Resistance to Imatinib: Mechanisms and Management

Author: Michael Deininger MD, PhD 1
View More View Less
  • 1 OHSU Cancer Institute, Center for Hematologic Malignancies, Portland, Oregon

Imatinib, a specific small molecule inhibitor of the Abl kinase, has become the standard drug therapy for chronic myelogenous leukemia in all phases. More than 80% of newly diagnosed patients with chronic phase attain a complete cytogenetic response (CCR). Although remissions in patients with early disease are generally durable, acquired resistance after an initial response is common in advanced disease. Reactivation of Bcr-Abl signaling is almost invariably present at the time of relapse, consistent with re-establishment of the initial pathogenetic mechanism. Mutations in the kinase domain (KD) of Bcr-Abl that impair drug binding and increased expression of Bcr-Abl have been identified as major mechanism of acquired drug resistance. The fact that Bcr-Abl remains central to disease pathogenesis at the time of relapse implies that it also remains the optimal drug target. Alternative Abl kinase inhibitors with increased potency and activity against most Bcr-Abl KD mutants are currently undergoing phase I/II clinical testing, with encouraging early results. Despite the high rates of CCR, persistence of residual leukemia as assessed by reverse transcription polymerase chain reaction is the rule even in patients with chronic phase, suggesting that even these patients may remain at risk of relapse. Understanding the mechanisms underlying disease persistence will be crucial for developing strategies to eradicate residual leukemia.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Dr. Deininger is a recipient of an American Society of Hematology Clinical/Translational Research Scholar Award. Dr. Deininger is a consultant for Novartis Pharma and Bristol-Myers Squibb.

Correspondence: Michael Deininger, MD, PhD, OHSU Cancer Institute, Center for Hematologic Malignancies, 3181 SW Sam Jackson Park Road, Portland, OR 97239, Mailcode - L592. E-mail: deininge@ohsu.edu
  • 1

    Hughes TP, Kaeda J, Branford S. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003;349:14231432.

    • Search Google Scholar
    • Export Citation
  • 2

    Talpaz M, Silver RT, Druker BJ. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002;99:19281937.

    • Search Google Scholar
    • Export Citation
  • 3

    Sawyers CL, Hochhaus A, Feldman E. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99:35303539.

    • Search Google Scholar
    • Export Citation
  • 4

    Kantarjian H, Sawyers C, Hochhaus A. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002;346:645652.

    • Search Google Scholar
    • Export Citation
  • 5

    O'Brien SG, Guilhot F, Larson RA. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003;348:9941004.

    • Search Google Scholar
    • Export Citation
  • 6

    Silver R, Talpaz M, Sawyers CL. Four years of follow-up of 1027 patients with late chronic phase (L-CP), accelerated phase (AP), or blast crisis (BC) chronic myeloid leukemia (CML) treated with imatinib in three large phase II trials [abstract]. Blood 2004;104:11a.

    • Search Google Scholar
    • Export Citation
  • 7

    Guilhot F for the International Imatinib Study Group. Sustained durability of responses plus high rates of cytogenetic responses result in long-term benefit for newly diagnosed chronic-phase chronic myeloid leukemia (CML-CP) treated with imatinib (IM) therapy: update from the IRIS Study [abstract]. Blood 2004;104:10a.

    • Search Google Scholar
    • Export Citation
  • 8

    Mauro MJ, Druker BJ, Maziarz RT. Divergent clinical outcome in two CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk Res 2004;28[suppl 1]:S71S73.

    • Search Google Scholar
    • Export Citation
  • 9

    Cortes J, O'Brien S, Kantarjian H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004;104:22042205.

  • 10

    Kim Y-J, Kim D-W, Lee S. Monitoring of BCR-ABL transcript levels after discontinuation of imatinib therapy in chronic myelogenous leukemia patients achieving complete cytogenetic response [abstract]. Blood 2004;104:255b.

    • Search Google Scholar
    • Export Citation
  • 11

    Merx K, Muller MC, Kreil S. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002;16:1579-1583.

    • Search Google Scholar
    • Export Citation
  • 12

    Kantarjian HM, Talpaz M, Cortes J. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 2003;9:160-166.

    • Search Google Scholar
    • Export Citation
  • 13

    Cortes J, Giles F, O'Brien S. Result of high-dose imatinib mesylate in patients with Philadelphia chromosome-positive chronic myeloid leukemia after failure of interferon-alpha. Blood 2003;102:83-86.

    • Search Google Scholar
    • Export Citation
  • 14

    Kantarjian H, Talpaz M, O'Brien S. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 2004;103:2873-2878.

    • Search Google Scholar
    • Export Citation
  • 15

    Schindler T, Bornmann W, Pellicena P. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000;289:19381942.

  • 16

    Nagar B, Bornmann WG, Pellicena P. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002;62:42364243.

    • Search Google Scholar
    • Export Citation
  • 17

    Gorre ME, Mohammed M, Ellwood K. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876880.

    • Search Google Scholar
    • Export Citation
  • 18

    Shah NP, Nicoll JM, Nagar B. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117125.

    • Search Google Scholar
    • Export Citation
  • 19

    Hochhaus A, Kreil S, Corbin AS. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002;16:21902196.

  • 20

    von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002;359:487491.

    • Search Google Scholar
    • Export Citation
  • 21

    Al Ali HK, Heinrich MC, Lange T. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J 2004;5:5560.

    • Search Google Scholar
    • Export Citation
  • 22

    Branford S, Rudzki Z, Walsh S. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002;99:34723475.

    • Search Google Scholar
    • Export Citation
  • 23

    Cortes JE, Talpaz M, Giles F. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 2003;101:37943800.

    • Search Google Scholar
    • Export Citation
  • 24

    Marktel S, Marin D, Foot N. Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica 2003;88:260267.

    • Search Google Scholar
    • Export Citation
  • 25

    Donato NJ, Wu JY, Stapley J. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003;101:690698.

    • Search Google Scholar
    • Export Citation
  • 26

    Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005;105:26402653.

    • Search Google Scholar
    • Export Citation
  • 27

    Corbin AS, Buchdunger E, Pascal F, Druker BJ. Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 2002;277:3221432219.

    • Search Google Scholar
    • Export Citation
  • 28

    Barthe C, Cony-Makhoul P, Melo JV, Mahon JR. Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163.

  • 29

    Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003;112:831843.

    • Search Google Scholar
    • Export Citation
  • 30

    Leguay T, Desplat V, Barthe C. Study of mutations in the ATP binding domain and the SH2/SH3 domain of BCR-ABL in 43 chronic myeloid leukemia patients treated by imatinib mesylate (STI571) [abstract]. Blood 2003;100:369a.

    • Search Google Scholar
    • Export Citation
  • 31

    Corbin AS, Rosee PL, Stoffregen EP. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003;101:46114614.

    • Search Google Scholar
    • Export Citation
  • 32

    Willis S, Lange T, Demehri S. High sensitivity detection of BCR-ABL kinase domain mutations in imatinibnaive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005;21282137.

    • Search Google Scholar
    • Export Citation
  • 33

    Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002;100:10141018.

    • Search Google Scholar
    • Export Citation
  • 34

    Griswold IJ, Bumm T, O'Hare T. Investigation of the biological differences between Bcr-Abl kinase domain mutations resistant to imatinib [abstract]. Blood. 2004;104:161a.

    • Search Google Scholar
    • Export Citation
  • 35

    Druker BJ, Talpaz M, Resta DJ. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:10311037.

    • Search Google Scholar
    • Export Citation
  • 36

    Peng B, Hayes M, Resta D. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 2004;22:935942.

    • Search Google Scholar
    • Export Citation
  • 37

    Kantarjian HM, Talpaz M, O'Brien S. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 2003;101:473475.

    • Search Google Scholar
    • Export Citation
  • 38

    Marin D, Goldman JM, Olavarria E, Apperley JF. Transient benefit only from increasing the imatinib dose in CML patients who do not achieve complete cytogenetic remissions on conventional doses. Blood 2003;102:27022703.

    • Search Google Scholar
    • Export Citation
  • 39

    Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ. Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000;96:31953199.

    • Search Google Scholar
    • Export Citation
  • 40

    Muller MC, Lahaye T, Hochhaus A. [Resistance to tumor specific therapy with imatinib by clonal selection of mutated cells]. Dtsch Med Wochenschr. 2002;127:22052207.

    • Search Google Scholar
    • Export Citation
  • 41

    La Rosee P, Corbin AS, Stoffregen EP. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571). Cancer Res 2002;62:71497153.

    • Search Google Scholar
    • Export Citation
  • 42

    Shah NP, Tran C, Lee FY. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004 ;305:399401.

  • 43

    Weisberg E, Manley PW, Breitenstein W. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005;7:129141.

    • Search Google Scholar
    • Export Citation
  • 44

    O'Hare T, Walters DK, Stoffregen EP. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 2005;65:45004505.

    • Search Google Scholar
    • Export Citation
  • 45

    Sawyers C, Shah M, Kantarjian H. Hematologic and cytogenetic responses in imatinib-resistant chronic phase chronic myeloid leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study [abstract]. Blood. 2004;104:4a.

    • Search Google Scholar
    • Export Citation
  • 46

    Talpaz M, Kantarjian H, Shah NP. Hematologic and cytogenetic responses in imatinib-resistant accelerated and blast phase chronic myeloid leukemia (CML) patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study [abstract]. Blood. 2004;104:10a.

    • Search Google Scholar
    • Export Citation
  • 47

    Giles F, Kantarjian H, Wassmann B. A phase I/II study of AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, on a continuous daily dosing schedule in adult patients (pts) with imatinib-resistant advanced phase chronic myeloid leukemia (CML) or relapsed/refractory Philadelphia chromosome (Ph+) acute lymphocytic leukemia (ALL) [abstract]. Blood. 2004;104:10a.

    • Search Google Scholar
    • Export Citation
  • 48

    Gumireddy K, Baker SJ, Cosenza SC. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci U S A 2005;102:5635.

    • Search Google Scholar
    • Export Citation
  • 49

    Shiotsu Y, Neckers LM, Wortman I. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000;96:22842291.

    • Search Google Scholar
    • Export Citation
  • 50

    Blagosklonny MV, Fojo T, Bhalla KN. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001;15:15371543.

    • Search Google Scholar
    • Export Citation
  • 51

    Nimmanapalli R, O'Bryan E, Huang M. Molecular characterization and sensitivity of STI-571 (Imatinib Mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 2002;62:57615769.

    • Search Google Scholar
    • Export Citation
  • 52

    An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 2000;11:355360.

    • Search Google Scholar
    • Export Citation
  • 53

    Nimmanapalli R, Fuino L, Bali P. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 2003;63:51265135.

    • Search Google Scholar
    • Export Citation
  • 54

    Gorre ME, Ellwood-Yen K, Chiosis G. BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 2002;100:30413044.

    • Search Google Scholar
    • Export Citation
  • 55

    La Rosee P, Johnson K, O'Dwyer ME, Druker BJ. In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol 2002;30:729737.

    • Search Google Scholar
    • Export Citation
  • 56

    La Rosee P, Johnson K, Corbin AS. In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood 2004;103:208215.

    • Search Google Scholar
    • Export Citation
  • 57

    Sawyers CL, Hochhaus A, Feldman E. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99:35303539.

    • Search Google Scholar
    • Export Citation
  • 58

    Mauro MJ, Deininger MWN, O'Dwyer ME. Phase I/II study of arsenic trioxide (trisemox) in combination with imatinib mesylate (Gleevec, STI571) in patients with Gleevec-resistant chronic myelogenous leukemia in chronic phase [abstract]. Blood 2003;100:781a.

    • Search Google Scholar
    • Export Citation
  • 59

    Hoover RR, Mahon FX, Melo JV, Daley GQ. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002;100:10681071.

    • Search Google Scholar
    • Export Citation
  • 60

    Peters DG, Hoover RR, Gerlach MJ. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 2001;97:14041412.

    • Search Google Scholar
    • Export Citation
  • 61

    Gotlib J, Mauro MJ, O'Dwyer ME. Tipifarnib (ZARNESTRA) and imatinib (GLEEVEC) combination therapy in patients with advanced chronic myelogenous leukemia (CML): preliminary results of a phase I study [abstract]. Blood. 2003;102:909a.

    • Search Google Scholar
    • Export Citation
  • 62

    Cortes J, O'Brien S, Ferrajoli A. Phase I study of a imatinib and lonafarnib (SCH66336) in patients (pts) with chronic myeloid leukemia (CML) refractory to imatinib mesylate [abstract]. Blood 2003;102:909a.

    • Search Google Scholar
    • Export Citation
  • 63

    Yu C, Krystal G, Varticovksi L. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 2002;62:188199.

    • Search Google Scholar
    • Export Citation
  • 64

    Choi YJ, Qing W, White S. Imatinib-resistant cell lines are sensitive to the Raf inhibitor BAY 43-9006. Blood 2002;100:369A.

  • 65

    Klejman A, Rushen L, Morrione A. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 2002;21:58685876.

    • Search Google Scholar
    • Export Citation
  • 66

    Ly C, Arechiga AF, Melo JV. Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 2003;63:57165722.

    • Search Google Scholar
    • Export Citation
  • 67

    Mohi MG, Boulton C, Gu TL. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci U S A 2004;101:31303135.

    • Search Google Scholar
    • Export Citation
  • 68

    Yu C, Krystal G, Dent P, Grant S. Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res 2002;8:29762984.

    • Search Google Scholar
    • Export Citation
  • 69

    Graham SM, Jorgensen HG, Allan E. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002;99:319325.

    • Search Google Scholar
    • Export Citation
  • 70

    Holyoake TL, Jiang X, Jorgensen HG. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 2001;97:720728.

    • Search Google Scholar
    • Export Citation
  • 71

    Chu S, Xu H, Shah NP. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005;105:20932098.

    • Search Google Scholar
    • Export Citation
  • 72

    Mahon FX, Belloc F, Lagarde V. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003;101:23682373.

    • Search Google Scholar
    • Export Citation
  • 73

    Burger H, Van Tol H, Boersma AW. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004;104:29402942.

    • Search Google Scholar
    • Export Citation
  • 74

    Amos TA, Lewis JL, Grand FH. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 1995;91:387393.

    • Search Google Scholar
    • Export Citation
  • 75

    Deininger MW, Holyoake TL. Can we afford to let sleeping dogs lie? Blood 2005;105:18401841.

All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 515 356 29
PDF Downloads 380 288 31
EPUB Downloads 0 0 0