Ovarian Cancer Biomarkers: Current Options and Future Promise

View More View Less
  • 1 From Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts.

As more effective, less toxic cancer drugs reach patients, the need for accurate and reliable cancer diagnostics and prognostics has become widely appreciated. Nowhere is this need more dire than in ovarian cancer; here most women are diagnosed late in disease progression. The ability to sensitively and specifically predict the presence of early disease and its status, stage, and associated therapeutic efficacy has the potential to revolutionize ovarian cancer detection and treatment. This article reviews current ovarian cancer diagnostics and prognostics and potential biomarkers that are being studied and validated. Some of the most recent molecular approaches being used to identify genes and proteins are presented, which may represent the next generation of ovarian cancer diagnostics and prognostics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Marsha A. Moses, PhD, Program in Vascular Biology and Department of Surgery, 12.214, Karp Family Research Building, Children's Hospital Boston and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115. E-mail: marsha.moses@childrens.harvard.edu

These authors contributed equally to this work.

  • 1.

    American Cancer Society. Cancer Facts & Figures 2007. Atlanta: American Cancer Society; 2007.

  • 2.

    van Nagell JR Jr, DePriest PD, Reedy MB. The efficacy of transvaginal sonographic screening in asymptomatic women at risk for ovarian cancer. Gynecol Oncol 2000;77:350356.

    • Search Google Scholar
    • Export Citation
  • 3.

    Chen DX, Schwartz PE, Li XG. Evaluation of CA 125 levels in differentiating malignant from benign tumors in patients with pelvic masses. Obstet Gynecol 1988;72:2327.

    • Search Google Scholar
    • Export Citation
  • 4.

    Engel J, Eckel R, Schubert-Fritschle G. Moderate progress for ovarian cancer in the last 20 years: prolongation of survival, but no improvement in the cure rate. Eur J Cancer 2002;38:24352445.

    • Search Google Scholar
    • Export Citation
  • 5.

    Omura GA, Brady MF, Homesley HD. Long-term follow-up and prognostic factor analysis in advanced ovarian carcinoma: the Gynecologic Oncology Group experience. J Clin Oncol 1991;9:11381150.

    • Search Google Scholar
    • Export Citation
  • 6.

    Young RC, Walton LA, Ellenberg SS. Adjuvant therapy in stage I and stage II epithelial ovarian cancer. Results of two prospective randomized trials. N Engl J Med 1990;322:10211027.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bristow RE, Tomacruz RS, Armstrong DK. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 2002;20:12481259.

    • Search Google Scholar
    • Export Citation
  • 8.

    Paramasivam S, Tripcony L, Crandon A. Prognostic importance of preoperative CA-125 in International Federation of Gynecology and Obstetrics stage I epithelial ovarian cancer: an Australian multicenter study. J Clin Oncol 2005;23:59385942.

    • Search Google Scholar
    • Export Citation
  • 9.

    NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up. NIH Consensus Development Panel on Ovarian Cancer. JAMA 1995;273:491497.

    • Search Google Scholar
    • Export Citation
  • 10.

    Riedinger JM, Bonnetain F, Basuyau JP. Change in CA 125 levels after the first cycle of induction chemotherapy is an independent predictor of epithelial ovarian tumour outcome. Ann Oncol 2007;18:881885.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sabbatini P, Mooney D, Iasonos A. Early CA-125 fluctuations in patients with recurrent ovarian cancer receiving chemotherapy. Int J Gynecol Cancer 2007;17:589594.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bast RC Jr, Siegal FP, Runowicz C. Elevation of serum CA 125 prior to diagnosis of an epithelial ovarian carcinoma. Gynecol Oncol 1985;22:115120.

    • Search Google Scholar
    • Export Citation
  • 13.

    Niloff JM, Knapp RC, Schaetzl E. CA125 antigen levels in obstetric and gynecologic patients. Obstet Gynecol 1984;64:703707.

  • 14.

    Le T, Hopkins L, Faught W. The lack of significance of Ca125 response in epithelial ovarian cancer patients treated with neoadjuvant chemotherapy and delayed primary surgical debulking. Gynecol Oncol 2007;105:712715.

    • Search Google Scholar
    • Export Citation
  • 15.

    Moore RG, Brown AK, Miller MC. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol 2008;108:402408.

    • Search Google Scholar
    • Export Citation
  • 16.

    Rosen DG, Wang L, Atkinson JN. Potential markers that complement expression of CA125 in epithelial ovarian cancer. Gynecol Oncol 2005;99:267277.

    • Search Google Scholar
    • Export Citation
  • 17.

    Wong KK, Cheng RS, Mok SC. Identification of differentially expressed genes from ovarian cancer cells by MICROMAX cDNA microarray system. Biotechniques 2001;30:670675.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kim JH, Skates SJ, Uede T. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 2002;287:16711679.

  • 19.

    Brakora KA, Lee H, Yusuf R. Utility of osteopontin as a biomarker in recurrent epithelial ovarian cancer. Gynecol Oncol 2004;93:361365.

  • 20.

    Bao LH, Sakaguchi H, Fujimoto J. Osteopontin in metastatic lesions as a prognostic marker in ovarian cancers. J Biomed Sci 2007;14:373381.

  • 21.

    Ye B, Skates S, Mok SC. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006;12:432441.

    • Search Google Scholar
    • Export Citation
  • 22.

    Diamandis EP, Yousef GM. Human tissue kallikreins: a family of new cancer biomarkers. Clin Chem 2002;48:11981205.

  • 23.

    Yousef GM, Scorilas A, Katsaros D. Prognostic value of the human kallikrein gene 15 expression in ovarian cancer. J Clin Oncol 2003;21:31193126.

    • Search Google Scholar
    • Export Citation
  • 24.

    Borgono CA, Kishi T, Scorilas A. Human kallikrein 8 protein is a favorable prognostic marker in ovarian cancer. Clin Cancer Res 2006;12:14871493.

    • Search Google Scholar
    • Export Citation
  • 25.

    Borgono CA, Grass L, Soosaipillai A. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res 2003;63:90329041.

    • Search Google Scholar
    • Export Citation
  • 26.

    Luo LY, Katsaros D, Scorilas A. Prognostic value of human kallikrein 10 expression in epithelial ovarian carcinoma. Clin Cancer Res 2001;7:23722379.

    • Search Google Scholar
    • Export Citation
  • 27.

    Tanaka Y, Kobayashi H, Suzuki M. Reduced bikunin gene expression as a factor of poor prognosis in ovarian carcinoma. Cancer 2003;98:424430.

  • 28.

    Tanaka Y, Kobayashi H, Suzuki M. Upregulation of bikunin in tumor-infiltrating macrophages as a factor of favorable prognosis in ovarian cancer. Gynecol Oncol 2004;94:725734.

    • Search Google Scholar
    • Export Citation
  • 29.

    Matsuzaki H, Kobayashi H, Yagyu T. Plasma bikunin as a favorable prognostic factor in ovarian cancer. J Clin Oncol 2005;23:14631472.

  • 30.

    Drapkin R, von Horsten HH, Lin Y. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res 2005;65:21622169.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hellstrom I, Raycraft J, Hayden-Ledbetter M. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res 2003;63:36953700.

  • 32.

    Nagy JA, Masse EM, Herzberg KT. Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Res 1995;55:360368.

    • Search Google Scholar
    • Export Citation
  • 33.

    Yamamoto S, Konishi I, Mandai M. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer 1997;76:12211227.

    • Search Google Scholar
    • Export Citation
  • 34.

    Hefler LA, Zeillinger R, Grimm C. Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecol Oncol 2006;103:512517.

    • Search Google Scholar
    • Export Citation
  • 35.

    Rudlowski C, Pickart AK, Fuhljahn C. Prognostic significance of vascular endothelial growth factor expression in ovarian cancer patients: a long-term follow-up. Int J Gynecol Cancer 2006;16(Suppl 1):183189.

    • Search Google Scholar
    • Export Citation
  • 36.

    Dehaven K, Taylor DD, Gercel-Taylor C. Comparison of serum vascular endothelial growth levels between patients with and without ovarian malignancies. Int J Gynecol Cancer 2002;12:715719.

    • Search Google Scholar
    • Export Citation
  • 37.

    Mor G, Visintin I, Lai Y. Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 2005;102:76777682.

  • 38.

    Visintin I, Feng Z, Longton G. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 2008;14:10651072.

  • 39.

    Maatta M, Talvensaari-Mattila A, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) in differential diagnosis between low malignant potential (LMP) and malignant ovarian tumours. Anticancer Res 2007;27:27532758.

    • Search Google Scholar
    • Export Citation
  • 40.

    Murthi P, Barker G, Nowell CJ. Plasminogen fragmentation and increased production of extracellular matrix-degrading proteinases are associated with serous epithelial ovarian cancer progression. Gynecol Oncol 2004;92:8088.

    • Search Google Scholar
    • Export Citation
  • 41.

    Pories SE, Zurakowski D, Roy R. Urinary metalloproteinases: non-invasive biomarkers for breast cancer risk assessment. Cancer Epidemiol Biomarkers Prev 2008;17:10341042.

    • Search Google Scholar
    • Export Citation
  • 42.

    Rauvala M, Turpeenniemi-Hujanen T, Puistola U. The value of sequential serum measurements of gelatinases and tissue inhibitors during chemotherapy in ovarian cancer. Anticancer Res 2006;26:47794784.

    • Search Google Scholar
    • Export Citation
  • 43.

    Roy R, Wewer UM, Zurakowski D. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 2004;279:5132351330.

    • Search Google Scholar
    • Export Citation
  • 44.

    Chan LW, Moses MA, Goley E. Urinary VEGF and MMP levels as predictive markers of 1-year progression-free survival in cancer patients treated with radiation therapy: a longitudinal study of protein kinetics throughout tumor progression and therapy. J Clin Oncol 2004;22:499506.

    • Search Google Scholar
    • Export Citation
  • 45.

    Fernandez CA, Yan L, Louis G. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 2005;11:53905395.

    • Search Google Scholar
    • Export Citation
  • 46.

    Moses MA, Wiederschain D, Loughlin KR. Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res 1998;58:13951399.

    • Search Google Scholar
    • Export Citation
  • 47.

    Smith ER, Zurakowski D, Saad A. Urinary biomarkers predict brain tumor presence and response to therapy. Clin Cancer Res 2008;14:23782386.

  • 48.

    Yan L, Borregaard N, Kjeldsen L. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 2001;276:3725837265.

    • Search Google Scholar
    • Export Citation
  • 49.

    Suzuki S, Moore DH II, Ginzinger DG. An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res 2000;60:53825385.

    • Search Google Scholar
    • Export Citation
  • 50.

    Kiechle M, Jacobsen A, Schwarz-Boeger U. Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer 2001;91:534540.

    • Search Google Scholar
    • Export Citation
  • 51.

    Cheng KW, Lahad JP, Kuo WL. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 2004;10:12511256.

  • 52.

    Birrer MJ, Johnson ME, Hao K. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol 2007;25:22812287.

    • Search Google Scholar
    • Export Citation
  • 53.

    Tsuda H, Ito YM, Ohashi Y. Identification of overexpression and amplification of ABCF2 in clear cell ovarian adenocarcinomas by cDNA microarray analyses. Clin Cancer Res 2005;11:68806888.

    • Search Google Scholar
    • Export Citation
  • 54.

    Schwartz DR, Kardia SL, Shedden KA. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 2002;62:47224729.

    • Search Google Scholar
    • Export Citation
  • 55.

    Zorn KK, Bonome T, Gangi L. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 2005;11:64226430.

    • Search Google Scholar
    • Export Citation
  • 56.

    Spentzos D, Levine DA, Ramoni MF. Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J Clin Oncol 2004;22:47004710.

    • Search Google Scholar
    • Export Citation
  • 57.

    Berchuck A, Iversen ES, Lancaster JM. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res 2005;11:36863696.

    • Search Google Scholar
    • Export Citation
  • 58.

    Spentzos D, Levine DA, Kolia S. Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J Clin Oncol 2005;23:79117918.

    • Search Google Scholar
    • Export Citation
  • 59.

    Jazaeri AA, Awtrey CS, Chandramouli GV. Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin Cancer Res 2005;11:63006310.

    • Search Google Scholar
    • Export Citation
  • 60.

    Dressman HK, Berchuck A, Chan G. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 2007;25:517525.

    • Search Google Scholar
    • Export Citation
  • 61.

    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843854.

    • Search Google Scholar
    • Export Citation
  • 62.

    Garzon R, Fabbri M, Cimmino A. MicroRNA expression and function in cancer. Trends Mol Med 2006;12:580587.

  • 63.

    Lu J, Getz G, Miska EA. MicroRNA expression profiles classify human cancers. Nature 2005;435:834838.

  • 64.

    Iorio MV, Visone R, Di Leva G. MicroRNA signatures in human ovarian cancer. Cancer Res 2007;67:86998707.

  • 65.

    Zhang L, Huang J, Yang N. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006;103:91369141.

  • 66.

    Shell S, Park SM, Radjabi AR. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 2007;104:1140011405.

  • 67.

    Petricoin EF, Ardekani AM, Hitt BA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572577.

  • 68.

    Kozak KR, Amneus MW, Pusey SM. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc Natl Acad Sci U S A 2003;100:1234312348.

    • Search Google Scholar
    • Export Citation
  • 69.

    Rai AJ, Zhang Z, Rosenzweig J. Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 2002;126:15181526.

  • 70.

    Ye B, Cramer DW, Skates SJ. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003;9:29042911.

    • Search Google Scholar
    • Export Citation
  • 71.

    Zhang Z, Bast RC Jr, Yu Y. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004;64:58825890.

    • Search Google Scholar
    • Export Citation
  • 72.

    Moore LE, Fung ET, McGuire M. Evaluation of apolipoprotein A1 and posttranslationally modified forms of transthyretin as biomarkers for ovarian cancer detection in an independent study population. Cancer Epidemiol Biomarkers Prev 2006;15:16411646.

    • Search Google Scholar
    • Export Citation
  • 73.

    Gortzak-Uzan L, Ignatchenko A, Evangelou AI. A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res 2008;7:339351.

    • Search Google Scholar
    • Export Citation
  • 74.

    Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 2004;20:777785.

    • Search Google Scholar
    • Export Citation
  • 75.

    Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 2004;4:309314.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 108 8
PDF Downloads 80 56 4
EPUB Downloads 0 0 0