New Agents in Chronic Myelogenous Leukemia

Authors: Jorge Cortes MD1 and Francis Giles MD1
View More View Less
  • 1 From the Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas.

Multiple new agents are currently being developed in chronic myelogenous leukemia (CML). Most of these agents are now being investigated in patients who have developed resistance to imatinib. Their mechanisms of action are diverse and many may be synergistic with imatinib. These agents will be used soon in different combinations, most likely including imatinib, with the hope of obtaining a complete blockade of the intracellular pathways that are triggered by Bcr-Abl. If this is successful, complete eradication of disease may become a reality for the majority of patients with CML.

Jorge Cortes has research grant support from Novartis, Schering-Plough, Jensen, and Millennium.

Correspondence: Jorge Cortes, MD, 1515 Holcombe, Blvd, Unit 428, Houston, TX 77030. E-mail: jcortes@mdanderson.org
  • 1

    Giles FJ. Troxacitabine-based therapy of refractory leukemia. Expert Rev Anticancer Ther 2002;2:261266.

  • 2

    Grove KL, Guo X, Liu SH et al.. Anticancer activity of beta-L-dioxolane-cytidine, a novelnucleosideanaloguewiththe unnatural L configuration. Cancer Res 1995;55:30083011.

    • Search Google Scholar
    • Export Citation
  • 3

    Grove KL, Cheng YC. Uptake and metabolism of the new anticancer compound beta-L-(-)-dioxolane-cytidine in human prostate carcinoma DU-145 cells. Cancer Res 1996;56:41874191.

    • Search Google Scholar
    • Export Citation
  • 4

    Giles FJ, Cortes JE, Baker SD et al.. Troxacitabine, a novel dioxolane nucleoside analog, has activity in patients with advanced leukemia. J Clin Oncol 2001;19:762771.

    • Search Google Scholar
    • Export Citation
  • 5

    Giles FJ, Garcia-Manero G, Cortes JE et al.. Phase II Study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol 2002;20:656664.

    • Search Google Scholar
    • Export Citation
  • 6

    Kantarjian HM, Giles FJ, O'Brien SM, Talpaz M. Clinical course and therapy of chronic myelogenous leukemia with interferon-alpha and chemotherapy. Hematol Oncol Clin North Am 1998;12:3180.

    • Search Google Scholar
    • Export Citation
  • 7

    Kantarjian H, Melo JV, Tura S et al.. Chronic myelogenous leukemia: Disease biology and current and future therapeutic strategies. Hematology (Am Soc Hematol Educ Program) 2000:90109.

    • Search Google Scholar
    • Export Citation
  • 8

    Kantarjian HM, Talpaz M, Smith TL et al.. Homoharringtonine and low-dose cytarabine in the management of late chronic-phase chronic myelogenous leukemia. J Clin Oncol 2000;18:35133521.

    • Search Google Scholar
    • Export Citation
  • 9

    Sacchi S, Kantarjian HM, O'Brien S et al.. Chronic myelogenous leukemia in nonlymphoid blastic phase: Analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer 1999;86: 26322641.

    • Search Google Scholar
    • Export Citation
  • 10

    Hitt E. Homoharringtonine effective in CML patients. Lancet Oncol 2002;3:259

  • 11

    O'Brien S, Kantarjian H, Keating M et al.. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 1995;86:33223326

    • Search Google Scholar
    • Export Citation
  • 12

    Visani G, Russo D, Ottaviani E et al.. Effects of homoharringtonine alone and in combination with alpha interferon and cytosine arabinoside on ‘in vitro’ growth and induction of apoptosis in chronic myeloid leukemia and normal hematopoietic progenitors. Leukemia 1997;11: 624628.

    • Search Google Scholar
    • Export Citation
  • 13

    O'Brien S, Kantarjian H, Koller C et al.. Sequential homoharringtonine and interferon-alpha in the treatment of early chronic phase chronic myelogenous leukemia. Blood 1999;93:41494153.

    • Search Google Scholar
    • Export Citation
  • 14

    Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: Pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573586.

    • Search Google Scholar
    • Export Citation
  • 15

    Issa JP, Baylin SB, Herman JG. DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 1997;11:S7S11.

    • Search Google Scholar
    • Export Citation
  • 16

    Nguyen TT, Mohrbacher AF, Tsai YC et al.. Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood 2000;95: 29902992.

    • Search Google Scholar
    • Export Citation
  • 17

    Asimakopoulos FA, Shteper PJ, Krichevsky S et al.. ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 1999;94:24522460.

    • Search Google Scholar
    • Export Citation
  • 18

    Issa JP, Kantarjian H, Mohan A et al.. Methylation of the ABL1 promoter in chronic myelogenous leukemia: Lack of prognostic significance. Blood 1999;93:20752080.

    • Search Google Scholar
    • Export Citation
  • 19

    Zion M, Ben-Yehuda D, Avraham A et al.. Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proc Natl Acad Sci USA 1994;91:1072210726.

    • Search Google Scholar
    • Export Citation
  • 20

    Ge XQ, Tanaka K, Mansyur A et al.. Possible prediction of myeloid and lymphoid crises in chronic myelocytic leukemia at onset by determining the methylation status of the major breakpoint cluster region. Cancer Genet Cytogenet 2001;126: 102110.

    • Search Google Scholar
    • Export Citation
  • 21

    Roman-Gomez J, Castillejo JA, Jimenez A et al.. Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol 2003;21: 14721479.

    • Search Google Scholar
    • Export Citation
  • 22

    Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E et al.. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 2003;9:15961603.

    • Search Google Scholar
    • Export Citation
  • 23

    Wijermans P, Lubbert M, Verhoef G et al.. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956962.

    • Search Google Scholar
    • Export Citation
  • 24

    Kornblith AB, Herndon JE 2nd, Silverman LR et al.. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: A Cancer and Leukemia Group B study. J Clin Oncol 2002;20:24412452.

    • Search Google Scholar
    • Export Citation
  • 25

    Kantarjian HM, O'Brien S, Cortes J et al.. Results of decitabine (5-aza-2 deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 2003;98: 522528.

    • Search Google Scholar
    • Export Citation
  • 26

    Issa JP, Garcia-Manero G, Mannari R et al.. Minimal effective dose of hypomethylating agent decitabine in hematopoietic malignancies (Abstr). Blood 2001;98:594a

    • Search Google Scholar
    • Export Citation
  • 27

    La Rosee P, Johnson K, Moseson EM et al.. Preclinical evaluation of the efficacy of STI571 in combination with a variety of novel anticancer agents (Abstr). Blood 2001; 98:839a.

    • Search Google Scholar
    • Export Citation
  • 28

    Thiagalingam S, Cheng KH, Lee HJ et al.. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 2003;983:84100.

    • Search Google Scholar
    • Export Citation
  • 29

    Nimmanapalli R, Fuino L, Stobaugh C et al.. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003;101:32363239.

    • Search Google Scholar
    • Export Citation
  • 30

    Yu C, Rahmani M, Almenara J et al.. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 2003;63:21182126.

    • Search Google Scholar
    • Export Citation
  • 31

    Aron JL, Parthun MR, Marcucci G et al.. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase-8-mediated apoptosis and downregulation of c-FLIP protein. Blood 2003;20:20.

    • Search Google Scholar
    • Export Citation
  • 32

    Faderl S, Talpaz M, Estrov Z et al.. The biology of chronic myeloid leukemia. N Engl J Med 1999;341:164172.

  • 33

    Beaupre DM, Kurzrock R. RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999;17:10711079.

  • 34

    Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol 1999;17:36313652.

    • Search Google Scholar
    • Export Citation
  • 35

    Karp JE, Lancet JE, Kaufmann SH et al.. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: A phase 1 clinical-laboratory correlative trial. Blood 2001;97: 33613369.

    • Search Google Scholar
    • Export Citation
  • 36

    Kurzrock R, Sebti SM, Kantarjian HM et al.. Phase I study of a farnesyl transferase inhibitor, R115777, in patients with myelodysplastic syndrome (Abstr #2609). Blood 2001; 98:623a.

    • Search Google Scholar
    • Export Citation
  • 37

    Kurzrock R, Cortes J, Ryback ME et al.. Phase II study of R115777, a farnesyltransferase inhibitor, in myelodysplastic syndrome (Abstr #3520). Blood 2001;98:848a.

    • Search Google Scholar
    • Export Citation
  • 38

    Peters DG, Hoover RR, Gerlach MJ et al.. Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood 2001;97: 14041412.

    • Search Google Scholar
    • Export Citation
  • 39

    Reichert A, Heisterkamp N, Daley GQ, Groffen J. Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 2001;97:13991403.

    • Search Google Scholar
    • Export Citation
  • 40

    Hoover RR, Mahon F-X, Melo JV, Daley GQ. Overcoming STI571 resistance with the farnesyltransferase inhibitor SCH66336 (Abstr #2585). Blood. 2001;98:617a.

    • Search Google Scholar
    • Export Citation
  • 41

    Cortes J, Albitar M, Thomas D et al.. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 2003;101: 16921697.

    • Search Google Scholar
    • Export Citation
  • 42

    Thomas D, Cortes J, O'Brien SM et al.. R115777, a farnesyl transferase inhibitor (FTI), has significant andi-leukemia activity in patients with chronic myelogenous leukemia (CML) (Abstr). Blood 2001;98:727a.

    • Search Google Scholar
    • Export Citation
  • 43

    Cortes J, Daley GQ, Talpaz M et al.. Pilot study of SCH66336 (Lonafarnib), a farnesyl transferase inhibitor (FTI), in patients with chronic myeloid leukemia (CML) in chronic or accelerated phase resistant or refractory to imatinib (Abstr #614). Blood 2002;100:164a.

    • Search Google Scholar
    • Export Citation
  • 44

    Forkner CE, Scott TF. Arsenic as a therapeutic agent in chronic myelogenous leukemia. JAMA 1931;97:3.

  • 45

    Lazo G, Kantarjian H, Estey E et al.. Use of arsenic trioxide (As2O3) in the treatment of patients with acute promyelocytic leukemia. Cancer 2003;97:22182224.

    • Search Google Scholar
    • Export Citation
  • 46

    Soignet SL, Frankel SR, Douer D et al.. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 2001;19:38523860.

    • Search Google Scholar
    • Export Citation
  • 47

    Murgo AJ. Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 2001;6(Suppl 2):2228.

    • Search Google Scholar
    • Export Citation
  • 48

    Munshi NC, Tricot G, Desikan R et al.. Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 2002;16:18351837.

  • 49

    Rousselot P, Labaume S, Marolleau JP et al.. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res 1999;59:10411048.

    • Search Google Scholar
    • Export Citation
  • 50

    Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 2000;95:10141022.

    • Search Google Scholar
    • Export Citation
  • 51

    Puccetti E, Guller S, Orleth A et al.. BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity. Cancer Res 2000;60: 34093413.

    • Search Google Scholar
    • Export Citation
  • 52

    Porosnicu M, Nimmanapalli R, Nguyen D et al.. Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Brc-Abl-positive acute leukemia cells. Leukemia 2001;15:772778.

    • Search Google Scholar
    • Export Citation
  • 53

    La Rosee P, Johnson K, O'Dwyer ME, Druker BJ. In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol 2002;30:729737.

    • Search Google Scholar
    • Export Citation
  • 54

    Mauro MJ, Deininger MW, O'Dwyer ME et al.. Phase I/II study of arsenic trioxide (Trisenox) in combination with imatinib mesylate (Gleevec, STI571) in patients with Gleevec-resistant chronic myelogenous leukemia in chronic phase (Abstr #3090). Blood 2002;100:781a.

    • Search Google Scholar
    • Export Citation
  • 55

    Adams J, Palombella VJ, Sausville EA et al.. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:26152622.

    • Search Google Scholar
    • Export Citation
  • 56

    Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE. 1999;1999:RE1.

    • Search Google Scholar
    • Export Citation
  • 57

    Hamdane M, David-Cordonnier MH, D'Halluin JC. Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB). Oncogene 1997;15:22672275.

    • Search Google Scholar
    • Export Citation
  • 58

    Reuther JY, Reuther GW, Cortez D et al.. A requirement for NF-kappaB activation in Bcr-Abl-mediated transformation. Genes Dev 1998;12:968981.

  • 59

    Korus M, Mahon GM, Cheng L, Whitehead IP. p38 MAPK-mediated activation of NF-kappaB by the RhoGEF domain of Bcr. Oncogene 2002;21:46014612.

  • 60

    Dou QP, McGuire TF, Peng Y, An B. Proteasome inhibition leads to significant reduction of Bcr-Abl expression and subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells. J Pharmacol Exp Ther 1999;289: 781790.

    • Search Google Scholar
    • Export Citation
  • 61

    Orlowski RZ, Stinchcombe TE, Mitchell BS et al.. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002;20:44204427.

    • Search Google Scholar
    • Export Citation
  • 62

    Gatto SR, Scappini B, Verstovsek S et al.. In vitro effects of PS-341 alone and in combination with STI571 in BCR-ABL positive cell lines both sensitive and resistant to STI571 (Abstr #424). Blood 2001;98:101a.

    • Search Google Scholar
    • Export Citation
  • 63

    Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 2001;49:568581.

    • Search Google Scholar
    • Export Citation
  • 64

    Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997;94:87618766.

    • Search Google Scholar
    • Export Citation
  • 65

    Verstovsek S, Estey E, Manshouri T et al.. Clinical relevance of vascular endothelial growth factor receptors 1 and 2 in acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 2002;118:151156.

    • Search Google Scholar
    • Export Citation
  • 66

    Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost 2000;26:561569.

  • 67

    Pruneri G, Bertolini F, Soligo D et al.. Angiogenesis in myelodysplastic syndromes. Br J Cancer 1999;81:13981401.

  • 68

    Brunner B, Gunsilius E, Schumacher P et al.. Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res. 2002;11:119125.

    • Search Google Scholar
    • Export Citation
  • 69

    Aguayo A, Kantarjian H, Manshouri T et al.. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:22402245.

  • 70

    Bellamy WT, Richter L, Sirjani D et al.. Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97:14271434.

    • Search Google Scholar
    • Export Citation
  • 71

    Giles FJ. The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist 2001;6(Suppl 5):3239.

    • Search Google Scholar
    • Export Citation
  • 72

    Aguayo A, Estey E, Kantarjian H et al.. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999;94: 37173721.

    • Search Google Scholar
    • Export Citation
  • 73

    Gabrilovich DI, Chen HL, Girgis KR et al.. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 1996;2:10961103.

    • Search Google Scholar
    • Export Citation
  • 74

    Gabrilovich DI, Ishida T, Nadaf S et al.. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999;5:29632970.

    • Search Google Scholar
    • Export Citation
  • 75

    Verstovsek S, Kantarjian H, Manshouri T et al.. Prognostic significance of cellular vascular endothelial growth factor expression in chronic phase chronic myeloid leukemia. Blood 2002;99:22652267.

    • Search Google Scholar
    • Export Citation
  • 76

    Thomas AL, Morgan B, Drevs J et al.. Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin Oncol 2003;30:3238.

    • Search Google Scholar
    • Export Citation
  • 77

    Perez-Atayde AR, Sallan SE, Tedrow U et al.. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997;150: 815821.

    • Search Google Scholar
    • Export Citation
  • 78

    Fiedler W, Graeven U, Ergun S et al.. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997;89:18701875.

    • Search Google Scholar
    • Export Citation
  • 79

    Cambier N, Baruchel A, Schlageter MH et al.. Chronic myelomonocytic leukemia: From biology to therapy. Hematol Cell Ther 1997;39:4148.

  • 80

    Mendel DB, Laird AD, Smolich BD et al.. Development of SU5416, a selective small molecule inhibitor of VEGF receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des 2000;15:2941.

    • Search Google Scholar
    • Export Citation
  • 81

    Sukbuntherng J, Cropp G, Hannah A et al.. Pharmacokinetics and interspecies scaling of a novel VEGF receptor inhibitor, SU5416. J Pharm Pharmacol 2001;53:16291636.

    • Search Google Scholar
    • Export Citation
  • 82

    Fong TA, Shawver LK, Sun L et al.. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999;59:99106.

    • Search Google Scholar
    • Export Citation
  • 83

    Vajkoczy P, Menger MD, Vollmar B et al.. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1999;1:3141.

    • Search Google Scholar
    • Export Citation
  • 84

    Yee KW, O'Farrell AM, Smolich BD et al.. SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 2002;100: 29412949.

    • Search Google Scholar
    • Export Citation
  • 85

    Smolich BD, Yuen HA, West KA et al.. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood 2001;97: 14131421.

    • Search Google Scholar
    • Export Citation
  • 86

    Fenski R, Flesch K, Serve S et al.. Constitutive activation of FLT3 in acute myeloid leukaemia and its consequences for growth of 32D cells. Br J Haematol 2000;108:322330.

    • Search Google Scholar
    • Export Citation
  • 87

    Mizuki M, Fenski R, Halfter H et al.. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000;96:39073914.

    • Search Google Scholar
    • Export Citation
  • 88

    Tse KF, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000;14: 17661776.

    • Search Google Scholar
    • Export Citation
  • 89

    Giles FJ, Cooper MA, Silverman L et al.. Phase II study of SU5416: a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor—in patients with refractory myeloproliferative diseases. Cancer 2003;97: 19201928.

    • Search Google Scholar
    • Export Citation
  • 90

    Giles FJ, Stopeck AT, Silverman LR et al.. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003;102:795801.

    • Search Google Scholar
    • Export Citation
  • 91

    Saishin Y, Takahashi K, Seo MS et al.. The kinase inhibitor PKC412 suppresses epiretinal membrane formation and retinal detachment in mice with proliferative retinopathies. Invest Ophthalmol Vis Sci 2003;44:36563662.

    • Search Google Scholar
    • Export Citation
  • 92

    Sotlar K, Marafioti T, Griesser H et al.. Detection of c-kit mutation Asp 816 to Val in microdissected bone marrow infiltrates in a case of systemic mastocytosis associated with chronic myelomonocytic leukaemia. Mol Pathol 2000;53: 188193.

    • Search Google Scholar
    • Export Citation
  • 93

    Ikeda H, Kanakura Y, Tamaki T et al.. Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 1991;78:29622968.

    • Search Google Scholar
    • Export Citation
  • 94

    Kuriu A, Ikeda H, Kanakura Y et al.. Proliferation of human myeloid leukemia cell line associated with the tyrosine-phosphorylation and activation of the proto-oncogene c-kit product. Blood. 1991;78:28342840.

    • Search Google Scholar
    • Export Citation
  • 95

    Kimura A, Nakata Y, Katoh O, Hyodo H. c-kit Point mutation in patients with myeloproliferative disorders. Leuk Lymphoma 1997;25:281287.

  • 96

    Nakata Y, Kimura A, Katoh O et al.. c-kit point mutation of extracellular domain in patients with myeloproliferative disorders. Br J Haematol 1995;91:661663.

    • Search Google Scholar
    • Export Citation
  • 97

    Sperr WR, Horny HP, Lechner K, Valent P. Clinical and biologic diversity of leukemias occurring in patients with mastocytosis. Leuk Lymphoma 2000;37:473486.

    • Search Google Scholar
    • Export Citation
  • 98

    Barrett J. Allogeneic stem cell transplantation for chronic myeloid leukemia. Semin Hematol 2003;40:5971.

  • 99

    Guilhot F, Lacotte-Thierry L. Interferon-alpha: mechanisms of action in chronic myelogenous leukemia in chronic phase. Hematol Cell Ther 1998;40:237239.

    • Search Google Scholar
    • Export Citation
  • 100

    Chen W, Peace DJ, Rovira DK et al.. T-cell immunity to the joining region of p210BCR-ABL protein. Proc Natl Acad Sci USA 1992;89:14681472.

  • 101

    Cullis JO, Barrett AJ, Goldman JM, Lechler RI. Binding of BCR/ABL junctional peptides to major histocompatibility complex (MHC) class I molecules: studies in antigen-processing defective cell lines. Leukemia 1994;8: 165170.

    • Search Google Scholar
    • Export Citation
  • 102

    Pawelec G, Max H, Halder T et al.. BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors. Blood 1996;88:21182124.

    • Search Google Scholar
    • Export Citation
  • 103

    Yotnda P, Firat H, Garcia-Pons F et al.. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 1998;101:22902296.

    • Search Google Scholar
    • Export Citation
  • 104

    Pinilla-Ibarz J, Cathcart K, Korontsvit T et al.. Vaccination of patients with chronic myelogenous leukemia with bcrabl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000;95:17811787.

    • Search Google Scholar
    • Export Citation
  • 105

    Catchart K, Pinilla-Ibarz J, Korontsvit T et al.. All CML patients vaccinated with a multivalent bcr-abl peptide vaccine show specific immune responses in a phase II trial (Abstr). Blood 2001;98:728a.

    • Search Google Scholar
    • Export Citation
  • 106

    Molldrem J, Dermime S, Parker K et al.. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996;88: 24502457.

    • Search Google Scholar
    • Export Citation
  • 107

    Dengler R, Munstermann U, al-Batran S et al.. Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukaemic myeloid cells. Br J Haematol 1995;89:250257.

    • Search Google Scholar
    • Export Citation
  • 108

    Molldrem JJ, Clave E, Jiang YZ et al.. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 1997;90:25292534.

    • Search Google Scholar
    • Export Citation
  • 109

    Molldrem J, Kant S, Lu S et al.. Peptide vaccination with PR1 elicits active T cell immunity that induces cytogenetic remission in acute myelogenous leukemia (Abstr). Blood 2002;100:6a.

    • Search Google Scholar
    • Export Citation
  • 110

    Svingen PA, Tefferi A, Kottke TJ et al.. Effects of the bcr/abl kinase inhibitors AG957 and NSC 680410 on chronic myelogenous leukemia cells in vitro. Clin Cancer Res 2000;6:237249.

    • Search Google Scholar
    • Export Citation
  • 111

    Sun X, Layton JE, Elefanty A, Lieschke GJ. Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL–expressing cells, demonstrating synergy between AG490 and STI571. Blood 2001;97: 20082015.

    • Search Google Scholar
    • Export Citation
  • 112

    Mow BM, Chandra J, Svingen PA et al.. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 2002;99:664671.

    • Search Google Scholar
    • Export Citation
  • 113

    Faderl S, Talpaz M, Estrov Z, Kantarjian HM. Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 1999;131:207219.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 804 144 35
PDF Downloads 627 48 0
EPUB Downloads 0 0 0