Novel Non-Cytotoxic Therapy in Ovarian Cancer: Current Status and Future Prospects

View More View Less
  • 1 From Fox Chase Cancer Center, Philadelphia, Pennsylvania.

Although significant improvements in standard therapy for ovarian carcinoma have been made over the past decade, current treatment is limited by the development of resistance to cytotoxic chemotherapy, and most women ultimately die of the disease. New knowledge of the biology of ovarian cancer has led to the identification of potential molecular targets that are differentially expressed in normal cells versus cancer cells, and advances in pharmacology have led to the development of novel agents that work differently from traditional cytotoxic chemotherapy by exploiting these targets. Many of these agents are being evaluated in clinical trials. This article discusses molecular targets that are important in ovarian carcinoma, including angiogenesis, tyrosine kinases, mitogen-activated protein kinases, and phosphatidylinositol-like kinases such as mammalian target of rapamycin, and the proteosome. This article reviews novel non-cytotoxic agents that target these pathways and are currently being evaluated in ovarian carcinoma treatment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Lainie Martin, MD, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19103. E-mail: L_Martin@fccc.edu
  • 1.

    Jemal A, Siegel R, Ward E. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106130.

  • 2.

    Manning G, Whyte DB, Martinez R. The protein kinase complement of the human genome. Science 2002;298:19121934.

  • 3.

    Hunter T. Signaling—2000 and beyond. Cell 2000;100:113127.

  • 4.

    Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411:355365.

  • 5.

    Cunningham D, Humblet Y, Siena S. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337345.

    • Search Google Scholar
    • Export Citation
  • 6.

    Shepherd FA, Rodrigues Pereira J, Ciuleanu T. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353:123132.

  • 7.

    Wong S, Witte ON. The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 2004;22:247306.

  • 8.

    Kantarjian H, Sawyers C, Hochhaus A. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002;346:645652.

    • Search Google Scholar
    • Export Citation
  • 9.

    Demetri GD, von Mehren M, Blanke CD. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472480.

    • Search Google Scholar
    • Export Citation
  • 10.

    Gorski DH, Leal AD, Goydos JS. Differential expression of vascular endothelial growth factor-A isoforms at different stages of melanoma progression. J Am Coll Surg 2003;197:408418.

    • Search Google Scholar
    • Export Citation
  • 11.

    Krause S, Forster Y, Kraemer K. Vascular endothelial growth factor antisense pretreatment of bladder cancer cells significantly enhances the cytotoxicity of mitomycin C, gemcitabine and cisplatin. J Urol 2005;174:328331.

    • Search Google Scholar
    • Export Citation
  • 12.

    Sanborn RE, Sandler AB. The safety of bevacizumab. Expert Opin Drug Saf 2006;5:289301.

  • 13.

    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987989.

  • 14.

    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:5862.

  • 15.

    Midgley R, Kerr D. Bevacizumab—current status and future directions. Ann Oncol 2005;16:9991004.

  • 16.

    Leung DW, Cachianes G, Kuang WJ. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:13061309.

  • 17.

    Toi M, Matsumoto T, Bando H. Vascular endothelial growth factor: its prognostic, predictive, and therapeutic implications. Lancet Oncol 2001;2:667673.

    • Search Google Scholar
    • Export Citation
  • 18.

    Yamamoto Y, Toi M, Kondo S. Concentrations of vascular endothelial growth factor in the sera of normal controls and cancer patients. Clin Cancer Res 1996;2:821826.

    • Search Google Scholar
    • Export Citation
  • 19.

    Raspollini MR, Amunni G, Villanucci A. Prognostic significance of microvessel density and vascular endothelial growth factor expression in advanced ovarian serous carcinoma. Int J Gynecol Cancer 2004;14:815823.

    • Search Google Scholar
    • Export Citation
  • 20.

    Nishida N, Yano H, Komai K. Vascular endothelial growth factor C and vascular endothelial growth factor receptor 2 are related closely to the prognosis of patients with ovarian carcinoma. Cancer 2004;101:13641374.

    • Search Google Scholar
    • Export Citation
  • 21.

    Belotti D, Paganoni P, Manenti L. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003;63:52245229.

    • Search Google Scholar
    • Export Citation
  • 22.

    Monk BJ, Choi DC, Pugmire G, Burger RA. Activity of bevacizumab (rhuMAB VEGF) in advanced refractory epithelial ovarian cancer. Gynecol Oncol 2005;96:902905.

    • Search Google Scholar
    • Export Citation
  • 23.

    Burger RA, Sill M, Monk BJ. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a Gynecologic Oncology Group (GOG) study [abstract]. J Clin Oncol 2005;23(Suppl 1):457s. Abstract 5009.

    • Search Google Scholar
    • Export Citation
  • 24.

    Garcia AA, Oza AM, Hirte H. Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: a California Cancer Consortium Trial [abstract]. J Clin Oncol 2005;23(Suppl 1):455s. Abstract 5000.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hainsworth JD, Sosman JA, Spigel DR. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 2005;23:78897896.

    • Search Google Scholar
    • Export Citation
  • 26.

    Herbst RS, Johnson DH, Mininberg E. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005;23:25442555.

    • Search Google Scholar
    • Export Citation
  • 27.

    Dickler M, Rugo H, Caravelli J. Phase II trial of erlotinib (OSI-774), an epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, and bevacizumab, a recombinant humanized monoclonal antibody to vascular endothelial growth factor (VEGF), in patients (pts) with metastatic breast cancer (MBC) [abstract]. J Clin Oncol 2004;22(suppl):127s. Abstract 2001.

    • Search Google Scholar
    • Export Citation
  • 28.

    Dupont J, Rothenberg ML, Spriggs DR. Safety and pharmacokinetics of intravenous VEGF Trap in a phase I clinical trial of patients with advanced solid tumors [abstract]. J Clin Oncol 2005;23(suppl 1):199s. Abstract 3029.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hu L, Hofmann J, Holash J. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Cancer Res 2005;11(19 Pt 1):69666971.

    • Search Google Scholar
    • Export Citation
  • 30.

    Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA. Thalidomide in cancer medicine. Ann Oncol 2004;15:11511160.

  • 31.

    Crane E, List A. Immunomodulatory drugs. Cancer Invest 2005;23:625634.

  • 32.

    Barlogie B, Desikan R, Eddlemon P. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001;98:492494.

    • Search Google Scholar
    • Export Citation
  • 33.

    Singhal S, Mehta J, Desikan R. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341:15651571.

  • 34.

    Weber D, Rankin K, Gavino M. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol 2003;21:1619.

  • 35.

    Eisen T, Boshoff C, Mak I. Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 2000;82:812817.

    • Search Google Scholar
    • Export Citation
  • 36.

    Abramson N, Stokes PK, Luke M. Ovarian and papillary-serous peritoneal carcinoma: pilot study with thalidomide. J Clin Oncol 2002;20:11471149.

    • Search Google Scholar
    • Export Citation
  • 37.

    Downs LS Jr, Argenta P, Ghebre R. A prospective randomized trial of thalidomide with topotecan compared to topotecan alone in women with recurrent epithelial ovarian, primary peritoneal or fallopian tube carcinoma. Presented at the Society of Gynecologic Oncologists 37th Annual Meeting on Women's Cancer. Palm Springs, California, March 22–26, 2006.

    • Search Google Scholar
    • Export Citation
  • 38.

    Rosen L, Mulay M, Long J. Phase I trial of SU011248, a novel tyrosine kinase inhibitor in advanced solid tumors [abstract]. Proc Am Soc Clin Oncol 2003;2003:191. Abstract 765.

    • Search Google Scholar
    • Export Citation
  • 39.

    Thomas AL, Morgan B, Horsfield MA. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 2005;23:41624171.

    • Search Google Scholar
    • Export Citation
  • 40.

    Schroder W, Witteveen E, Abadie S. A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer [abstract]. J Clin Oncol 2005;23(Suppl 1):465s. Abstract 5042.

    • Search Google Scholar
    • Export Citation
  • 41.

    Rosen L, Kurzrock R, Jackson E. Safety and pharmacokinetics of AMG 706 in patients with advanced solid tumors [abstract]. J Clin Oncol 2005;23(Suppl 1):195s. Abstract 3013.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wedge SR, Kendrew J, Hennequin LF. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 2005;65:4389-4400.

    • Search Google Scholar
    • Export Citation
  • 43.

    Gross ME, Shazer RL, Agus DB. Targeting the HER-kinase axis in cancer. Semin Oncol 2004;31(1 Suppl 3):920.

  • 44.

    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001;2:127137.

  • 45.

    Burgess AW, Cho HS, Eigenbrot C. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 2003;12:541552.

  • 46.

    Jorissen RN, Walker F, Pouliot N. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003;284:3153.

  • 47.

    Berchuck A, Rodriguez GC, Kamel A. Epidermal growth factor receptor expression in normal ovarian epithelium and ovarian cancer. I. Correlation of receptor expression with prognostic factors in patients with ovarian cancer. Am J Obstet Gynecol 1991;164:669674.

    • Search Google Scholar
    • Export Citation
  • 48.

    Bartlett JM, Langdon SP, Simpson BJ. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996;73:301306.

    • Search Google Scholar
    • Export Citation
  • 49.

    Fischer-Colbrie J, Witt A, Heinzl H. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997;17(1B):613619.

    • Search Google Scholar
    • Export Citation
  • 50.

    Goff BA, Shy K, Greer BE. Overexpression and relationships of HER-2/neu, epidermal growth factor receptor, p53, Ki-67, and tumor necrosis factor alpha in epithelial ovarian cancer. Eur J Gynaecol Oncol 1996;17:487492.

    • Search Google Scholar
    • Export Citation
  • 51.

    Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001;37(Suppl 4):S9S15.

  • 52.

    Bookman MA, Darcy KM, Clarke-Pearson D. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 2003;21:283290.

    • Search Google Scholar
    • Export Citation
  • 53.

    Adams CW, Allison DE, Flagella K. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 2006;55:717727.

    • Search Google Scholar
    • Export Citation
  • 54.

    Agus DB, Akita RW, Fox WD. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002;2:127137.

  • 55.

    Agus DB, Gordon MS, Taylor C. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 2005;23:25342543.

    • Search Google Scholar
    • Export Citation
  • 56.

    Gordon MS, Matei D, Aghajanian C. Clinical activity of pertuzumab (rhumba 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol 2006; Aug 8 [Epub ahead of print].

    • Search Google Scholar
    • Export Citation
  • 57.

    Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004;64:23432346.

    • Search Google Scholar
    • Export Citation
  • 58.

    Friess T, Scheuer W, Hasmann M. Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy. Clin Cancer Res 2005;11:53005309.

    • Search Google Scholar
    • Export Citation
  • 59.

    Baselga J, Pfister D, Cooper MR. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000;18:904914.

    • Search Google Scholar
    • Export Citation
  • 60.

    del Carmen MG, Rizvi I, Chang Y. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst 2005;97:15161524.

    • Search Google Scholar
    • Export Citation
  • 61.

    Armstrong DK, Bundy B, Wenzel L. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354:3443.

  • 62.

    Aghajanian C, Sabbatini P, Derosa F. A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced stage ovarian, primary peritoneal, and fallopian tube cancer [abstract]. J Clin Oncol 2005;23(Suppl):466s. Abstract 5047.

    • Search Google Scholar
    • Export Citation
  • 63.

    Gordon AN, Finkler N, Edwards RP. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer 2005;15:785792.

    • Search Google Scholar
    • Export Citation
  • 64.

    Blank SV, Curtin JP, Goldman NA. Tolerability of carboplatin, paclitaxel and erlotinib as first-line treatment of ovarian cancer [abstract]. J Clin Oncol 2005;23(Suppl 1):467s. Abstract 5052.

    • Search Google Scholar
    • Export Citation
  • 65.

    Vasey P, Kaye S, Paul J. A phase Ib trial of erlotinib (E) in combination with docetaxel (D) and carboplatin (C) in untreated ovarian, fallopian tube and primary peritoneal cancers [abstract]. J Clin Oncol 2004;22(Suppl):453s. Abstract 5017.

    • Search Google Scholar
    • Export Citation
  • 66.

    Schilder RJ, Sill MW, Chen X. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 2005;11:55395548.

    • Search Google Scholar
    • Export Citation
  • 67.

    Burris HA III, Hurwitz HI, Dees EC. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005;23:53055313.

    • Search Google Scholar
    • Export Citation
  • 68.

    Versola M, Burris HA, Jones S. Clinical activity of GW572016 in EGF10003 in patients with solid tumors [abstract]. J Clin Oncol 2004;22(Suppl):206s. Abstract 3047.

    • Search Google Scholar
    • Export Citation
  • 69.

    Minami H, Nakagawa K, Kawada K. A phase I study of GW572016 in patients with solid tumors [abstract]. J Clin Oncol 2004;22(Suppl):207s. Abstract 3048.

    • Search Google Scholar
    • Export Citation
  • 70.

    Dees EC, Burris H, Hurwitz H. Clinical summary of 67 heavily pre-treated patients with metastatic carcinomas treated with GW572016 in a phase Ib study [abstract]. J Clin Oncol 2004; 22(Suppl):241s. Abstract 3188.

    • Search Google Scholar
    • Export Citation
  • 71.

    Jones SF, Hainsworth JD, Spigel DR. A phase I study of the dual kinase inhibitor GW572016 in combination with paclitaxel (EGF10009) [abstract]. J Clin Oncol 2004;22(Suppl):147s. Abstract 2083.

    • Search Google Scholar
    • Export Citation
  • 72.

    Lenz HJ. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat Rev 2003;29(Suppl 1):4148.

  • 73.

    Dalton WS. The proteasome. Semin Oncol 2004;31(Suppl 16):39; discussion 33.

  • 74.

    Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004;5:417421.

  • 75.

    An B, Goldfarb RH, Siman R, Dou QP. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 1998;5:10621075.

    • Search Google Scholar
    • Export Citation
  • 76.

    An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 2000;14:12761283.

    • Search Google Scholar
    • Export Citation
  • 77.

    Dou QP, McGuire TF, Peng Y, An B. Proteasome inhibition leads to significant reduction of Bcr-Abl expression and subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells. J Pharmacol Exp Ther 1999;289:781790.

    • Search Google Scholar
    • Export Citation
  • 78.

    Frankel A, Man S, Elliott P. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res 2000;6:37193728.

    • Search Google Scholar
    • Export Citation
  • 79.

    Ma MH, Yang HH, Parker K. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003;9:11361144.

    • Search Google Scholar
    • Export Citation
  • 80.

    Orlowski RZ, Stinchcombe TE, Mitchell BS. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002;20:44204427.

    • Search Google Scholar
    • Export Citation
  • 81.

    Richardson PG, Barlogie B, Berenson J. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348:26092617.

  • 82.

    Aghajanian C, Soignet S, Dizon DS. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 2002;8:25052511.

    • Search Google Scholar
    • Export Citation
  • 83.

    Appleman LJ, Ryan DP, Clark JW. Phase I dose escalation study of bortezomib and gemcitabine safety and tolerability in patients with advanced solid tumors [abstract]. Proc Am Soc Clin Oncol 2003;22:209s. Abstract 839.

    • Search Google Scholar
    • Export Citation
  • 84.

    Fanucchi MP, Belt RJ, Fossella FV. Phase (ph) 2 study of bortezomib {+/–} docetaxel in previously treated patients (pts) with advanced non-small cell lung cancer (NSCLC): preliminary results [abstract]. J Clin Oncol 2004;22(Suppl):643s. Abstract 7107.

    • Search Google Scholar
    • Export Citation
  • 85.

    Voortman J, Smit EF, Kuenen BC. A phase 1B, open-label, dose-escalation study of bortezomib in combination with gemcitabine (Gem) and cisplatin (Cis) in the first-line treatment of patients with advanced solid tumors: preliminary results of a phase IB study [abstract]. J Clin Oncol 2005;23(Suppl 1):160s. Abstract 2103.

    • Search Google Scholar
    • Export Citation
  • 86.

    Shapiro CL, Ramaswamy B, Young D. Phase I trial of bortezomib in combination with paclitaxel in advanced solid tumor patients (pts) [abstract]. J Clin Oncol 2005;23(Suppl 1):217s. Abstract 3104.

    • Search Google Scholar
    • Export Citation
  • 87.

    Aghajanian C, Dizon DS, Sabbatini P. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol 2005;23:59435949.

    • Search Google Scholar
    • Export Citation
  • 88.

    Dy GK, Bruzek LM, Croghan GA. A phase I trial of the novel farnesyl protein transferase inhibitor, BMS-214662, in combination with paclitaxel and carboplatin in patients with advanced cancer. Clin Cancer Res 2005;11:18771883.

    • Search Google Scholar
    • Export Citation
  • 89.

    Beeram M, Patnaik A, Rowinsky EK. Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 2005;23:67716790.

  • 90.

    Welsh S, Hirte H, Schilder RJ. Phase II study of sorafenib (BAY 43-9006) in combination with gemcitabine in recurrent epithelial ovarian cancer: a PMH phase II consortium trial [abstract]. J Clin Oncol 2006;24(Suppl 1):127s. Abstract 5084.

    • Search Google Scholar
    • Export Citation
  • 91.

    Gao N, Flynn DC, Zhang Z. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 2004;287:C281C291.

    • Search Google Scholar
    • Export Citation
  • 92.

    Altomare DA, Wang HQ, Skele KL. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004;23:58535857.

    • Search Google Scholar
    • Export Citation
  • 93.

    Atkins MB, Hidalgo M, Stadler WM. Randomized phase II study of multiple dose levels of cci-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004;22:909918.

    • Search Google Scholar
    • Export Citation
  • 94.

    Tabernero J, Rojo F, Burris H. A phase I study with tumor molecular pharmacodynamic (MPD) evaluation of dose and schedule of the oral mTOR-inhibitor Everolimus (RAD001) in patients (pts) with advanced solid tumors [abstract]. J Clin Oncol 2005;23(suppl 1):193s. Abstract 3007.

    • Search Google Scholar
    • Export Citation
  • 95.

    Gordon AN, Schultes BC, Gallion H. CA125- and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients. Gynecol Oncol 2004;94:340351.

    • Search Google Scholar
    • Export Citation
  • 96.

    Berek JS, Taylor PT, Gordon A. Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. J Clin Oncol 2004;22:35073516.

    • Search Google Scholar
    • Export Citation
  • 97.

    Schwartz GK, Ilson D, Saltz L. Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 2001;19:19851992.

    • Search Google Scholar
    • Export Citation
  • 98.

    Senderowicz AM, Headlee D, Stinson SF. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16:29862999.

    • Search Google Scholar
    • Export Citation
  • 99.

    Bible KC, Lensing JL, Nelson SA. Phase 1 trial of flavopiridol combined with cisplatin or carboplatin in patients with advanced malignancies with the assessment of pharmacokinetic and pharmacodynamic end points. Clin Cancer Res 2005;11:59355941.

    • Search Google Scholar
    • Export Citation
  • 100.

    Stadler WM, Vogelzang NJ, Amato R. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 2000;18:371375.

    • Search Google Scholar
    • Export Citation
  • 101.

    Aklilu M, Kindler HL, Donehower RC. Phase II study of flavopiridol in patients with advanced colorectal cancer. Ann Oncol 2003;14:12701273.

  • 102.

    Schwartz GK, O'Reilly E, Ilson D. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 2002;20:21572170.

    • Search Google Scholar
    • Export Citation
  • 103.

    Therasse P, Arbuck SG, Eisenhauer EA. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000;92:205216.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 68 39 5
PDF Downloads 25 20 5
EPUB Downloads 0 0 0