Role of New Chemotherapy Agents in Soft Tissue Sarcoma

View More View Less
  • 1 Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania

Medical management of soft tissue sarcomas (STS) has been restricted by the limited availability of active drugs. A plethora of new oncologic agents are now available, many of which have specific therapeutic targets. Gemcitabine and docetaxel is a combination of drugs that have limited single-agent activity. Yondelis, a novel chemotherapeutic that binds DNA and functions partially by inhibiting transcription, is being tested alone and in combination with doxorubicin. Inhibitors of mTOR, a serine/threonine kinase that regulates cell cycle activation and cell growth, are also being tested. Growth factor receptor inhibitors are being evaluated in a variety of sarcomas that have been found to express the targets. In addition, a variety of agents are being assessed in gastrointestinal stromal tumors (GIST). Single agents and agents combined with imatinib are being tested in imatinib-refractory and in metastatic GIST. The increased use of targeted agents underscores the need for understanding sarcoma biology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Margaret von Mehren, MD, Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111-2497. E-mail: margaret.vonmehren@fccc.edu
  • 1

    Jemal A, Tiwari R, Murray T. Cancer statistics, 2004. CA Cancer J Clin 2004;54:829.

  • 2

    Elias A, Ryan L, Aisner J. Mesna, doxorubicin, ifosfamide, dacarbazine (MAID) regimen for adults with advanced sarcoma. Semin Oncol 1990;17:4149.

    • Search Google Scholar
    • Export Citation
  • 3

    Svancarova L, Blay J, Judson I. Gemcitabine in advanced adult soft-tissue sarcomas. A phase II study of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2002;38:556559.

    • Search Google Scholar
    • Export Citation
  • 4

    Patel SR, Gandhi V, Jenkins J. Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. J Clin Oncol 2001;19:34833489.

    • Search Google Scholar
    • Export Citation
  • 5

    Look K, Sandler A, Blessing J. Phase II trial of gemcitabine as second-line chemotherapy of uterine leiomyosarcoma: a Gynecologic Oncology Group (GOG) study. Gynecol Oncol 2004;92:644647.

    • Search Google Scholar
    • Export Citation
  • 6

    Hensley M, Maki R, Venkatraman E. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. J Clin Oncol 2002;20:28242831.

    • Search Google Scholar
    • Export Citation
  • 7

    Hensley M, Anderson S, Soslow R. Activity of gemcitabine plus docetaxel in leiomyosarcomas and other histologies: report of an expanded phase II trial. J Clin Oncol 2004;22:Abstract 9010.

    • Search Google Scholar
    • Export Citation
  • 8

    Leu KM, Ostruszka LJ, Shewach D. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J Clin Oncol 2004;22:17061712.

    • Search Google Scholar
    • Export Citation
  • 9

    Buesa J, Losa R, Fernandez A. Phase I clinical trial of fixed-dose rate infusional gemcitabine and dacarbazine in the treatment of advanced soft tissue sarcoma, with assessment of gemcitabine triphosphate accumulation. Cancer 2004;101:22612269.

    • Search Google Scholar
    • Export Citation
  • 10

    Lopez Pousa A, Buesa J, Maurel J. Phase I/II trial of doxorubicin (DX) and dose escalation prolonged infusion gemcitabine (GMC) as first line treatment in advanced soft tissue sarcomas (STS). A study of the Spanish Group for Research in Sarcomas (GEIS) (Abstr), Chicago, IL: American Society of Clinical Oncology; 2003:A3317.

    • Search Google Scholar
    • Export Citation
  • 11

    Morgan J, George S, Desai J. Phase II study of gemcitabine/vinorelbine (GV) as first or second line chemotherapy in patients with metastatic soft tissue sarcoma (STS). J Clin Oncol 2004;22:Abstract 9009.

    • Search Google Scholar
    • Export Citation
  • 12

    Pommier Y, Kohlagen G, Bailly C. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry 1996;35:1330313309.

    • Search Google Scholar
    • Export Citation
  • 13

    Garcia-Rocha M, Garcia-Gravalos MD, Avila J. Characterization of antimitotic products from marine organisms that disorganize the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15. Br J Cancer 1996;73:875883.

    • Search Google Scholar
    • Export Citation
  • 14

    Erba E, Bergamaschi D, Bassano L. Ecteinascidin-743 (ET-743), a natural marine compound, with a unique mechanism of action. Eur J Cancer 2004;37:97105.

    • Search Google Scholar
    • Export Citation
  • 15

    Takebayashi Y, Pourquier P, Yoshida A. Poisoning of human DNA topoisomerase I by ecteinascidin 743, an anticancer drug that selectively alkylates DNA in the minor groove. Proc Natl Acad Sci U S A. 1999;96:71967201.

    • Search Google Scholar
    • Export Citation
  • 16

    Zewail-Foote M, Ven-Shun L, Kohn H. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem Biol 2004;8:10331049.

    • Search Google Scholar
    • Export Citation
  • 17

    Damia G, Silvestri S, Carrassa L. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. Int J Cancer 2001;92:583588.

    • Search Google Scholar
    • Export Citation
  • 18

    Bonfanti M, La Valle E, Fernandez Sousa Faro JM. Effect of ecteinascidin-743 on the interaction between DNA binding proteins and DNA. Anticancer Drug Des 1999;14:179186.

    • Search Google Scholar
    • Export Citation
  • 19

    Li W, Takahashi N, Jhanwar S. Sensitivity of soft tissue sarcoma cell lines to chemotherapeutic agents: indentification of ecteinascidin-743 as a potent cytotoxic agent. Clin Cancer Res 2001;7:29082911.

    • Search Google Scholar
    • Export Citation
  • 20

    Takahashi N, Li W, Banerjee D. Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells. Clin Cancer Res 2001;7:32513257.

    • Search Google Scholar
    • Export Citation
  • 21

    Meco D, Colombo T, Ubezio P. Effective combination of Et-743 and doxorubicin in sarcoma: preclinical studies. Cancer Chemother Pharmacol 2003;52:131138.

    • Search Google Scholar
    • Export Citation
  • 22

    Ryan D, Supko J, Eder J. Phase I and Pharmacokinetic study of ecteinascidin 743 administered as a 72-hour continuous infusion in patients with solid malignancies. Clin Cancer Res 2001;7:231242.

    • Search Google Scholar
    • Export Citation
  • 23

    van Kesteren C, Twelves C, Bowman A. Clinical pharmacology of the novel marine-derived anticancer agent Ecteinascidin 743 administered as a 1- and 3-h infusion in a phase I study. Anticancer Drugs. 2002;13:381393.

    • Search Google Scholar
    • Export Citation
  • 24

    Delaloge S, Yovine A, Taamma A. Ectinascidin-743: a marine-derived compound in advanced, pretreated sarcoma patients—preliminary evidence of activity. J Clin Oncol 2001;19:12481255.

    • Search Google Scholar
    • Export Citation
  • 25

    Villalona-Calero M, Eckhardt S, Weiss G. A phase I and pharmacokinetic study of ecteinascidin-743 on a daily × 5 schedule in patients with solid malignancies. Clin Cancer Res 2002;8:7585.

    • Search Google Scholar
    • Export Citation
  • 26

    Gomez J, Lopez Lazaro L, Guzman C. Identification of biochemical parameters that predict the onset of severe toxicities in patients treated with ET-743 (Abstr). New Orleans, LA: American Society of Clinical Oncology; 2000:187a.

    • Search Google Scholar
    • Export Citation
  • 27

    Puchalski T, Ryan D, Garcia-Carbonero R. Pharmacokinetics of ecteinascidin 743 administered as a 24-h continuous infusion to adult patients with soft tissue sarcomas: associations with clinical characteristics, pathophysiological variables and toxicity. Cancer Chemother Pharmacol 2002;50:309309.

    • Search Google Scholar
    • Export Citation
  • 28

    Donald S, Verschoyle R, Greaves P. Complete protection by high dose dexamethasone against the hepatotoxicity of the novel antitumor drug ecteinascidin-743 (ET-743) in the rat. Cancer Res 2003;63:59025908.

    • Search Google Scholar
    • Export Citation
  • 29

    von Mehren M, Schilder R, Cheng J. Trabectedin in combination with pegylated doxorubicin (PLD) is a well tolerated regimen with good dose intensity in patients with advanced malignancies (Abstr). 29th ESMO Congress, Vienna, Austria: Elsevier; 2004:iii103.

    • Search Google Scholar
    • Export Citation
  • 30

    Demetri GD: ET-743: the US experience in sarcomas of the soft tissues. Anti-Cancer Drugs 2002;13(suppl):S7S9.

  • 31

    Garcia-Carbonero R, Supko J, Manola J. Phase II and pharmacokinetic study of ecteinascidin 743 in patients with progressive sarcomas of soft tissues refractory to chemotherapy. J Clin Oncol 2004;22:14801490.

    • Search Google Scholar
    • Export Citation
  • 32

    Yovine A, Riofrio M, Blay J. Phase II study of Ecteinascidin-743 in advanced pretreated soft tissue sarcoma patients. J Clin Oncol 2004;22:890900.

    • Search Google Scholar
    • Export Citation
  • 33

    Lopez-Martin JA, Verweij J, Blay J. An exploratory analysis of tumor growth rate (TGR) variations induced by trabectedin (ecteinascidin-743, ET-743) in patients (pts) with pretreated advanced soft tissue sarcoma (PASTS) (Abstr). Chicago, IL: American Society of Clinical Oncology; 2003:A3293.

    • Search Google Scholar
    • Export Citation
  • 34

    Ryan D, Puchalski T, Supko J. A phase II and pharmacokinetic study of ecteinascidin 743 in patients with gastrointestinal stromal tumors. Oncologist 2002;7:531538.

    • Search Google Scholar
    • Export Citation
  • 35

    Samuels B, Rushing D, Chawla S. Randomized phase II study of trabectedin (ET-743) given by two different dosing schedules in patients (pts) with leiomyosarcomas (LMS) or liposarcomas (LPS) refractory to conventional doxorubicin and ifosfamide chemotherapy. J Clin Oncol 2004;22:A9000.

    • Search Google Scholar
    • Export Citation
  • 36

    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000;103:253262.

  • 37

    Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell 1996;86:517520.

  • 38

    Yu K, Toral-Barza L, Discafani C. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001;8:249258.

    • Search Google Scholar
    • Export Citation
  • 39

    Neshat MS, Mellinghoff IK, Tran C. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 2001;98:1031410319.

    • Search Google Scholar
    • Export Citation
  • 40

    Shi Y, Gera J, Hu L. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002;62:50275034.

  • 41

    Huang S, Houghton PJ. Mechanisms of resistance to rapamycins. Drug Resist Updat 2001;4:378391.

  • 42

    Huang S, Houghton PJ. Resistance to rapamycin: a novel anticancer drug. Cancer Metastasis Rev 2001;20:6978.

  • 43

    Dudkin L, Dilling M, Cheshire P. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res 2001;7:17581764.

    • Search Google Scholar
    • Export Citation
  • 44

    Gallicchio M, van Sinderen M, Bach L. Insulin-like growth factor binding protein-6 and CCI-779, an ester analogue of rapamycin, additively inhibit rhabdomyosarcoma growth. Horm Metab Res 2003;35:822827.

    • Search Google Scholar
    • Export Citation
  • 45

    Hidalgo M, Rowinsky E. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000;19:66806686.

  • 46

    Nielsen T, Hsu F, O'Connell J. Tissue microarray validation of epidermal growth factor receptor and SALL2 in synovial sarcoma with comparison to tumors of similar histology. Am J Pathol 2003;163:14491456.

    • Search Google Scholar
    • Export Citation
  • 47

    Perry A, Kunz S, Fuller C. Differential NF1, p16, and EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms. J Neuropathol Exp Neurol 2002;61:702709.

    • Search Google Scholar
    • Export Citation
  • 48

    Olofsson A, Willen H, Goransson M. Abnormal expression of cell cycle regulators in FUS-CHOP carrying liposarcomas. Int J Oncol 2004;25:13491355.

    • Search Google Scholar
    • Export Citation
  • 49

    Nuciforo P, Pellegrini C, Fasani R. Molecular and immunohistochemical analysis of HER2/neu oncogene in synovial sarcoma. Hum Pathol 2003;34:639645.

    • Search Google Scholar
    • Export Citation
  • 50

    DeClue J, Heffelfinger S, Benvenuto G. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Invest 2000:105;12331241.

    • Search Google Scholar
    • Export Citation
  • 51

    Li H, Velasco-Miguel S, Vass W. Epidermal growth factor receptor signaling pathways are associated with tumori-genesis in the Nf1:p53 mouse tumor model. Cancer Res 2002;62:45074513.

    • Search Google Scholar
    • Export Citation
  • 52

    Heymach J. Angiogenesis and antiangiogenic approaches to sarcomas. Curr Opin Oncol 2001;13:261269.

  • 53

    Saenz NC, Heslin MJ, Adsay V. Neovascularity and clinical outcome in high-grade extremity soft tissue sarcomas. Ann Surg Oncol 1998;5:4853.

  • 54

    Chao C, Al-Saleem T, Brooks J. Vascular endothelial growth factor and soft tissue sarcomas: tumor expression correlates with grade. Ann Surg Oncol 2001;8:260267.

    • Search Google Scholar
    • Export Citation
  • 55

    Yoon S, Segal N, Olshen A. Circulating angiogenic factor levels correlate with extent of disease and risk of recurrence in patients with soft tissue sarcoma. Ann Oncol 2004;15:12611266.

    • Search Google Scholar
    • Export Citation
  • 56

    Hashimoto M, Ohsawa M, Ohnishi A. Expression of vascular endothelial growth factor and its receptor mRNA in angiosarcoma. Lab Invest 1995;73:859863.

    • Search Google Scholar
    • Export Citation
  • 57

    Amo Y, Masuzawa M, Hamada Y. Expression of vascular endothelial growth factor in a human hemangiosarcoma cell line (ISO-HAS). Arch Dermatol Res 2001;293:296301.

    • Search Google Scholar
    • Export Citation
  • 58

    Hatva E, Bohling T, Jaaskelainen J. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas. Am J Pathol 1996;148:763775.

    • Search Google Scholar
    • Export Citation
  • 59

    Verweij J, Von Oosterom A, Blay J. Imatinib Mesylate is an active agent for GIST but does not yield responses in other soft tissue sarcomas that are unselected for a molecular target. Eur J Cancer 2003;39:20062011.

    • Search Google Scholar
    • Export Citation
  • 60

    Chugh R, Thomas D, Wathen K. Imatinib mesylate in soft tissue and bone sarcomas: Interim results of a Sarcoma Alliance for Research thru Collaboration (SARC) phase II trial. J Clin Oncol 2004;22:Abstract 9001.

    • Search Google Scholar
    • Export Citation
  • 61

    Simon M, Navarro M, Roux D. Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in dermatofibrosarcoma protuberans (DP). Oncogene 2001;20:29652975.

    • Search Google Scholar
    • Export Citation
  • 62

    Sjoblom T, Shimizu A, O'Brien K. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001;61:57785783.

    • Search Google Scholar
    • Export Citation
  • 63

    Maki R, Awan R, Dixon R. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 2002;100:623626.

    • Search Google Scholar
    • Export Citation
  • 64

    Rubin BP, Schuetze SM, Eary JF. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 2002;20:35863591.

    • Search Google Scholar
    • Export Citation
  • 65

    Weiner TM, Liu ET, Craven RJ. Expression of growth factor receptors, the focal adhesion kinase, and other tyrosine kinases in human soft tissue tumors. Ann Surg Oncol 1994;1:1827.

    • Search Google Scholar
    • Export Citation
  • 66

    Franklin W, Christison W, Colley M. In situ distribution of the beta-subunit of platelet-derived growth factor receptor in nonneoplastic tissue and in soft tissue tumors. Cancer Res 1990;50:63446348.

    • Search Google Scholar
    • Export Citation
  • 67

    Fletcher CD, Berman JJ, Corless C. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002;33:459465.

  • 68

    Demetri G, George S, Heinrich MC. Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate (Abstr). Chicago, IL: American Society of Clinical Oncology; 2003.

    • Search Google Scholar
    • Export Citation
  • 69

    Demetri GD, Desai J, Fletcher JA. SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) (Abstr). New Orleans, LA: American Society of Clinical Oncology; 2004:A 3001.

    • Search Google Scholar
    • Export Citation
  • 70

    Shah N, Tran C, Lee F. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004;305:399401.

  • 71

    Sawyers C, Shah N, Kantarjian H. Hematologic and cytogenetic responses in imatinib-resistant chronic phase chronic myelogenous leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354835: results from a phase I dose escalation study (Abstr). San Diego, CA: American Society of Hematology; 2004:A1.

    • Search Google Scholar
    • Export Citation
  • 72

    Takahashi R, Tanaka S, Kitadai Y. Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology 2003;64:266274.

    • Search Google Scholar
    • Export Citation
  • 73

    Van Oosterom A, Dumez H, Desai J. Combination signal transduction inhibition: a phase I/II trial of the oral mTOR-inhibitor everolimus (E, RAD001) and imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM (Abstr). In: ASCO Annual Meeting Proceedings. New Orleans, LA: ASCO; 2004:3002.

    • Search Google Scholar
    • Export Citation
  • 74

    Reichardt P, Pink P, Lindner T. A phase I/II trial of the oral PKC inhibitor PKC412 and imatinib mesylate in patients with gastrointestinal stromal tumors (GIST) refractory to imatinib (IM) (Abstr). Vienna, Austria: Eur Soc Med Oncol; 2004.

    • Search Google Scholar
    • Export Citation
  • 75

    Taamma A, Misset J, Riofrio M. Phase I and pharmacokinetic study of Ecteinascidin-743, a new marine compound, administered as a 24-hour continuous infusion in patients with solid tumors. J Clin Oncol 2001;19:12561265.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 346 314 15
PDF Downloads 252 242 15
EPUB Downloads 0 0 0