Role of Radioactive Iodine for Adjuvant Therapy and Treatment of Metastases

Normal thyrocytes and thyroid cancer cells are characterized by possession of a sodium iodide symporter. Radioiodine administration is a unique and powerful means of treating differentiated thyroid cancer because of the ability of thyroid cancer cells to concentrate beta-emitting radiolabeled iodine. Several manipulations, such as iodine depletion and thyroid hormone-stimulating hormone elevation, are used to enhance uptake of radiolabeled iodine by tumor cells. Adjuvant radioiodine therapy, given to patients without evidence of residual disease, enhances the sensitivity of subsequent surveillance and may decrease recurrence rates and mortality. However, its exact role in the management of low-risk patients merits further investigation. In contrast, radioactive iodine therapy used in patients with residual or metastatic disease clearly improves outcomes. Several studies show decreased recurrence and mortality rates in patients treated with radioiodine compared with those not receiving radioactive iodine. Adverse events from radioiodine therapy include salivary gland dysfunction, bone marrow suppression, and reproductive disturbances. Side effects of radioiodine therapy are generally greater when higher activities of radioiodine are used and may be transient or permanent. Secondary malignancies also may occur after radioiodine therapy. These side effects must be weighed against potential benefits, especially when radioactive iodine is used as adjuvant therapy. Stimulation of the expression of the sodium iodide symporter, or its introduction de novo into nonthyroid cells, is promising in treating poorly differentiated thyroid cancer and nonthyroid malignancies, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Jacqueline Jonklaas, MD, Division of Endocrinology and Metabolism, Georgetown University Medical Center, Suite 230, Building D, 4000 Reservoir Road, NW, Washington, DC 20007. E-mail: jj@bc.georgetown.edu
  • 1.

    SpitzwegCMorrisJC. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin Endocrinol (Oxf)2002;57:559574.

    • Search Google Scholar
    • Export Citation
  • 2.

    SpitzwegCHeufelderAEMorrisJC. Thyroid iodine transport. Thyroid2000;10:321330.

  • 3.

    CavalieriRR. Iodine metabolism and thyroid physiology: current concepts. Thyroid1997;7:177181.

  • 4.

    CarrascoN. Iodide transport in the thyroid gland. Biochim Biophys Acta1993;1154:6582.

  • 5.

    CastroMRBergertERGoellnerJR. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab2001;86:56275632.

    • Search Google Scholar
    • Export Citation
  • 6.

    MinJJChungJKLeeYJ. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med2001;28:639645.

    • Search Google Scholar
    • Export Citation
  • 7.

    SweeneyDCJohnstonGS. Radioiodine therapy for thyroid cancer. Endocrinol Metab Clin North Am1995;24:803839.

  • 8.

    MaxonHRIIISmithHS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am1990;19:685718.

    • Search Google Scholar
    • Export Citation
  • 9.

    SmitJWSchroder-van der ElstJPKarperienM. Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab2002;87:12471253.

    • Search Google Scholar
    • Export Citation
  • 10.

    ChungJK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med2002;43:11881200.

  • 11.

    SarlisNJ. Metastatic thyroid cancer unresponsive to conventional therapies: novel management approaches through translational clinical research. Curr Drug Targets Immune Endocr Metabol Disord2001;1:103115.

    • Search Google Scholar
    • Export Citation
  • 12.

    KogaiTTakiKBrentGA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer2006;13:797826.

    • Search Google Scholar
    • Export Citation
  • 13.

    ScholzIVCengicNBakerCH. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Ther2005;12:272280.

    • Search Google Scholar
    • Export Citation
  • 14.

    CengicNBakerCHSchutzM. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab2005;90:44574464.

    • Search Google Scholar
    • Export Citation
  • 15.

    MaxonHRThomasSRHertzbergVS. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med1983;309:937941.

    • Search Google Scholar
    • Export Citation
  • 16.

    MaxonHRIIIEnglaroEEThomasSR. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med1992;33:11321136.

    • Search Google Scholar
    • Export Citation
  • 17.

    MaxonHR. Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med1999;43:313323.

  • 18.

    DobynsBMaloofF. The study and treatment of 119 cases of carcinoma of the thyroid with radioactive iodine. J Clin Endocrinol Metab1951;11:13231360.

    • Search Google Scholar
    • Export Citation
  • 19.

    BermanMHoffEBarandesM. Iodine kinetics in man—a model. J Clin Endocrinol Metab1968;28:114.

  • 20.

    RubinoCde VathaireFDottoriniME. Second primary malignancies in thyroid cancer patients. Br J Cancer2003;89:16381644.

  • 21.

    KoongSSReynoldsJCMoviusEG. Lithium as a potential adjuvant to 131I therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab1999;84:912916.

    • Search Google Scholar
    • Export Citation
  • 22.

    MoviusEGRobbinsJPierceLR. The value of lithium in radioiodine therapy of thyroid carcinoma. In: Medeiros-Neto G Gaitan E eds.Frontiers in Endocrinologyvol2. New York: Plenum Publishing Corporation; 1986:12691272.

    • Search Google Scholar
    • Export Citation
  • 23.

    Schroder-van der ElstJPvan der HeideDKastelijnJ. The expression of the sodium/iodide symporter is up-regulated in the thyroid of fetuses of iodine-deficient rats. Endocrinology2001;142:37363741.

    • Search Google Scholar
    • Export Citation
  • 24.

    SpitzwegCJobaWMorrisJCHeufelderAE. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid1999;9:821830.

    • Search Google Scholar
    • Export Citation
  • 25.

    MaxonHRThomasSRBoehringerA. Low iodine diet in I-131 ablation of thyroid remnants. Clin Nucl Med1983;8:123126.

  • 26.

    GoslingsBM. Proceedings: effect of a low iodine diet on 131-I therapy in follicular thyroid carcinomata. J Endocrinol1975;64:30P.

  • 27.

    PluijmenMJEustatia-RuttenCGoslingsBM. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf)2003;58:428435.

    • Search Google Scholar
    • Export Citation
  • 28.

    HamburgerJI. Diuretic augmentation of 131-I uptake in inoperable thyroid cancer. N Engl J Med1969;280:10911094.

  • 29.

    ParkJTIIHennesseyJV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid2004;14:5763.

    • Search Google Scholar
    • Export Citation
  • 30.

    KogaiTEndoTSaitoT. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology1997;138:22272232.

    • Search Google Scholar
    • Export Citation
  • 31.

    SchlumbergerMTubianaMDe VathaireF. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab1986;63:960967.

    • Search Google Scholar
    • Export Citation
  • 32.

    LielY. Preparation for radioactive iodine administration in differentiated thyroid cancer patients. Clin Endocrinol (Oxf)2002;57:523527.

    • Search Google Scholar
    • Export Citation
  • 33.

    SerhalDINasrallahMPArafahBM. Rapid rise in serum thyrotropin concentrations after thyroidectomy or withdrawal of suppressive thyroxine therapy in preparation for radioactive iodine administration to patients with differentiated thyroid cancer. J Clin Endocrinol Metab2004;89:32853289.

    • Search Google Scholar
    • Export Citation
  • 34.

    GoldmanJMLineBRAamodtRLRobbinsJ. Influence of triiodothyronine withdrawal time on 131I uptake postthyroidectomy for thyroid cancer. J Clin Endocrinol Metab1980;50:734739.

    • Search Google Scholar
    • Export Citation
  • 35.

    GuimaraesVDeGrootLJ. Moderate hypothyroidism in preparation for whole body 131I scintiscans and thyroglobulin testing. Thyroid1996;6:6973.

    • Search Google Scholar
    • Export Citation
  • 36.

    EdmondsCJHayesSKermodeJCThompsonBD. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol1977;50:799807.

    • Search Google Scholar
    • Export Citation
  • 37.

    LadensonPWBravermanLEMazzaferriEL. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med1997;337:888896.

    • Search Google Scholar
    • Export Citation
  • 38.

    PaciniFLadensonPWSchlumbergerM. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab2006;91:926932.

    • Search Google Scholar
    • Export Citation
  • 39.

    HanscheidHLassmannMLusterM. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med2006;47:648654.

    • Search Google Scholar
    • Export Citation
  • 40.

    RobbinsRJTuttleRMSonenbergM. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin. Thyroid2001;11:865869.

    • Search Google Scholar
    • Export Citation
  • 41.

    BergGLindstedtGSuurkulaMJanssonS. Radioiodine ablation and therapy in differentiated thyroid cancer under stimulation with recombinant human thyroid-stimulating hormone. J Endocrinol Invest2002;25:4452.

    • Search Google Scholar
    • Export Citation
  • 42.

    LusterMLassmannMHaenscheidH. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab2000;85:36403645.

    • Search Google Scholar
    • Export Citation
  • 43.

    SchroederPRHaugenBRPaciniF. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab2006;91:878884.

    • Search Google Scholar
    • Export Citation
  • 44.

    DuntasLHBiondiB. Short-term hypothyroidism after levothyroxine-withdrawal in patients with differentiated thyroid cancer: clinical and quality of life consequences. Eur J Endocrinol2007;156:1319.

    • Search Google Scholar
    • Export Citation
  • 45.

    RobbinsRJRobbinsAK. Clinical review 156: recombinant human thyrotropin and thyroid cancer management. J Clin Endocrinol Metab2003;88:19331938.

    • Search Google Scholar
    • Export Citation
  • 46.

    LusterMLippiFJarzabB. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer2005;12:4964.

    • Search Google Scholar
    • Export Citation
  • 47.

    RobbinsRJLarsonSMSinhaN. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med2002;43:14821488.

    • Search Google Scholar
    • Export Citation
  • 48.

    MenzelCKranertWTDobertN. rhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half-life of (131)I. J Nucl Med2003;44:10651068.

    • Search Google Scholar
    • Export Citation
  • 49.

    de KeizerBBransBHoekstraA. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol Imaging2003;30:367373.

    • Search Google Scholar
    • Export Citation
  • 50.

    ShermanSAngelosPBallD. The NCCN thyroid carcinoma clinical practice guideline in oncology version 12007. Available at: http://www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf. Accessed May 15 2007.

    • Search Google Scholar
    • Export Citation
  • 51.

    CooperDSDohertyGMHaugenBR. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid2006;16:109142.

    • Search Google Scholar
    • Export Citation
  • 52.

    MazzaferriELKloosRT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab2001;86:14471463.

    • Search Google Scholar
    • Export Citation
  • 53.

    MorrisLFWaxmanADBraunsteinGD. The nonimpact of thyroid stunning: remnant ablation rates in 131I-scanned and nonscanned individuals. J Clin Endocrinol Metab2001;86:35073511.

    • Search Google Scholar
    • Export Citation
  • 54.

    LassmannMLusterMHanscheidHReinersC. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med2004;45:619625.

    • Search Google Scholar
    • Export Citation
  • 55.

    SpencerCATakeuchiMKazarosyanM. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab1998;83:11211127.

    • Search Google Scholar
    • Export Citation
  • 56.

    Vassilopoulou-SellinRKleinMJSmithTH. Pulmonary metastases in children and young adults with differentiated thyroid cancer. Cancer1993;71:13481352.

    • Search Google Scholar
    • Export Citation
  • 57.

    CarrilJMQuirceRSerranoJ. Total-body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med1997;38:686692.

    • Search Google Scholar
    • Export Citation
  • 58.

    ShermanSITielensETSostreS. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab1994;78:629634.

    • Search Google Scholar
    • Export Citation
  • 59.

    HayID. Selective use of radioactive iodine in the postoperative management of patients with papillary and follicular thyroid carcinoma. J Surg Oncol2006;94:692700.

    • Search Google Scholar
    • Export Citation
  • 60.

    PaciniFMolinaroECastagnaMG. Ablation of thyroid residues with 30 mCi (131)I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab2002;87:40634068.

    • Search Google Scholar
    • Export Citation
  • 61.

    RamannaLWaxmanADBrachmanMB. Evaluation of low-dose radioiodine ablation therapy in postsurgical thyroid cancer patients. Clin Nucl Med1985;10:791795.

    • Search Google Scholar
    • Export Citation
  • 62.

    BarbaroDBoniGMeucciG. Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer: effectiveness for postsurgical remnants ablation and possible role of iodine content in L-thyroxine in the outcome of ablation. J Clin Endocrinol Metab2003;88:41104115.

    • Search Google Scholar
    • Export Citation
  • 63.

    DoiSAWoodhouseNJ. Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin Endocrinol (Oxf)2000;52:765773.

    • Search Google Scholar
    • Export Citation
  • 64.

    HuYHWangPWWangST. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun2004;25:793797.

    • Search Google Scholar
    • Export Citation
  • 65.

    BeierwaltesWHRabbaniRDmuchowskiC. An analysis of ``ablation of thyroid remnants'' with I-131 in 511 patients from 1947-1984: experience at University of Michigan. J Nucl Med1984;25:12871293.

    • Search Google Scholar
    • Export Citation
  • 66.

    RosarioPWBarrosoALRezendeLL. Outcome of ablation of thyroid remnants with 100 mCi (3.7 GBq) iodine-131 in patients with thyroid cancer. Ann Nucl Med2005;19:247250.

    • Search Google Scholar
    • Export Citation
  • 67.

    LegerFAIzembartMDagoussetF. Decreased uptake of therapeutic doses of iodine-131 after 185-MBq iodine-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med1998;25:242246.

    • Search Google Scholar
    • Export Citation
  • 68.

    HackshawAHarmerCMallickU. 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab2007;92:2838.

    • Search Google Scholar
    • Export Citation
  • 69.

    BarbaroDBoniGMeucciG. Recombinant human thyroid-stimulating hormone is effective for radioiodine ablation of postsurgical thyroid remnants. Nucl Med Commun2006;27:627632.

    • Search Google Scholar
    • Export Citation
  • 70.

    MazzaferriEL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid1997;7:265271.

  • 71.

    MazzaferriELJhiangSM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med1994;97:418428.

    • Search Google Scholar
    • Export Citation
  • 72.

    WongJBKaplanMMMeyerKBPaukerSG. Ablative radioactive iodine therapy for apparently localized thyroid carcinoma. A decision analytic perspective. Endocrinol Metab Clin North Am1990;19:741760.

    • Search Google Scholar
    • Export Citation
  • 73.

    DeGrootLJKaplanELMcCormickMStrausFH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab1990;71:414424.

    • Search Google Scholar
    • Export Citation
  • 74.

    SamaanNASchultzPNHickeyRC. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab1992;75:714720.

    • Search Google Scholar
    • Export Citation
  • 75.

    TaylorTSpeckerBRobbinsJ. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med1998;129:622627.

    • Search Google Scholar
    • Export Citation
  • 76.

    ShoupMStojadinovicANissanA. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg2003;197:191197.

    • Search Google Scholar
    • Export Citation
  • 77.

    DuranteCHaddyNBaudinE. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab2006;91:28922899.

    • Search Google Scholar
    • Export Citation
  • 78.

    DeGrootLJKaplanELStrausFHShuklaMS. Does the method of management of papillary thyroid carcinoma make a difference in outcome?World J Surg1994;18:123130.

    • Search Google Scholar
    • Export Citation
  • 79.

    TsangRWBrierleyJDSimpsonWJ. The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma. Cancer1998;82:375388.

    • Search Google Scholar
    • Export Citation
  • 80.

    SawkaAMThephamongkholKBrouwersM. Clinical review 170: a systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab2004;89:36683676.

    • Search Google Scholar
    • Export Citation
  • 81.

    HayIDMcConaheyWMGoellnerJR. Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic's experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc2002;113:241260.

    • Search Google Scholar
    • Export Citation
  • 82.

    JonklaasJSarlisNJLitofskyD. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid2006;16:12291242.

    • Search Google Scholar
    • Export Citation
  • 83.

    FilettiSBidartJMArturiF. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol1999;141:443457.

    • Search Google Scholar
    • Export Citation
  • 84.

    MorgensternKEVadysirisackDDZhangZ. Expression of sodium iodide symporter in the lacrimal drainage system: implication for the mechanism underlying nasolacrimal duct obstruction in I(131)-treated patients. Ophthal Plast Reconstr Surg2005;21:337344.

    • Search Google Scholar
    • Export Citation
  • 85.

    TuttleRMLeboeufRRobbinsRJ. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med2006;47:15871591.

    • Search Google Scholar
    • Export Citation
  • 86.

    KulkarniKNostrandDVAtkinsF. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid2006;16:10191023.

    • Search Google Scholar
    • Export Citation
  • 87.

    BenuaRSCicaleNRSonenbergMRawsonRW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med1962;87:171182.

    • Search Google Scholar
    • Export Citation
  • 88.

    LeeperRD. The effect of 131 I therapy on survival of patients with metastatic papillary or follicular thyroid carcinoma. J Clin Endocrinol Metab1973;36:11431152.

    • Search Google Scholar
    • Export Citation
  • 89.

    Van NostrandDNeutzeJAtkinsF. Side effects of ``rational dose'' iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med1986;27:15191527.

    • Search Google Scholar
    • Export Citation
  • 90.

    RobbinsRJSchlumbergerMJ. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J Nucl Med2005;46(Suppl 1):28S37S.

    • Search Google Scholar
    • Export Citation
  • 91.

    RobbinsRJDriedgerAMagnerJ. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid2006;16:11211130.

    • Search Google Scholar
    • Export Citation
  • 92.

    PotziCMoameniAKaranikasG. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol2006;65:519523.

    • Search Google Scholar
    • Export Citation
  • 93.

    ChowSMLawSCMendenhallWM. Papillary thyroid carcinoma: prognostic factors and the role of radioiodine and external radiotherapy. Int J Radiat Oncol Biol Phys2002;52:784795.

    • Search Google Scholar
    • Export Citation
  • 94.

    PetrichTWidjajaAMusholtTJ. Outcome after radioiodine therapy in 107 patients with differentiated thyroid carcinoma and initial bone metastases: side-effects and influence of age. Eur J Nucl Med2001;28:203208.

    • Search Google Scholar
    • Export Citation
  • 95.

    LerchHSchoberOKuwertTSaurHB. Survival of differentiated thyroid carcinoma studied in 500 patients. J Clin Oncol1997;15:20672075.

  • 96.

    SamaanNASchultzPNHaynieTPOrdonezNG. Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients. J Clin Endocrinol Metab1985;60:376380.

    • Search Google Scholar
    • Export Citation
  • 97.

    SchlumbergerMJ. Diagnostic follow-up of well-differentiated thyroid carcinoma: historical perspective and current status. J Endocrinol Invest1999;22(11 suppl):37.

    • Search Google Scholar
    • Export Citation
  • 98.

    SissonJCJamadarDAKazerooniEA. Treatment of micronodular lung metastases of papillary thyroid cancer: are the tumors too small for effective irradiation from radioiodine?Thyroid1998;8:215221.

    • Search Google Scholar
    • Export Citation
  • 99.

    SchlumbergerMChalletonCDe VathaireF. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med1996;37:598605.

    • Search Google Scholar
    • Export Citation
  • 100.

    BernierMOLeenhardtLHoangC. Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab2001;86:15681573.

    • Search Google Scholar
    • Export Citation
  • 101.

    AveniaNRagusaMMonacelliM. Locally advanced thyroid cancer: therapeutic options. Chir Ital2004;56:501508.

  • 102.

    RongaGFilesiMMontesanoT. Lung metastases from differentiated thyroid carcinoma. A 40 years' experience. Q J Nucl Med Mol Imaging2004;48:1219.

    • Search Google Scholar
    • Export Citation
  • 103.

    MandelSJMandelL. Radioactive iodine and the salivary glands. Thyroid2003;13:265271.

  • 104.

    MendozaAShafferBKaraklaD. Quality of life with well-differentiated thyroid cancer: treatment toxicities and their reduction. Thyroid2004;14:133140.

    • Search Google Scholar
    • Export Citation
  • 105.

    CaglarMTuncelMAlparR. Scintigraphic evaluation of salivary gland dysfunction in patients with thyroid cancer after radioiodine treatment. Clin Nucl Med2002;27:767771.

    • Search Google Scholar
    • Export Citation
  • 106.

    KuttaHKampenUSagowskiC. Amifostine is a potent radioprotector of salivary glands in radioiodine therapy. Structural and ultrastructural findings. Strahlenther Onkol2005;181:237245.

    • Search Google Scholar
    • Export Citation
  • 107.

    BohuslavizkiKHKlutmannSBrennerW. Salivary gland protection by amifostine in high-dose radioiodine treatment: results of a double-blind placebo-controlled study. J Clin Oncol1998;16:35423549.

    • Search Google Scholar
    • Export Citation
  • 108.

    OrdituraMDe VitaFRoscignoA. Amifostine: a selective cytoprotective agent of normal tissues from chemo-radiotherapy induced toxicity (review). Oncol Rep1999;6:13571362.

    • Search Google Scholar
    • Export Citation
  • 109.

    NakadaKIshibashiTTakeiT. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer?J Nucl Med2005;46:261266.

    • Search Google Scholar
    • Export Citation
  • 110.

    KloosRTDuvuuriVJhiangSM. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab2002;87:58175820.

    • Search Google Scholar
    • Export Citation
  • 111.

    GlanzmannC. Subsequent malignancies in patients treated with 131-iodine for thyroid cancer. Strahlenther Onkol1992;168:337343.

  • 112.

    HolstJPBurmanKDAtkinsF. Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on hemodialysis. Thyroid2005;15:13211331.

    • Search Google Scholar
    • Export Citation
  • 113.

    Vassilopoulou-SellinRPalmerLTaylorSCooksleyCS. Incidence of breast carcinoma in women with thyroid carcinoma. Cancer1999;85:696705.

  • 114.

    BhattacharyyaNChienW. Risk of second primary malignancy after radioactive iodine treatment for differentiated thyroid carcinoma. Ann Otol Rhinol Laryngol2006;115:607610.

    • Search Google Scholar
    • Export Citation
  • 115.

    HyerSViniLO'ConnellM. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf)2002;56:755758.

    • Search Google Scholar
    • Export Citation
  • 116.

    ViniLHyerSAl-SaadiA. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J2002;78:9293.

    • Search Google Scholar
    • Export Citation
  • 117.

    SchlumbergerMDe VathaireFCeccarelliC. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med1996;37:606612.

    • Search Google Scholar
    • Export Citation
  • 118.

    CeccarelliCBencivelliWMorcianoD. 131I therapy for differentiated thyroid cancer leads to an earlier onset of menopause: results of a retrospective study. J Clin Endocrinol Metab2001;86:35123515.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 57 4
PDF Downloads 34 32 3
EPUB Downloads 0 0 0