chen YJ, Liu A, Han C. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim 2007;32:166171.

    • Search Google Scholar
    • Export Citation
  • 28.

    Fu WH, Wang LH, Zhou ZM. Comparison of conformal and intensity-modulated techniques for simultaneous integrated boost radiotherapy of upper esophageal carcinoma. World J Gastroenterol 2004;10:10981102.

    • Search Google Scholar
    • Export Citation
  • 29.

    Mayo CS, Urie MM, Fitzgerald TJ. Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys 2008;71:14081418.

    • Search Google Scholar
    • Export Citation
  • 30.

    Wang SL, Liao Z, Liu H. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer. World J Gastroenterol 2006;12:55015508.

    • Search Google Scholar
    • Export Citation
  • 31.

    Kim TH, Cho KH, Pyo HR. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 2005;235:208215.

    • Search Google Scholar
    • Export Citation
  • 32.

    Tsujino K, Hirota S, Endo M. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 2003;55:110115.

    • Search Google Scholar
    • Export Citation
  • 33.

    Wang S, Liao Z, Wei X. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006;66:13991407.

    • Search Google Scholar
    • Export Citation
  • 34.

    Cosset JM, Henry-Amar M, Pellae-Cosset B. Pericarditis and myocardial infarctions after Hodgkin's disease therapy. Int J Radiat Oncol Biol Phys 1991;21:447449.

    • Search Google Scholar
    • Export Citation
  • 35.

    Hancock SL, Donaldson SS, Hoppe RT. Cardiac disease following treatment of Hodgkin's disease in children and adolescents. J Clin Oncol 1993;11:12081215.

    • Search Google Scholar
    • Export Citation
  • 36.

    Minsky BD, Pajak TF, Ginsberg RJ. INT 0123 (RTOG 94-05) phase III trial of combined modality therapy for esophageal cancer: high dose (64.8 Gy) vs. standard dose (50.4 Gy) radiation therapy. J Clin Oncol 2002;20:11671174.

    • Search Google Scholar
    • Export Citation
  • 37.

    Gaspar LE, Winter K, Kocha WI. A phase I/II study of external beam radiation, brachytherapy, and concurrent chemotherapy for patients with localized carcinoma of the esophagus (Radiation Therapy Oncology Group Study 9207): final report. Cancer 2000;88:988995.

    • Search Google Scholar
    • Export Citation
  • 38.

    Burmeister BH, Dickie G, Smithers BM. Thirty-four patients with carcinoma of the cervical esophagus treated with chemoradiation therapy. Arch Otolaryngol Head Neck Surg 2000;126:205208.

    • Search Google Scholar
    • Export Citation
  • 39.

    Murakami M, Kuroda Y, Okamoto Y. Neoadjuvant concurrent chemoradiotherapy followed by definitive high-dose radiotherapy or surgery for operable thoracic esophageal carcinoma. Int J Radiat Oncol Biol Phys 1998;40:10491059.

    • Search Google Scholar
    • Export Citation
  • 40.

    Tai P, Van Dyk J, Yu E. Radiation treatment for cervical esophagus: patterns of practice study in Canada, 1996. Int J Radiat Oncol Biol Phys 2000;47:703712.

    • Search Google Scholar
    • Export Citation
  • 41.

    Bosset JF, Gignoux M, Triboulet JP. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 1997;337:161167.

    • Search Google Scholar
    • Export Citation
  • 42.

    Fiorica F, Di Bona D, Schepis F. Preoperative chemoradiotherapy for oesophageal cancer: a systematic review and meta-analysis. Gut 2004;53:925930.

    • Search Google Scholar
    • Export Citation
  • 43.

    Cooper JS, Guo MD, Herskovic A. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA 1999;281:16231627.

    • Search Google Scholar
    • Export Citation
  • 44.

    Minsky BD, Pajak TF, Ginsberg RJ. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 2002;20:11671174.

    • Search Google Scholar
    • Export Citation
  • 45.

    Urba SG, Orringer MB, Turrisi A. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001;19:305313.

    • Search Google Scholar
    • Export Citation
  • 46.

    Walsh TN, Noonan N, Hollywood D. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996;335:462467.

    • Search Google Scholar
    • Export Citation
  • 47.

    Sasidharan S, Allison R, Jenkins T. Interfraction esophagus motion in image guided radiation therapy (IGRT). Int J Radiat Oncol Biol Phys 2007;63:S9192.

    • Search Google Scholar
    • Export Citation
  • 48.

    Graham MV, Purdy JA, Emami B. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999;45:323329.

    • Search Google Scholar
    • Export Citation
  • 49.

    Hernando ML, Marks LB, Bentel GC. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001;51:650659.

    • Search Google Scholar
    • Export Citation
  • 50.

    Kong FM, Hayman JA, Griffith KA. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006;65:10751086.

    • Search Google Scholar
    • Export Citation
  • 51.

    Wei X, Liu HH, Tucker SL. Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy. Int J Radiat Oncol Biol Phys 2008;70:707714.

    • Search Google Scholar
    • Export Citation
  • 52.

    Martel MK, Sahijdak WM, Ten Haken RK. Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys 1998;40:155161.

    • Search Google Scholar
    • Export Citation
  • 53.

    Marks LB, Yu X, Prosnitz RG. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 2005;63:214223.

    • Search Google Scholar
    • Export Citation
  • 54.

    Tripp P, Malhotra HK, Javle M. Cardiac function after chemoradiation for esophageal cancer: comparison of heart dose-volume histogram parameters to multiple gated acquisition scan changes. Dis Esophagus 2005;18:400405.

    • Search Google Scholar
    • Export Citation
  • 55.

    Stahl M, Stuschke M, Lehmann N. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol 2005;23:23102317.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 88 9
PDF Downloads 90 54 5
EPUB Downloads 0 0 0