Strategy for Incorporating Molecular and Cytogenetic Markers into Acute Myeloid Leukemia Therapy

Editor:
Kerrin G. Robinson Assistant Managing Editor, Journal of the National Comprehensive Cancer Network

Search for other papers by Kerrin G. Robinson in
Current site
Google Scholar
PubMed
Close
 MA
Authors:
Mark G. Frattini From the Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York.

Search for other papers by Mark G. Frattini in
Current site
Google Scholar
PubMed
Close
 MD, PhD
and
Peter G. Maslak From the Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York.

Search for other papers by Peter G. Maslak in
Current site
Google Scholar
PubMed
Close
 MD
Full access

Acute myeloid leukemia is a heterogeneous disease. Standard treatments may be applied to biologically distinct subgroups, resulting in different treatment outcomes. The concept of risk-adapted therapy allows for recognition of this biologic diversity by incorporating key biologic features, such as cytogenetic and molecular markers, when formulating treatment regimens and investigating emerging targeted therapies based on disease characteristics.

Correspondence: Peter G. Maslak, MD, Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065. E-mail: maslakp@mskcc.org

Disclosure: Kerrin G. Robinson, MA, has disclosed no relevant financial relationships.

  • Collapse
  • Expand
  • 1.

    Scheinberg D, Maslak P, Weiss EA. Management of acute leukemias. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2005:20882120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Yates J, Wallace HJ, Ellison R et al.. Cytosine arabinoside (NSC 63878) and daunorubicin (NSC 83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep 1973;57:485488.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rai K, Holland J, Glidewell O et al.. Treatment of acute myelocytic leukemia: a study by Cancer and Leukemia Group B. Blood 1981;58:12031212.

  • 4.

    Yates J, Gildwell O, Wiernik P et al.. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood 1982;60:454462.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sonneveld P, van Dongen J, Hagemeijer A et al.. High expression of the multidrug resistance P-glycoprotein in high-risk myelodysplasia is associated with immature phenotype. Leukemia 1993;7:963969.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Leith C, Kopecky K, Godwin T et al.. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subtypes with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997;89:33233329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Larson RA. Etiology and management of therapy-related myeloid leukemia. Hematology Am Soc Hematol Educ Program 2007:453459.

  • 8.

    Grimwade D, Walker H, Harrison G et al.. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML 11 trial. Blood 2001;98:13121320.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chang C, Storer B, Scott B et al.. Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood 2007;110:13791387.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tallman M, Dewald G, Gandham S et al.. Impact of cytogenetics on outcome of matched unrelated donor hematopoietic stem cell transplantation for acute myeloid leukemia in first or second complete remission. Blood 2007;110:409417.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Keating M, Smith T, Kantarjian H et al.. Cytogenetic pattern in acute myelogenous leukemia: a major reproducible determinant of outcome. Leukemia 1988;2:403412.

  • 12.

    Grimwade D, Walker H, Oliver F et al.. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patents entered into the MRC AML 10 trial. Blood 1998;92:23222333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Slovak M, Kopecky K, Cassileth P et al.. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 2000;96:40754083.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Byrd J, Mrózek K, Ruppert A et al.. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002;100:43254336.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sanz M, Tallman M, Lo-Coco F. Tricks of the trade for the appropriate management of newly diagnosed acute promyelocytic leukemia. Blood 2005;105:30193025.

  • 16.

    Bloomfield C, Lawrence D, Byrd J et al.. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998;58:41734179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mrózek K, Marcucci G, Paschka P et al.. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007;109:431448.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Frankfurt O, Licht J, Tallman M. Molecular characterization of acute myeloid leukemia and its impact on treatment. Curr Opin Oncol 2007;19:635649.

  • 19.

    Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:15321542.

  • 20.

    Kim KT, Baird K, Ahn JY et al.. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005;105:17591767.

  • 21.

    Mizuki M, Fenski R, Halfter H et al.. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000;96:39073914.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mizuki M, Schwable J, Steur C et al.. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003;101:31643173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scheijen B, Ngo HT, Kang H et al.. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004;23:33383349.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Zheng R, Friedman AD, Levis M et al.. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2004;103:18831890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Frohling S, Schlenk R, Breitruck J et al.. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002;100:43724380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kottaridis P, Gale R, Frew M et al.. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (ML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98:17521759.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mead A, Linch D, Hills R et al.. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patient with acute myeloid leukemia. Blood 2007;110:12621270.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Thiede C, Steudel C, Mohr B et al.. Analysis of FLT3 activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:43264335.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Whitman SP, Ruppert AS, Radmacher MD et al.. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 2008;111:15521559.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bloomfield CD, Ruppert AS, Mrozek K et al.. Core binding factor acute myeloid leukemia. Cancer and Leukemia Group B (CALGB) study 8461. Ann Hematol 2004;83(Suppl 1):S8485.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Paschka P, Marcucci G, Ruppert AS et al.. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J Clin Oncol 2006;24:39043911.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schnittger S, Kohl TM, Haferlach T et al.. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006;107:17911799.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Caligiuri MA, Strout MP, Lawrence D et al.. Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 1998;58:5559.

  • 34.

    Basecke J, Whelan JT, Griesinger F et al.. The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol 2006;135:438449.

  • 35.

    Dorrance AM, Liu S, Yuan W et al.. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 2006;116:27072716.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Whitman SP, Hackanson B, Liyanarachchi S et al.. DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication. Blood 2008;112:20132016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Whitman SP, Ruppert AS, Marcucci G et al.. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 2007;109:51645167.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Baldus C, Tanner S, Ruppert A et al.. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B study. Blood 2003;102:16131618.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Baldus C, Thiede C, Soucek S et al.. BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 2006;24:790797.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Heuser M, Argiropoulos B, Kuchenbauer F et al.. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patient with AML. Blood 2007;110:16391647.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Marcucci G, Baldus CD, Ruppert AS et al.. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005;23:92349242.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Paschka P, Marcucci G, Ruppert AS et al.. Wilms tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2008;26:19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Spoo AC, Lubbert M, Wierda WG et al.. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 2007;109:786791.

  • 44.

    Virappane P, Gale R, Hilss R et al.. Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukemia Working Party. J Clin Oncol 2008, in press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Alcalay M, Tiacci E, Bergomas R et al.. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005;106:899902.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Dohner K, Schlenk R, Habdank M et al.. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005;106:37403746.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Falini B, Mecucci C, Tiacci E et al.. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254266.

  • 48.

    Falini B, Martelli MP, Bolli N et al.. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 2006;108:19992005.

  • 49.

    Schnittger S, Schoch C, Kern W et al.. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with normal karyotype. Blood 2005;106:37333739.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Friedman AD, McKnight SL. Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene. Genes Dev 1990;4:14161426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Frohling S, Dohner H. Disruption of C/EBPalpha function in acute myeloid leukemia. N Eng J Med 2004;351:23702372.

  • 52.

    Landschulz WH, Johnson PF, McKnight SL. The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 1989;243:16811688.

  • 53.

    Preudhomme C, Sagot C, Boissel N et al.. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002;100:27172723.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    O'Donnell M, Appelbaum F, Coutre S et al.. NCCN Clinical Practice Guidelines in Oncology: Acute myeloid leukemia, version 1.2009. Available at: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed September 11, 2008.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Davey D, Patil S, Echternacht H et al.. 8;21 translocation in acute nonlymphocytic leukemia. Occurrence in M1 and M2 FAB subtypes. Am J Clin Pathol 1989;92:172176.

  • 56.

    Larson R, Williams S, Le Beau M et al.. Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 1986;68:12421249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Marcucci G, Mrózek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol 2005;12:6875.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Murphy KM, Levis M, Hafez MJ et al.. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn 2003;5:96102.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Schlenk R, Dohner K, Krauter J et al.. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Eng J Med 2008;358:19091918.

  • 60.

    DeAngelo DJ, Stone RM, Heaney ML et al.. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006;108:36743681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    O'Farrell AM, Abrams TJ, Yuen HA et al.. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003;101:35973605.

  • 62.

    Stone RM, DeAngelo DJ, Klimek V et al.. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105:5460.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Smith BD, Levis M, Beran M et al.. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103:36693676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Baldus CD, Bullinger L. Gene expression with prognostic implications in cytogenetically normal acute myeloid leukemia. Semin Oncol 2008;35:356364.

  • 65.

    Debernardi S, Skoulakis S, Molloy G et al.. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 2007;21:912916.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Dixon-McIver A, East P, Mein CA et al.. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE 2008;3:e2141.

  • 67.

    Garzon R, Garofalo M, Martelli MP et al.. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 2008;105:39453950.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Jongen-Lavrencic M, Sun SM, Dijkstra MK et al.. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008;111:50785085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Marcucci G, Radmacher MD, Maharry K et al.. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008;358:19191928.

  • 70.

    Metzeler KH, Hummel M, Bloomfield CD et al.. An 86 probe set gene expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008, in press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Radmacher MD, Marcucci G, Ruppert AS et al.. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 2006;108:16771683.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Wouters BJ, Lowenberg B, Delwel R. A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 2008, in press.

  • 73.

    Hughes T, Deininger M, Hochhaus A et al.. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006;108:2837.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 527 366 21
PDF Downloads 111 33 2
EPUB Downloads 0 0 0