Genomics-Based Prognosis and Therapeutic Prediction in Breast Cancer

View More View Less
  • * From the Department of Surgery, Stanford University School of Medicine, Stanford, California, Section of Oncology, Institute of Medicine, Haukeland University Hospital, University of Bergen, Norway, and Division of General Medicine, Virginia Commonwealth University, Richmond, Virginia.

Breast cancer is a heterogeneous disease. DNA microarray technology is being applied to breast cancer to identify new prognostic biomarkers, to predict response to therapy, and to discover targets for the development of novel therapies. New diagnostic assays based on global gene expression are being introduced into clinical practice or tested in large-scale clinical trials. This review focuses on translational studies using microarray analyses and discusses best practice features and pitfalls. We note that factors that predict metastatic disease are not necessarily the same factors that predict therapeutic response. We believe that the characterization and discernment of different systems among breast cancers is crucial for understanding drug sensitivity and resistance mechanisms and for guiding therapy.

Correspondence: Stefanie S. Jeffrey, MD, MSLS Bldg, Rm P214, 1201 Welch Road, M/C 5494, Stanford University School of Medicine, Stanford, CA 94305-5494. E-mail: ssj@stanford.edu
  • 1

    Lynch TJ, Bell DW, Sordella R et al. . Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:21292139.

    • Search Google Scholar
    • Export Citation
  • 2

    Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001;1: 233240.

  • 3

    Liu MC, Marshall JL, Pestell RG. Novel strategies in cancer therapeutics: targeting enzymes involved in cell cycle regulation and cellular proliferation. Curr Cancer Drug Targets 2004;4:403424.

    • Search Google Scholar
    • Export Citation
  • 4

    Yarden Y, Baselga J, Miles D. Molecular approach to breast cancer treatment. Semin Oncol 2004;31(suppl 10):613.

  • 5

    Perou CM, Jeffrey SS, van de Rijn M et al. . Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A 1999;96:92129217.

    • Search Google Scholar
    • Export Citation
  • 6

    Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR Jr, Elkahloun AG. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 1999;59:56565661.

    • Search Google Scholar
    • Export Citation
  • 7

    Perou CM, Sorlie T, Eisen MB et al. . Molecular portraits of human breast tumours. Nature 2000;406:747752.

  • 8

    Ross DT, Scherf U, Eisen MB et al. . Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000;24:227235.

  • 9

    Bertucci F, Houlgatte R, Benziane A et al. . Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum Mol Genet 2000;9:29812991.

    • Search Google Scholar
    • Export Citation
  • 10

    Martin KJ, Kritzman BM, Price LM et al. . Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res 2000;60:22322238.

  • 11

    Sorlie T, Perou CM, Tibshirani R et al. . Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:1086910874.

    • Search Google Scholar
    • Export Citation
  • 12

    Ahr A, Holtrich U, Solbach C et al. . Molecular classification of breast cancer patients by gene expression profiling. J Pathol 2001;195:312320.

  • 13

    Gruvberger S, Ringner M, Chen Y et al. . Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 2001;61: 59795984.

    • Search Google Scholar
    • Export Citation
  • 14

    West M, Blanchette C, Dressman H et al. . Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 2001;98:1146211467.

    • Search Google Scholar
    • Export Citation
  • 15

    Hedenfalk I, Duggan D, Chen Y et al. . Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001;344:539548.

  • 16

    Unger MA, Rishi M, Clemmer VB et al. . Characterization of adjacent breast tumors using oligonucleotide microarrays. Breast Cancer Res 2001;3:336341.

    • Search Google Scholar
    • Export Citation
  • 17

    van 't Veer LJ, Dai H, van de Vijver MJ et al. . Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530536.

  • 18

    van de Vijver MJ, He YD, van't Veer LJ et al. . A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:19992009.

    • Search Google Scholar
    • Export Citation
  • 19

    Ahr A, Karn T, Solbach C, Seiter T et al. . Identification of high risk breast-cancer patients by gene expression profiling. Lancet 2002;359:131132.

  • 20

    Sotiriou C, Powles TJ, Dowsett M et al. . Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer. Breast Cancer Res 2002;4:R3.

    • Search Google Scholar
    • Export Citation
  • 21

    Hyman E, Kauraniemi P, Hautaniemi S et al. . Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 2002;62:62406245.

  • 22

    Bertucci F, Houlgatte R, Granjeaud S et al. . Prognosis of breast cancer and gene expression profiling using DNA arrays. Ann N Y Acad Sci 2002;975:217231.

    • Search Google Scholar
    • Export Citation
  • 23

    Ellis M, Davis N, Coop A et al. . Development and validation of a method for using breast core needle biopsies for gene expression microarray analyses. Clin Cancer Res 2002;8:11551166.

    • Search Google Scholar
    • Export Citation
  • 24

    Ginestier C, Charafe-Jauffret E, Bertucci F et al. . Distinct and complementary information provided by use of tissue and DNA microarrays in the study of breast tumor markers. Am J Pathol 2002;161:12231233.

    • Search Google Scholar
    • Export Citation
  • 25

    Iacobuzio-Donahue CA, Argani P, Hempen PM et al. . The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 2002;62:53515357.

    • Search Google Scholar
    • Export Citation
  • 26

    Sotiriou C, Neo SY, McShane LM et al. . Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003;100:1039310398.

    • Search Google Scholar
    • Export Citation
  • 27

    Symmans WF, Ayers M, Clark EA et al. . Total RNA yield and microarray gene expression profiles from fine-needle aspiration biopsy and core-needle biopsy samples of breast carcinoma. Cancer 2003;97:29602971.

    • Search Google Scholar
    • Export Citation
  • 28

    Huang E, Cheng SH, Dressman H et al. . Gene expression predictors of breast cancer outcomes. Lancet 2003;361:15901596.

  • 29

    Sorlie T, Tibshirani R, Parker J et al. . Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:84188423.

    • Search Google Scholar
    • Export Citation
  • 30

    Ma XJ, Salunga R, Tuggle JT et al. . Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 2003;100:59745979.

  • 31

    Barsky SH. Myoepithelial mRNA expression profiling reveals a common tumor-suppressor phenotype. Exp Mol Pathol 2003;74:113122.

  • 32

    Seth A, Kitching R, Landberg G et al. . Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer Res 2003;23:20432051.

    • Search Google Scholar
    • Export Citation
  • 33

    Weigelt B, Glas AM, Wessels LF et al. . Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A 2003;100:1590115905.

    • Search Google Scholar
    • Export Citation
  • 34

    Mackay A, Jones C, Dexter T et al. . cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene 2003;22:26802688.

    • Search Google Scholar
    • Export Citation
  • 35

    Korkola JE, DeVries S, Fridlyand J et al. . Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 2003;63:71677175.

    • Search Google Scholar
    • Export Citation
  • 36

    Kun Y, How LC, Hoon TP et al. . Classifying the estrogen receptor status of breast cancers by expression profiles reveals a poor prognosis subpopulation exhibiting high expression of the ERBB2 receptor. Hum Mol Genet 2003;12: 32453258.

    • Search Google Scholar
    • Export Citation
  • 37

    Nagahata T, Onda M, Emi M et al. . Expression profiling to predict postoperative prognosis for estrogen receptor-negative breast cancers by analysis of 25,344 genes on a cDNA microarray. Cancer Sci 2004;95:218225.

    • Search Google Scholar
    • Export Citation
  • 38

    Pusztai L, Sotiriou C, Buchholz TA et al. . Molecular profiles of invasive mucinous and ductal carcinomas of the breast: a molecular case study. Cancer Genet Cytogenet 2003;141:148153.

    • Search Google Scholar
    • Export Citation
  • 39

    Onda M, Emi M, Nagai H et al. . Gene expression patterns as marker for 5-year postoperative prognosis of primary breast cancers. J Cancer Res Clin Oncol 2004;130:537545.

    • Search Google Scholar
    • Export Citation
  • 40

    Roh MS, Hong SH, Jeong JS et al. . Gene expression profiling of breast cancers with emphasis of beta-catenin regulation. J Korean Med Sci 2004;19:275282.

    • Search Google Scholar
    • Export Citation
  • 41

    Jones C, Mackay A, Grigoriadis A et al. . Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 2004;64:30373045.

    • Search Google Scholar
    • Export Citation
  • 42

    Zhao H, Langerod A, Ji Y et al. . Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004;15:25232536.

    • Search Google Scholar
    • Export Citation
  • 43

    Yu K, Lee CH, Tan PH, Tan P. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 2004;10:55085517.

    • Search Google Scholar
    • Export Citation
  • 44

    Hao X, Sun B, Hu L et al. . Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004;100:11101122.

    • Search Google Scholar
    • Export Citation
  • 45

    Bertucci F, Borie N, Ginestier C et al. . Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene 2004;23:25642575.

    • Search Google Scholar
    • Export Citation
  • 46

    Pittman J, Huang E, Dressman H et al. . Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci U S A 2004;101:84318436.

    • Search Google Scholar
    • Export Citation
  • 47

    Yu K, Lee CH, Tan PH et al. . A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res 2004;64:29622968.

  • 48

    Abba MC, Drake JA, Hawkins KA et al. . Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res 2004;6:R499R513.

    • Search Google Scholar
    • Export Citation
  • 49

    Bertucci F, Finetti P, Rougemont J et al. . Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res 2004;64:85588565.

    • Search Google Scholar
    • Export Citation
  • 50

    Slevin ML, Stubbs L, Plant HJ et al. . Attitudes to chemotherapy: comparing views of patients with cancer with those of doctors, nurses, and general public. Br Med J 1990;300:14581460.

    • Search Google Scholar
    • Export Citation
  • 51

    McGuire WL. Steroid receptors in human breast cancer. Cancer Res 1978;38:42894291.

  • 52

    Hähnel R, Woodings T, Vivian AB. Prognostic value of estrogen receptors in primary breast cancer. Cancer 1979;44:671675.

  • 53

    Group EBCTC. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 1998;352:930942.

  • 54

    Group EBCTC. Tamoxifen for early breast cancer: An overview of the randomised trials. Lancet 1998;351:14511467.

  • 55

    Bergh J, Norberg T, Sjögren S et al. . Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med 1995;1:10291034.

    • Search Google Scholar
    • Export Citation
  • 56

    Geisler S, Lønning PE, Aas T et al. . Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 2001;61:25052512.

    • Search Google Scholar
    • Export Citation
  • 57

    Geisler S, Børresen-Dale A-L, Johnsen H et al. . TP53 gene mutations predict the response to neoadjuvant treatment with FUMI in locally advanced breast cancer. Clin Cancer Res 2003;9:55825588.

    • Search Google Scholar
    • Export Citation
  • 58

    Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001;2:418427.

  • 59

    Eisen MB, Spellman PT, Brown PO et al. . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998;95:1486314868.

    • Search Google Scholar
    • Export Citation
  • 60

    Jeffrey SS, Fero MJ, Borresen-Dale AL, Botstein D. Expression array technology in the diagnosis and treatment of breast cancer. Mol Interv 2002;2:101109.

    • Search Google Scholar
    • Export Citation
  • 61

    Funari VA, Jeffrey SS. Molecular Profiling of Breast Cancer. In: Singletary SE, Robb GL, Hortobagyi GN, eds. Advanced Therapy of Breast Disease, 2nd Edition. Hamilton, Ontario, Canada: BC Decker; 2004:845858.

    • Search Google Scholar
    • Export Citation
  • 62

    Beer D, Kardia S, Huang C-C et al. . Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Med 2002;8:816824.

  • 63

    Pomeroy SL, Tamayo P, Gaasenbeek M et al. . Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002;415:436442.

    • Search Google Scholar
    • Export Citation
  • 64

    Glinsky GV, Glinskii AB, Stephenson AJ et al. . Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004;113:913923.

    • Search Google Scholar
    • Export Citation
  • 65

    Chung CH, Parker JS, Karaca G et al. . Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004;5:489500.

    • Search Google Scholar
    • Export Citation
  • 66

    Nakamura T, Furukawa Y, Nakagawa H et al. . Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 2004;23:23852400.

    • Search Google Scholar
    • Export Citation
  • 67

    Weiss MM, Kuipers EJ, Postma C et al. . Genomic profiling of gastric cancer predicts lymph node status and survival. Oncogene 2003;22:18721879.

  • 68

    Bertucci F, Salas S, Eysteries S et al. . Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 2004;23:13771391.

    • Search Google Scholar
    • Export Citation
  • 69

    Williams RD, Hing SN, Greer BT et al. . Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines. Genes Chromosomes Cancer 2004;41:6579.

    • Search Google Scholar
    • Export Citation
  • 70

    Shipp MA, Ross KN, Tamayo P et al. . Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med 2002;8:6874.

    • Search Google Scholar
    • Export Citation
  • 71

    Dave SS, Wright G, Tan B et al. . Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004;351:21592169.

    • Search Google Scholar
    • Export Citation
  • 72

    Yeoh E, Ross M, Shurtleff S et al. . Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133143.

    • Search Google Scholar
    • Export Citation
  • 73

    Wang Y, Klijn JGM, Zhang Y et al. . Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671679.

    • Search Google Scholar
    • Export Citation
  • 74

    Cronin M, Pho M, Dutta D et al. . Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol. 2004;164:3542.

    • Search Google Scholar
    • Export Citation
  • 75

    Golub TR, Slonim DK, Tamayo P et al. . Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531537.

    • Search Google Scholar
    • Export Citation
  • 76

    Esteban J, Baker J, Cronin M et al. . Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue (Abstr). Prog Proc Am Soc Clin Oncol 2003;22:850.

    • Search Google Scholar
    • Export Citation
  • 77

    Cobleigh MA, Bitterman P, Baker J et al. . Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: high throughout RT-PCR assay of paraffin-embedded tumor tissues (Abstr). Prog Proc Am Soc Clin Oncol 2003;22:850.

    • Search Google Scholar
    • Export Citation
  • 78

    Paik S, Shak S, Tang G et al. . Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients – NSABP studies B-20 and B-14 (Abstr). Breast Cancer Res Treat 2003;82:A16.

    • Search Google Scholar
    • Export Citation
  • 79

    Paik S, Shak S, Tang G et al. . A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:28172826.

    • Search Google Scholar
    • Export Citation
  • 80

    Chang J, Wooten E, Tsimelzon A et al. . Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003;362:362369.

    • Search Google Scholar
    • Export Citation
  • 81

    Ayers M, Symmans WF, Stec J et al. . Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004;22:22842293.

    • Search Google Scholar
    • Export Citation
  • 82

    Iwao-Koizumi K, Matoba R, Ueno N et al. . Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol. 2005;23:422431.

    • Search Google Scholar
    • Export Citation
  • 83

    Ma XJ, Wang Z, Ryan PD et al. . A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607616.

    • Search Google Scholar
    • Export Citation
  • 84

    Sgroi DC, Haber DA, Ryan PD et al. . RE: A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004;6:445.

    • Search Google Scholar
    • Export Citation
  • 85

    Chang HY, Nuyten DS, Sneddon JB et al. . Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 2005;102:37383743.

    • Search Google Scholar
    • Export Citation
  • 86

    Wasson JH, Sox HC, Neff RK et al. . Clinical prediction rules. applications and methodological standards. N Engl J Med 1985;313:793799.

  • 87

    Laupacis A, Sekar N, Stiell IG: Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 1997;277:488494.

    • Search Google Scholar
    • Export Citation
  • 88

    Simon R, Radmacher MD, Dobbin K et al. . Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003;95:1418.

    • Search Google Scholar
    • Export Citation
  • 89

    Pusztai L, Hess KR. Clinical trial design for microarray predictive marker discovery and assessment. Ann Oncol 2004;15:17311737.

  • 90

    Bast RC Jr, Ravdin P, Hayes DF et al. . 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 2001;19:18651878.

    • Search Google Scholar
    • Export Citation
  • 91

    Edén P, Ritz C, Rose C et al. . “Good old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 2004;40:18371841.

    • Search Google Scholar
    • Export Citation
  • 92

    Ein-Dor L, Kela I, Getz G et al. . Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005;21:171178.

  • 93

    Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 2005;365:488492.

    • Search Google Scholar
    • Export Citation
  • 94

    Lonning PE. Study of suboptimum treatment response: lessons from breast cancer. Lancet Oncol. 2003;4:177185.

  • 95

    Lønning PE, Sørlie T, Børresen-Dale A-L. Genomics in breast cancer – therapeutic implications. Nature Clin Pract Oncol 2005;2:2633.

  • 96

    Troester MA, Hoadley KA, Sorlie T et al. . Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 2004;64:42184226.

  • 97

    Lowe SW, Bodis S, McClatchey A et al. . p53 status and the efficacy of cancer therapy in vivo. Science 1994;266:807810.

  • 98

    Lønning PE. Genes causing inherited cancer as beacons identifying the mechanisms of chemoresistance. Trends Mol Med 2004;10:113118.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 191 54 7
PDF Downloads 136 48 7
EPUB Downloads 0 0 0