Role of Radioactive Iodine for Adjuvant Therapy and Treatment of Metastases

Author: Jacqueline Jonklaas MD, PhD, MPH 1
View More View Less
  • 1 From the Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC.

Normal thyrocytes and thyroid cancer cells are characterized by possession of a sodium iodide symporter. Radioiodine administration is a unique and powerful means of treating differentiated thyroid cancer because of the ability of thyroid cancer cells to concentrate beta-emitting radiolabeled iodine. Several manipulations, such as iodine depletion and thyroid hormone-stimulating hormone elevation, are used to enhance uptake of radiolabeled iodine by tumor cells. Adjuvant radioiodine therapy, given to patients without evidence of residual disease, enhances the sensitivity of subsequent surveillance and may decrease recurrence rates and mortality. However, its exact role in the management of low-risk patients merits further investigation. In contrast, radioactive iodine therapy used in patients with residual or metastatic disease clearly improves outcomes. Several studies show decreased recurrence and mortality rates in patients treated with radioiodine compared with those not receiving radioactive iodine. Adverse events from radioiodine therapy include salivary gland dysfunction, bone marrow suppression, and reproductive disturbances. Side effects of radioiodine therapy are generally greater when higher activities of radioiodine are used and may be transient or permanent. Secondary malignancies also may occur after radioiodine therapy. These side effects must be weighed against potential benefits, especially when radioactive iodine is used as adjuvant therapy. Stimulation of the expression of the sodium iodide symporter, or its introduction de novo into nonthyroid cells, is promising in treating poorly differentiated thyroid cancer and nonthyroid malignancies, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Jacqueline Jonklaas, MD, Division of Endocrinology and Metabolism, Georgetown University Medical Center, Suite 230, Building D, 4000 Reservoir Road, NW, Washington, DC 20007. E-mail: jj@bc.georgetown.edu
  • 1.

    Spitzweg C, Morris JC. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin Endocrinol (Oxf) 2002;57:559574.

    • Search Google Scholar
    • Export Citation
  • 2.

    Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid 2000;10:321330.

  • 3.

    Cavalieri RR. Iodine metabolism and thyroid physiology: current concepts. Thyroid 1997;7:177181.

  • 4.

    Carrasco N. Iodide transport in the thyroid gland. Biochim Biophys Acta 1993;1154:6582.

  • 5.

    Castro MR, Bergert ER, Goellner JR. Immunohistochemical analysis of sodium iodide symporter expression in metastatic differentiated thyroid cancer: correlation with radioiodine uptake. J Clin Endocrinol Metab 2001;86:56275632.

    • Search Google Scholar
    • Export Citation
  • 6.

    Min JJ, Chung JK, Lee YJ. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28:639645.

    • Search Google Scholar
    • Export Citation
  • 7.

    Sweeney DC, Johnston GS. Radioiodine therapy for thyroid cancer. Endocrinol Metab Clin North Am 1995;24:803839.

  • 8.

    Maxon HR III, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990;19:685718.

    • Search Google Scholar
    • Export Citation
  • 9.

    Smit JW, Schroder-van der Elst JP, Karperien M. Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 2002;87:12471253.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:11881200.

  • 11.

    Sarlis NJ. Metastatic thyroid cancer unresponsive to conventional therapies: novel management approaches through translational clinical research. Curr Drug Targets Immune Endocr Metabol Disord 2001;1:103115.

    • Search Google Scholar
    • Export Citation
  • 12.

    Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer 2006;13:797826.

    • Search Google Scholar
    • Export Citation
  • 13.

    Scholz IV, Cengic N, Baker CH. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Ther 2005;12:272280.

    • Search Google Scholar
    • Export Citation
  • 14.

    Cengic N, Baker CH, Schutz M. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2005;90:44574464.

    • Search Google Scholar
    • Export Citation
  • 15.

    Maxon HR, Thomas SR, Hertzberg VS. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983;309:937941.

    • Search Google Scholar
    • Export Citation
  • 16.

    Maxon HR III, Englaro EE, Thomas SR. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med 1992;33:11321136.

    • Search Google Scholar
    • Export Citation
  • 17.

    Maxon HR. Quantitative radioiodine therapy in the treatment of differentiated thyroid cancer. Q J Nucl Med 1999;43:313323.

  • 18.

    Dobyns B, Maloof F. The study and treatment of 119 cases of carcinoma of the thyroid with radioactive iodine. J Clin Endocrinol Metab 1951;11:13231360.

    • Search Google Scholar
    • Export Citation
  • 19.

    Berman M, Hoff E, Barandes M. Iodine kinetics in man—a model. J Clin Endocrinol Metab 1968;28:114.

  • 20.

    Rubino C, de Vathaire F, Dottorini ME. Second primary malignancies in thyroid cancer patients. Br J Cancer 2003;89:16381644.

  • 21.

    Koong SS, Reynolds JC, Movius EG. Lithium as a potential adjuvant to 131I therapy of metastatic, well differentiated thyroid carcinoma. J Clin Endocrinol Metab 1999;84:912916.

    • Search Google Scholar
    • Export Citation
  • 22.

    Movius EG, Robbins J, Pierce LR. The value of lithium in radioiodine therapy of thyroid carcinoma. In: Medeiros-Neto G, Gaitan E, eds. Frontiers in Endocrinology, vol 2. New York: Plenum Publishing Corporation; 1986:12691272.

    • Search Google Scholar
    • Export Citation
  • 23.

    Schroder-van der Elst JP, van der Heide D, Kastelijn J. The expression of the sodium/iodide symporter is up-regulated in the thyroid of fetuses of iodine-deficient rats. Endocrinology 2001;142:37363741.

    • Search Google Scholar
    • Export Citation
  • 24.

    Spitzweg C, Joba W, Morris JC, Heufelder AE. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid 1999;9:821830.

    • Search Google Scholar
    • Export Citation
  • 25.

    Maxon HR, Thomas SR, Boehringer A. Low iodine diet in I-131 ablation of thyroid remnants. Clin Nucl Med 1983;8:123126.

  • 26.

    Goslings BM. Proceedings: effect of a low iodine diet on 131-I therapy in follicular thyroid carcinomata. J Endocrinol 1975;64:30P.

  • 27.

    Pluijmen MJ, Eustatia-Rutten C, Goslings BM. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2003;58:428435.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hamburger JI. Diuretic augmentation of 131-I uptake in inoperable thyroid cancer. N Engl J Med 1969;280:10911094.

  • 29.

    Park JT II, Hennessey JV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid 2004;14:5763.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kogai T, Endo T, Saito T. Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 1997;138:22272232.

    • Search Google Scholar
    • Export Citation
  • 31.

    Schlumberger M, Tubiana M, De Vathaire F. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986;63:960967.

    • Search Google Scholar
    • Export Citation
  • 32.

    Liel Y. Preparation for radioactive iodine administration in differentiated thyroid cancer patients. Clin Endocrinol (Oxf) 2002;57:523527.

    • Search Google Scholar
    • Export Citation
  • 33.

    Serhal DI, Nasrallah MP, Arafah BM. Rapid rise in serum thyrotropin concentrations after thyroidectomy or withdrawal of suppressive thyroxine therapy in preparation for radioactive iodine administration to patients with differentiated thyroid cancer. J Clin Endocrinol Metab 2004;89:32853289.

    • Search Google Scholar
    • Export Citation
  • 34.

    Goldman JM, Line BR, Aamodt RL, Robbins J. Influence of triiodothyronine withdrawal time on 131I uptake postthyroidectomy for thyroid cancer. J Clin Endocrinol Metab 1980;50:734739.

    • Search Google Scholar
    • Export Citation
  • 35.

    Guimaraes V, DeGroot LJ. Moderate hypothyroidism in preparation for whole body 131I scintiscans and thyroglobulin testing. Thyroid 1996;6:6973.

    • Search Google Scholar
    • Export Citation
  • 36.

    Edmonds CJ, Hayes S, Kermode JC, Thompson BD. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol 1977;50:799807.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ladenson PW, Braverman LE, Mazzaferri EL. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med 1997;337:888896.

    • Search Google Scholar
    • Export Citation
  • 38.

    Pacini F, Ladenson PW, Schlumberger M. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 2006;91:926932.

    • Search Google Scholar
    • Export Citation
  • 39.

    Hanscheid H, Lassmann M, Luster M. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 2006;47:648654.

    • Search Google Scholar
    • Export Citation
  • 40.

    Robbins RJ, Tuttle RM, Sonenberg M. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin. Thyroid 2001;11:865869.

    • Search Google Scholar
    • Export Citation
  • 41.

    Berg G, Lindstedt G, Suurkula M, Jansson S. Radioiodine ablation and therapy in differentiated thyroid cancer under stimulation with recombinant human thyroid-stimulating hormone. J Endocrinol Invest 2002;25:4452.

    • Search Google Scholar
    • Export Citation
  • 42.

    Luster M, Lassmann M, Haenscheid H. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab 2000;85:36403645.

    • Search Google Scholar
    • Export Citation
  • 43.

    Schroeder PR, Haugen BR, Pacini F. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 2006;91:878884.

    • Search Google Scholar
    • Export Citation
  • 44.

    Duntas LH, Biondi B. Short-term hypothyroidism after levothyroxine-withdrawal in patients with differentiated thyroid cancer: clinical and quality of life consequences. Eur J Endocrinol 2007;156:1319.

    • Search Google Scholar
    • Export Citation
  • 45.

    Robbins RJ, Robbins AK. Clinical review 156: recombinant human thyrotropin and thyroid cancer management. J Clin Endocrinol Metab 2003;88:19331938.

    • Search Google Scholar
    • Export Citation
  • 46.

    Luster M, Lippi F, Jarzab B. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer 2005;12:4964.

    • Search Google Scholar
    • Export Citation
  • 47.

    Robbins RJ, Larson SM, Sinha N. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med 2002;43:14821488.

    • Search Google Scholar
    • Export Citation
  • 48.

    Menzel C, Kranert WT, Dobert N. rhTSH stimulation before radioiodine therapy in thyroid cancer reduces the effective half-life of (131)I. J Nucl Med 2003;44:10651068.

    • Search Google Scholar
    • Export Citation
  • 49.

    de Keizer B, Brans B, Hoekstra A. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol Imaging 2003;30:367373.

    • Search Google Scholar
    • Export Citation
  • 50.

    Sherman S, Angelos P, Ball D. The NCCN thyroid carcinoma clinical practice guideline in oncology, version 1, 2007. Available at: http://www.nccn.org/professionals/physician_gls/PDF/thyroid.pdf. Accessed May 15, 2007.

    • Search Google Scholar
    • Export Citation
  • 51.

    Cooper DS, Doherty GM, Haugen BR. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006;16:109142.

    • Search Google Scholar
    • Export Citation
  • 52.

    Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:14471463.

    • Search Google Scholar
    • Export Citation
  • 53.

    Morris LF, Waxman AD, Braunstein GD. The nonimpact of thyroid stunning: remnant ablation rates in 131I-scanned and nonscanned individuals. J Clin Endocrinol Metab 2001;86:35073511.

    • Search Google Scholar
    • Export Citation
  • 54.

    Lassmann M, Luster M, Hanscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004;45:619625.

    • Search Google Scholar
    • Export Citation
  • 55.

    Spencer CA, Takeuchi M, Kazarosyan M. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998;83:11211127.

    • Search Google Scholar
    • Export Citation
  • 56.

    Vassilopoulou-Sellin R, Klein MJ, Smith TH. Pulmonary metastases in children and young adults with differentiated thyroid cancer. Cancer 1993;71:13481352.

    • Search Google Scholar
    • Export Citation
  • 57.

    Carril JM, Quirce R, Serrano J. Total-body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med 1997;38:686692.

    • Search Google Scholar
    • Export Citation
  • 58.

    Sherman SI, Tielens ET, Sostre S. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994;78:629634.

    • Search Google Scholar
    • Export Citation
  • 59.

    Hay ID. Selective use of radioactive iodine in the postoperative management of patients with papillary and follicular thyroid carcinoma. J Surg Oncol 2006;94:692700.

    • Search Google Scholar
    • Export Citation
  • 60.

    Pacini F, Molinaro E, Castagna MG. Ablation of thyroid residues with 30 mCi (131)I: a comparison in thyroid cancer patients prepared with recombinant human TSH or thyroid hormone withdrawal. J Clin Endocrinol Metab 2002;87:40634068.

    • Search Google Scholar
    • Export Citation
  • 61.

    Ramanna L, Waxman AD, Brachman MB. Evaluation of low-dose radioiodine ablation therapy in postsurgical thyroid cancer patients. Clin Nucl Med 1985;10:791795.

    • Search Google Scholar
    • Export Citation
  • 62.

    Barbaro D, Boni G, Meucci G. Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer: effectiveness for postsurgical remnants ablation and possible role of iodine content in L-thyroxine in the outcome of ablation. J Clin Endocrinol Metab 2003;88:41104115.

    • Search Google Scholar
    • Export Citation
  • 63.

    Doi SA, Woodhouse NJ. Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin Endocrinol (Oxf) 2000;52:765773.

    • Search Google Scholar
    • Export Citation
  • 64.

    Hu YH, Wang PW, Wang ST. Influence of 131I diagnostic dose on subsequent ablation in patients with differentiated thyroid carcinoma: discrepancy between the presence of visually apparent stunning and the impairment of successful ablation. Nucl Med Commun 2004;25:793797.

    • Search Google Scholar
    • Export Citation
  • 65.

    Beierwaltes WH, Rabbani R, Dmuchowski C. An analysis of ``ablation of thyroid remnants'' with I-131 in 511 patients from 1947-1984: experience at University of Michigan. J Nucl Med 1984;25:12871293.

    • Search Google Scholar
    • Export Citation
  • 66.

    Rosario PW, Barroso AL, Rezende LL. Outcome of ablation of thyroid remnants with 100 mCi (3.7 GBq) iodine-131 in patients with thyroid cancer. Ann Nucl Med 2005;19:247250.

    • Search Google Scholar
    • Export Citation
  • 67.

    Leger FA, Izembart M, Dagousset F. Decreased uptake of therapeutic doses of iodine-131 after 185-MBq iodine-131 diagnostic imaging for thyroid remnants in differentiated thyroid carcinoma. Eur J Nucl Med 1998;25:242246.

    • Search Google Scholar
    • Export Citation
  • 68.

    Hackshaw A, Harmer C, Mallick U. 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab 2007;92:2838.

    • Search Google Scholar
    • Export Citation
  • 69.

    Barbaro D, Boni G, Meucci G. Recombinant human thyroid-stimulating hormone is effective for radioiodine ablation of postsurgical thyroid remnants. Nucl Med Commun 2006;27:627632.

    • Search Google Scholar
    • Export Citation
  • 70.

    Mazzaferri EL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid 1997;7:265271.

  • 71.

    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418428.

    • Search Google Scholar
    • Export Citation
  • 72.

    Wong JB, Kaplan MM, Meyer KB, Pauker SG. Ablative radioactive iodine therapy for apparently localized thyroid carcinoma. A decision analytic perspective. Endocrinol Metab Clin North Am 1990;19:741760.

    • Search Google Scholar
    • Export Citation
  • 73.

    DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 1990;71:414424.

    • Search Google Scholar
    • Export Citation
  • 74.

    Samaan NA, Schultz PN, Hickey RC. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab 1992;75:714720.

    • Search Google Scholar
    • Export Citation
  • 75.

    Taylor T, Specker B, Robbins J. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med 1998;129:622627.

    • Search Google Scholar
    • Export Citation
  • 76.

    Shoup M, Stojadinovic A, Nissan A. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg 2003;197:191197.

    • Search Google Scholar
    • Export Citation
  • 77.

    Durante C, Haddy N, Baudin E. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:28922899.

    • Search Google Scholar
    • Export Citation
  • 78.

    DeGroot LJ, Kaplan EL, Straus FH, Shukla MS. Does the method of management of papillary thyroid carcinoma make a difference in outcome? World J Surg 1994;18:123130.

    • Search Google Scholar
    • Export Citation
  • 79.

    Tsang RW, Brierley JD, Simpson WJ. The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma. Cancer 1998;82:375388.

    • Search Google Scholar
    • Export Citation
  • 80.

    Sawka AM, Thephamongkhol K, Brouwers M. Clinical review 170: a systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab 2004;89:36683676.

    • Search Google Scholar
    • Export Citation
  • 81.

    Hay ID, McConahey WM, Goellner JR. Managing patients with papillary thyroid carcinoma: insights gained from the Mayo Clinic's experience of treating 2,512 consecutive patients during 1940 through 2000. Trans Am Clin Climatol Assoc 2002;113:241260.

    • Search Google Scholar
    • Export Citation
  • 82.

    Jonklaas J, Sarlis NJ, Litofsky D. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006;16:12291242.

    • Search Google Scholar
    • Export Citation
  • 83.

    Filetti S, Bidart JM, Arturi F. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism. Eur J Endocrinol 1999;141:443457.

    • Search Google Scholar
    • Export Citation
  • 84.

    Morgenstern KE, Vadysirisack DD, Zhang Z. Expression of sodium iodide symporter in the lacrimal drainage system: implication for the mechanism underlying nasolacrimal duct obstruction in I(131)-treated patients. Ophthal Plast Reconstr Surg 2005;21:337344.

    • Search Google Scholar
    • Export Citation
  • 85.

    Tuttle RM, Leboeuf R, Robbins RJ. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 2006;47:15871591.

    • Search Google Scholar
    • Export Citation
  • 86.

    Kulkarni K, Nostrand DV, Atkins F. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 2006;16:10191023.

    • Search Google Scholar
    • Export Citation
  • 87.

    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962;87:171182.

    • Search Google Scholar
    • Export Citation
  • 88.

    Leeper RD. The effect of 131 I therapy on survival of patients with metastatic papillary or follicular thyroid carcinoma. J Clin Endocrinol Metab 1973;36:11431152.

    • Search Google Scholar
    • Export Citation
  • 89.

    Van Nostrand D, Neutze J, Atkins F. Side effects of ``rational dose'' iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med 1986;27:15191527.

    • Search Google Scholar
    • Export Citation
  • 90.

    Robbins RJ, Schlumberger MJ. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J Nucl Med 2005;46(Suppl 1):28S37S.

    • Search Google Scholar
    • Export Citation
  • 91.

    Robbins RJ, Driedger A, Magner J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid 2006;16:11211130.

    • Search Google Scholar
    • Export Citation
  • 92.

    Potzi C, Moameni A, Karanikas G. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol 2006;65:519523.

    • Search Google Scholar
    • Export Citation
  • 93.

    Chow SM, Law SC, Mendenhall WM. Papillary thyroid carcinoma: prognostic factors and the role of radioiodine and external radiotherapy. Int J Radiat Oncol Biol Phys 2002;52:784795.

    • Search Google Scholar
    • Export Citation
  • 94.

    Petrich T, Widjaja A, Musholt TJ. Outcome after radioiodine therapy in 107 patients with differentiated thyroid carcinoma and initial bone metastases: side-effects and influence of age. Eur J Nucl Med 2001;28:203208.

    • Search Google Scholar
    • Export Citation
  • 95.

    Lerch H, Schober O, Kuwert T, Saur HB. Survival of differentiated thyroid carcinoma studied in 500 patients. J Clin Oncol 1997;15:20672075.

  • 96.

    Samaan NA, Schultz PN, Haynie TP, Ordonez NG. Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients. J Clin Endocrinol Metab 1985;60:376380.

    • Search Google Scholar
    • Export Citation
  • 97.

    Schlumberger MJ. Diagnostic follow-up of well-differentiated thyroid carcinoma: historical perspective and current status. J Endocrinol Invest 1999;22(11 suppl):37.

    • Search Google Scholar
    • Export Citation
  • 98.

    Sisson JC, Jamadar DA, Kazerooni EA. Treatment of micronodular lung metastases of papillary thyroid cancer: are the tumors too small for effective irradiation from radioiodine? Thyroid 1998;8:215221.

    • Search Google Scholar
    • Export Citation
  • 99.

    Schlumberger M, Challeton C, De Vathaire F. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 1996;37:598605.

    • Search Google Scholar
    • Export Citation
  • 100.

    Bernier MO, Leenhardt L, Hoang C. Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab 2001;86:15681573.

    • Search Google Scholar
    • Export Citation
  • 101.

    Avenia N, Ragusa M, Monacelli M. Locally advanced thyroid cancer: therapeutic options. Chir Ital 2004;56:501508.

  • 102.

    Ronga G, Filesi M, Montesano T. Lung metastases from differentiated thyroid carcinoma. A 40 years' experience. Q J Nucl Med Mol Imaging 2004;48:1219.

    • Search Google Scholar
    • Export Citation
  • 103.

    Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid 2003;13:265271.

  • 104.

    Mendoza A, Shaffer B, Karakla D. Quality of life with well-differentiated thyroid cancer: treatment toxicities and their reduction. Thyroid 2004;14:133140.

    • Search Google Scholar
    • Export Citation
  • 105.

    Caglar M, Tuncel M, Alpar R. Scintigraphic evaluation of salivary gland dysfunction in patients with thyroid cancer after radioiodine treatment. Clin Nucl Med 2002;27:767771.

    • Search Google Scholar
    • Export Citation
  • 106.

    Kutta H, Kampen U, Sagowski C. Amifostine is a potent radioprotector of salivary glands in radioiodine therapy. Structural and ultrastructural findings. Strahlenther Onkol 2005;181:237245.

    • Search Google Scholar
    • Export Citation
  • 107.

    Bohuslavizki KH, Klutmann S, Brenner W. Salivary gland protection by amifostine in high-dose radioiodine treatment: results of a double-blind placebo-controlled study. J Clin Oncol 1998;16:35423549.

    • Search Google Scholar
    • Export Citation
  • 108.

    Orditura M, De Vita F, Roscigno A. Amifostine: a selective cytoprotective agent of normal tissues from chemo-radiotherapy induced toxicity (review). Oncol Rep 1999;6:13571362.

    • Search Google Scholar
    • Export Citation
  • 109.

    Nakada K, Ishibashi T, Takei T. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med 2005;46:261266.

    • Search Google Scholar
    • Export Citation
  • 110.

    Kloos RT, Duvuuri V, Jhiang SM. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab 2002;87:58175820.

    • Search Google Scholar
    • Export Citation
  • 111.

    Glanzmann C. Subsequent malignancies in patients treated with 131-iodine for thyroid cancer. Strahlenther Onkol 1992;168:337343.

  • 112.

    Holst JP, Burman KD, Atkins F. Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on hemodialysis. Thyroid 2005;15:13211331.

    • Search Google Scholar
    • Export Citation
  • 113.

    Vassilopoulou-Sellin R, Palmer L, Taylor S, Cooksley CS. Incidence of breast carcinoma in women with thyroid carcinoma. Cancer 1999;85:696705.

  • 114.

    Bhattacharyya N, Chien W. Risk of second primary malignancy after radioactive iodine treatment for differentiated thyroid carcinoma. Ann Otol Rhinol Laryngol 2006;115:607610.

    • Search Google Scholar
    • Export Citation
  • 115.

    Hyer S, Vini L, O'Connell M. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf) 2002;56:755758.

    • Search Google Scholar
    • Export Citation
  • 116.

    Vini L, Hyer S, Al-Saadi A. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J 2002;78:9293.

    • Search Google Scholar
    • Export Citation
  • 117.

    Schlumberger M, De Vathaire F, Ceccarelli C. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med 1996;37:606612.

    • Search Google Scholar
    • Export Citation
  • 118.

    Ceccarelli C, Bencivelli W, Morciano D. 131I therapy for differentiated thyroid cancer leads to an earlier onset of menopause: results of a retrospective study. J Clin Endocrinol Metab 2001;86:35123515.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 32 0
PDF Downloads 58 27 1
EPUB Downloads 0 0 0