Multiple Myeloma: Most Common End-Organ Damage and Management

View More View Less
  • 1 From the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.

End-organ damage is the factor that differentiates plasma cell dyscrasia requiring therapy (active multiple myeloma [MM]) from disease that does not require therapy (monoclonal gammopathy of undetermined significance and smoldering [asymptomatic] MM). Progressive skeletal destruction is the hallmark of MM and responsible for principle morbidity in the disease. The spine is the most afflicted skeletal organ, and vertebral fractures have significantly contributed to its poor prognosis. Early mortality in MM is usually attributed to the combined effects of active disease and comorbid factors. Infection and renal failure are the main direct causes of early mortality. Using bisphosphonates to manage skeletal events mainly by preventing or slowing the destructive process has become an important adjunctive treatment in MM. Advances in minimally invasive surgical techniques, such as percutaneous vertebroplasty and kyphoplasty, offer these patients less-invasive options for treating vertebral collapse and restoring function. The aggressive management of other complications of the disease through more effective and less toxic therapy that targets the primary disease, in addition to supportive care, is resulting in patients experiencing less morbidity and probably lower mortality. This article reviews recent advances in the understanding of bone disease in MM, the role of bisphosphonates in preventing skeletal events, and available data on percutaneous vertebroplasty and kyphoplasty, and discusses the management of infection and renal failure, which seem to be responsible for high initial mortality and thereby compromise the current advances in therapy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Mohamad A. Hussein, MD, H. lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-4, Tampa, FL 33612. E-mail: mashussein@runbox.us
  • 1.

    Jemal A, Murray T, Ward E. Cancer statistics, 2005. CA Cancer J Clin 2005;55:1030.

  • 2.

    Augustson BM, Begum G, Dunn JA. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2005;23:92199226.

    • Search Google Scholar
    • Export Citation
  • 3.

    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003;121:749757.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kyle RA, Gertz MA, Witzig TE. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003;78:2133.

  • 5.

    Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. Myeloma Trialists' Collaborative Group. J Clin Oncol 1998;16:38323842.

    • Search Google Scholar
    • Export Citation
  • 6.

    Kyle RA. Multiple myeloma: review of 869 cases. Mayo Clin Proc 1975;50:2940.

  • 7.

    Kado DM, Browner WS, Palermo L. Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1999;159:12151220.

    • Search Google Scholar
    • Export Citation
  • 8.

    Leech JA, Dulberg C, Kellie S. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990;141:6871.

  • 9.

    Nakagawa N, Kinosaki M, Yamaguchi K. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998;253:395400.

    • Search Google Scholar
    • Export Citation
  • 10.

    Simonet WS, Lacey DL, Dunstan CR. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309319.

    • Search Google Scholar
    • Export Citation
  • 11.

    Kong YY, Yoshida H, Sarosi I. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315323.

    • Search Google Scholar
    • Export Citation
  • 12.

    Dougall WC, Glaccum M, Charrier K. RANK is essential for osteoclast and lymph node development. Genes Dev 1999;13:24122424.

  • 13.

    Pearse RN, Sordillo EM, Yaccoby S. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A 2001;98:1158111586.

    • Search Google Scholar
    • Export Citation
  • 14.

    Giuliani N, Bataille R, Mancini C. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 2001;98:35273533.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sezer O, Heider U, Zavrski I. RANK ligand and osteoprotegerin in myeloma bone disease. Blood 2003;101:20942098.

  • 16.

    Seidel C, Hjertner O, Abildgaard N. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 2001;98:22692271.

    • Search Google Scholar
    • Export Citation
  • 17.

    Body JJ, Greipp P, Coleman RE. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003;97:887892.

    • Search Google Scholar
    • Export Citation
  • 18.

    Boyden LM, Mao J, Belsky J. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:15131521.

  • 19.

    Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 2001;1:423434.

    • Search Google Scholar
    • Export Citation
  • 20.

    Grotewold L, Ruther U. The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 2002;21:966975.

    • Search Google Scholar
    • Export Citation
  • 21.

    Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997;11:32863305.

  • 22.

    Gong Y, Slee RB, Fukai N. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513523.

  • 23.

    Kato M, Patel MS, Levasseur R. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002;157:303314.

    • Search Google Scholar
    • Export Citation
  • 24.

    Little RD, Carulli JP, Del Mastro RG. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70:1119.

    • Search Google Scholar
    • Export Citation
  • 25.

    Berenson JR, Lichtenstein A, Porter L. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996;334:488493.

    • Search Google Scholar
    • Export Citation
  • 26.

    Berenson JR, Lichtenstein A, Porter L. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998;16:593602.

    • Search Google Scholar
    • Export Citation
  • 27.

    Lahtinen R, Laakso M, Palva I. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet 1992;340:10491052.

    • Search Google Scholar
    • Export Citation
  • 28.

    McCloskey EV, MacLennan IC, Drayson MT. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol 1998;100:317325.

    • Search Google Scholar
    • Export Citation
  • 29.

    McCloskey EV, Dunn JA, Kanis JA. Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol 2001;113:10351043.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rosen LS, Gordon D, Kaminski M. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001;7:377387.

    • Search Google Scholar
    • Export Citation
  • 31.

    Djulbegovic B, Wheatley K, Ross J. Bisphosphonates in multiple myeloma. Cochrane Database Syst Rev 2001;4:CD003188.

  • 32.

    Gertz BJ, Holland SD, Kline WF. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther 1995;58:288298.

  • 33.

    Berenson JR, Hillner BE, Kyle RA. American Society of Clinical Oncology clinical practice guidelines: the role of bisphophonates in multiple myeloma. J Clin Oncol 2002;20:37193736.

    • Search Google Scholar
    • Export Citation
  • 34.

    Thakkar SG, Isada C, Smith J. Jaw complications associated with bisphosphonate use in patients with plasma cell dyscrasias. Med Oncol 2006;23:5156.

    • Search Google Scholar
    • Export Citation
  • 35.

    Dimopoulos MA, Kastritis E, Anagnostopoulos A. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica 2006;91:968971.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zervas A, Verou E, Teleioudis Z. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br J Haematol 2006;134:620623.

    • Search Google Scholar
    • Export Citation
  • 37.

    Bostrom MP, Lane JM. Future directions. Augmentation of osteoporotic vertebral bodies. Spine 1997;22(suppl 24):38S42S.

  • 38.

    Galibert P, Deramond H, Rosat P. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie 1987;33:166168.

    • Search Google Scholar
    • Export Citation
  • 39.

    Jensen ME, Evans AJ, Mathis JM. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 1997;18:18971904.

    • Search Google Scholar
    • Export Citation
  • 40.

    Barr JD, Barr MS, Lemley TJ. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 2000;25:923928.

  • 41.

    Cortet B, Cotten A, Boutry N. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev Rhum Engl Ed 1997;64:177183.

    • Search Google Scholar
    • Export Citation
  • 42.

    Dudeney S, Lieberman IH, Reinhardt MK. Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma. J Clin Oncol 2002;20:23822387.

    • Search Google Scholar
    • Export Citation
  • 43.

    Cotten A, Boutry N, Cortet B. Percutaneous vertebroplasty: state of the art. Radiographics 1998;18:311320; discussion 320–323.

  • 44.

    Cotten A, Dewatre F, Cortet B. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996;200:525530.

    • Search Google Scholar
    • Export Citation
  • 45.

    Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999;25(suppl 2):17S21S.

    • Search Google Scholar
    • Export Citation
  • 46.

    Einhorn TA. Vertebroplasty: an opportunity to do something really good for patients. Spine 2000;25:10511052.

  • 47.

    Phillips FM, Todd Wetzel F, Lieberman I. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine 2002;27:21732178; discussion 2178–2179.

    • Search Google Scholar
    • Export Citation
  • 48.

    Deramond H, Depriester C, Galibert P. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 1998;36:533546.

    • Search Google Scholar
    • Export Citation
  • 49.

    Lieberman IH, Dudeney S, Reinhardt MK. Initial outcome and efficacy of ``kyphoplasty'' in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001;26:16311638.

    • Search Google Scholar
    • Export Citation
  • 50.

    Lieberman I, Reinhardt MK. Vertebroplasty and kyphoplasty for osteolytic vertebral collapse. Clin Orthop Relat Res 2003:415(suppl):S176S186.

    • Search Google Scholar
    • Export Citation
  • 51.

    Chapel HM, Lee M, Hargreaves R. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin Replacement Therapy in Multiple Myeloma. Lancet 1994;343:10591063.

    • Search Google Scholar
    • Export Citation
  • 52.

    Oken MM, Pomeroy C, Weisdorf D. Prophylactic antibiotics for the prevention of early infection in multiple myeloma. Am J Med 1996;100:624628.

    • Search Google Scholar
    • Export Citation
  • 53.

    Sakhuja V, Jha V, Varma S. Renal involvement in multiple myeloma: a 10-year study. Ren Fail 2000;22:465477.

  • 54.

    Kumar SK, Sohal PM, Kohli HS. Acute renal failure due to cast nephropathy in nonsecretory myeloma: a case report and review of the literature. Int Urol Nephrol 2005;37:351353.

    • Search Google Scholar
    • Export Citation
  • 55.

    El-Achkar TM, Sharfuddin AA, Dominguez J. Approach to acute renal failure with multiple myeloma: role of plasmapheresis. Ther Apher Dial 2005;9:417422.

    • Search Google Scholar
    • Export Citation
  • 56.

    Blade J, Rosinol L. Renal, hematologic and infectious complications in multiple myeloma. Best Pract Res Clin Haematol 2005;18:635652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 73 10
PDF Downloads 179 129 18
EPUB Downloads 0 0 0