The Role of Bisphosphonates in Breast Cancer

Author: Richard L. Theriault DO, MBA 1
View More View Less
  • 1 Department of Breast Medical Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas

Breast cancer frequently metastasizes to bone. Metastases result in skeletal morbidity including pathologic fractures, the need for radiation or surgery to bone, spinal cord compression and hypercalcemia. The pathophysiology of bone destruction is related to activation of osteoclasts by tumor-derived and bone marrow microenvironmental factors. One prominent osteoclast–activating factor associated with breast cancer is parathyroid hormone-related peptide (PTHrP). Bisphosphonates have been shown to impair osteoclast activity by decreasing recruitment from the monocyte macrophage cell line, inhibiting osteoclast function at the bone site and causing osteoclasts to undergo apoptosis. Clinical studies with bisphosphonates show an improvement in the control of hypercalcemia and a reduction in skeletal related morbidity with administration of pamidronate and zoledronic acid. Bisphosphonates have become the standard of care for osteolytic metastases associated with breast cancer. Recent data with zoledronic acid found that skeletal related morbidity may be reduced regardless of the radiographic picture of skeletal metastases. Thus, zoledronic acid may be valuable in osteolytic and osteoblastic disease as well as in disease with an osteolytic or osteoblastic radiographic appearance. In breast cancer with osteolytic disease, zoledronic acid may be more effective than pamidronate in reducing skeletal morbidity and prolonging the time to first skeletal event.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Richard L. Theriault, DO, MBA, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 424, Houston, Texas 77030. E-mail: rtheriau@mdanderson.org
  • 1

    Mundy GR. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2:584593.

  • 2

    Giordano S, Buzdar A, Kau S-W. Improvement in breast cancer survival: Results from M. D. Anderson Cancer Center protocols from 1975-2000 (Abstr. #212). Proc Am Soc Clin Oncol 2002;21:54a.

    • Search Google Scholar
    • Export Citation
  • 3

    Scheid V, Buzdar AU, Smith TL. Clinical course of breast cancer patients with osseous metastasis treated with combination chemotherapy. Cancer 1986;58:25892593.

    • Search Google Scholar
    • Export Citation
  • 4

    Domchek SM, Younger J, Finkelstein DM. Predictors of skeletal complications in patients with metastatic breast carcinoma. Cancer 2000;89:363368.

    • Search Google Scholar
    • Export Citation
  • 5

    Coleman RE. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001;27:165176.

  • 6

    Nielsen OS, Munro AJ, Tannock IF. Bone metastases: pathophysiology and management policy. J Clin Oncol 1991;9: 509524.

  • 7

    Coleman RE, Smith P, Rubens RD. Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 1998;77:336340.

    • Search Google Scholar
    • Export Citation
  • 8

    Hortobagyi GN, Libshitz HI, Seabold JE. Osseous metastases of breast cancer: Clinic, biochemical, radiographic, and stenographic evaluation of response to therapy. Cancer 1984;53: 577582.

    • Search Google Scholar
    • Export Citation
  • 9

    Hortobagyi GN, Theriault RL, Lipton A. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 1998;16:20382044.

    • Search Google Scholar
    • Export Citation
  • 10

    Libshitz HI, Hortobagyi GN. Radiographic evaluation of therapeutic response in bony metastases from breast cancer. Skeletal Radiol 1981;7:159165.

    • Search Google Scholar
    • Export Citation
  • 11

    Koenders PG, Beex LV, Kloppenborg PW. Human breast cancer: Survival from first metastasis. Breast Cancer Study Group. Breast Cancer Res Treat 1992;21:173180.

    • Search Google Scholar
    • Export Citation
  • 12

    Powell GJ, Southby J, Danks JA. Localization of parathyroid hormone-related protein in breast cancer metastases: Increased incidence in bone compared with other sites. Cancer Res 1991;51:30593061.

    • Search Google Scholar
    • Export Citation
  • 13

    Brandt DW, Wachsman W, Deftos LJ. Parathyroid hormone-like protein: Alternative messenger RNA splicing pathways in human cancer cell lines (Abstr). Cancer Res 1994;54:850.

    • Search Google Scholar
    • Export Citation
  • 14

    Bundred NJ, Walker RA, Ratcliffe WA. Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur J Cancer 1992;28:690692.

    • Search Google Scholar
    • Export Citation
  • 15

    Kissin MW, Henderson MA, Danks JA. Parathyroid hormone related protein in breast cancer of widely varying prognosis. Eur J Surg Oncol 1993;19:134142.

    • Search Google Scholar
    • Export Citation
  • 16

    Guise TA. Parathyroid hormone-related protein and bone metastases. Cancer 1997;80:15721580.

  • 17

    Vargas SJ, Gillespie MT, Powell GJ. Localization of parathyroid hormone-related protein mRNA expression in breast cancer and metastatic lesions by in situ hybridization. J Bone Miner Res 1992;7:971979.

    • Search Google Scholar
    • Export Citation
  • 18

    Bundred NJ, Walker RA, Ratcliffe WA. A humoral role for parathyroid hormone-related peptide in breast cancer (Abstr. #12). Breast Cancer Res Treat 1991;99:159.

    • Search Google Scholar
    • Export Citation
  • 19

    Mundy GR. Mechanisms of bone metastasis. Cancer 1997;80: 15461556.

  • 20

    de Vernejoul MC. Dynamics of bone remodelling: Biochemical and pathophysiological basis (Review). Eur J Clin Chem Clin Biochem 1996;34:729734.

    • Search Google Scholar
    • Export Citation
  • 21

    Kanis JA, McCloskey EV. Bone turnover and biochemical markers in malignancy. Cancer 1997;80:15381545.

  • 22

    Lowik CWGM, van der Pluijm G, Bloys H. Parathyroid hormone and PTH-like protein stimulate interleukin-6 production by osteogenic cells: A possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 1989;162:15461552.

    • Search Google Scholar
    • Export Citation
  • 23

    Hauschka PV, Chen TL, Mavrakos AE. Polypeptide growth factors in bone matrix. Ciba Foundation Symp 1988;207225.

  • 24

    Mundy GR, Bonewald LF. Role of TGFb in bone remodeling. Ann NY Acad Sci 1990;593:9197.

  • 25

    Krane SM, Goldring MB, Goldring SR. Cytokines. Ciba Foundation Symp 1988;136:239.

  • 26

    Evans CE, Ward C, Braidman IP. Breast carcinomas synthesize factors which influence osteoblast-like cells independently of osteoclasts in vitro (Abstr). J Endocrinol 1991; 128:R5.

    • Search Google Scholar
    • Export Citation
  • 27

    Lacey DL, Timms E, Tan HL. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165176.

    • Search Google Scholar
    • Export Citation
  • 28

    Yasuda H, Shima N, Nakagawa N. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANK ligand. Proc Natl Acad Sci USA 1988;95:35973602.

    • Search Google Scholar
    • Export Citation
  • 29

    Hofbauer LC, Heufelder AE. Osteoprotegerin and its cognate ligand: A new paradigm of osteoclastogenesis. Eur J Endocrinol 1988;139:152154.

    • Search Google Scholar
    • Export Citation
  • 30

    Simonet WS, Lacey DL, Dunstan CR. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997;89:309319.

    • Search Google Scholar
    • Export Citation
  • 31

    Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol 2001;19:35623571.

  • 32

    Mundy GR, Yoneda T, Hiraga T. Zoledronic acid and other bisphosphonates: Impact on the bone microenvironment. Semin Oncol 2001;28:3544.

  • 33

    Kanis JA. Rationale for the use of bisphosphonates in breast cancer. Acta Oncol 1996;35:6167.

  • 34

    Fleisch H. Bisphosphonates: pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone disease (Review). Drugs 1991;42:919944.

    • Search Google Scholar
    • Export Citation
  • 35

    Yoneda T, Michigami T, Yi B. Use of bisphosphonates for the treatment of bone metastasis in experimental animal models. Cancer Treat Rev 1999;25:293299.

    • Search Google Scholar
    • Export Citation
  • 36

    Hughes DE, Wright KR, Uy HL. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995;10:14781487.

    • Search Google Scholar
    • Export Citation
  • 37

    Sasaki A, Boyce BF, Story B. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995;55:35513557.

    • Search Google Scholar
    • Export Citation
  • 38

    Sasaki A, Kitamura K, Alcalde RE. Effect of a newly developed bisphosphonate, YH529, on osteolytic bone metastases in nude mice. Int J Cancer 1998;77:279285.

    • Search Google Scholar
    • Export Citation
  • 39

    Dallas SL, Garrett R, Oyajobi BO. Ibandronate reduces osteolytic lesions but not tumor burden in a murine model of myeloma bone disease. Blood 1999;93:16971706.

    • Search Google Scholar
    • Export Citation
  • 40

    Jagdev SP, Coleman RE, Shipman CM. The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: Evidence for synergy with paclitaxel. Br J Cancer 2001; 84:11261134.

    • Search Google Scholar
    • Export Citation
  • 41

    Fromigue O, Lagneaux L, Body JJ. Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 2000;15: 22112221.

  • 42

    Lee MV, Fong EM, Singer FR. Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 2001;61:26022608.

  • 43

    Boissier S, Ferreras M, Peyruchaud O. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000;60:29492954.

    • Search Google Scholar
    • Export Citation
  • 44

    Gucalp R, Theriault RL, Gill I. Treatment of cancer-associated hypercalcemia. Double-blind comparison of rapid and slow intravenous infusion regimens of pamidronate disodium and saline alone. Arch Int Med 1994;154:19351944.

    • Search Google Scholar
    • Export Citation
  • 45

    Thiebaud D, Jaeger P, Jacquet AF. Dose-response in the treatment of hypercalcemia of malignancy by a single infusion of the bisphosphonate AHPrBP. J Clin Oncol 1988;6:762768.

    • Search Google Scholar
    • Export Citation
  • 46

    Nussbaum SR, Younger J, Vanderpol CJ. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: Comparison of 30-, 60-, and 90-mg doses. Am J Med 1993;95:297304.

    • Search Google Scholar
    • Export Citation
  • 47

    Zysset E, Ammann P, Jenzer A. Comparison of a rapid (2-h) versus a slow (24-h) infusion of alendronate in the treatment of hypercalcemia of malignancy. Bone Miner 1992;18:237249.

    • Search Google Scholar
    • Export Citation
  • 48

    Ralston SH, Gallagher SJ, Patel U. Comparison of three intravenous bisphosphonates in cancer-associated hypercalcemia. Lancet 1989;2:1180.

  • 49

    Ryzen E, Martodam R, Troxell M. Intravenous etidronate in the management of malignant hypercalcemia. Arch Intern Med 1985;145:449452.

  • 50

    Schenk R, Eggli P, Fleisch H. Quantitative morphometric evaluation of the inhibitory activity of new aminobisphosphonates on bone resorption in the rat. Calcif Tissue Int 1986;38:342349.

    • Search Google Scholar
    • Export Citation
  • 51

    Tamanoi F, Kato-Stankiewicz J, Jiang C. Farnesylated proteins and cell cycle progression. J Cell Biochem 2001; 37(Suppl):6470.

  • 52

    Cohen LH, Pieterman E, van Leeuwen RE. Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem Pharmacol 2000;60: 10611068.

    • Search Google Scholar
    • Export Citation
  • 53

    Dunford JE, Thompson K, Coxon FP. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001;296:235242.

    • Search Google Scholar
    • Export Citation
  • 54

    Benford HL, McGowan NW, Helfrich MH. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 2001;28:465473.

    • Search Google Scholar
    • Export Citation
  • 55

    Viereck V, Emons G, Lauck V. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 2002;291:680686.

    • Search Google Scholar
    • Export Citation
  • 56

    Elomaa I, Blomqvist C, Porkka L. Treatment of skeletal disease in breast cancer: A controlled clodronate trial. Bone 1987;8(Suppl):S53S56.

  • 57

    Paterson AHG, Ernst DS, Powles TJ. Treatment of skeletal disease in breast cancer with clodronate. Bone 1991; 12(Suppl):S25S30.

  • 58

    Conte PF, Giannessi PG, Latreille J. Delayed progression of bone metastases with pamidronate therapy in breast cancer patients. Ann Oncol 1994;5(Suppl 7):S41S44.

    • Search Google Scholar
    • Export Citation
  • 59

    van Holten-Verzantvoort A, Bijvoet OLM, Hermans J. Reduced morbidity from skeletal metastases in breast cancer patients during long-term bisphosphonate treatment. Lancet 1987;2:983985.

    • Search Google Scholar
    • Export Citation
  • 60

    Hultborn R, Gundersen S, Ryden S. Efficacy of pamidronate in breast cancer with bone metastases: A randomized double-blind placebo controlled multicenter study. Acta Oncol 1996;35(Suppl 5):7374.

    • Search Google Scholar
    • Export Citation
  • 61

    Hortobagyi GN, Theriault RL, Porter L. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 1996;335: 17851791.

    • Search Google Scholar
    • Export Citation
  • 62

    Theriault RL, Lipton A, Hortobagyi GN. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: A randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999;17:846854.

    • Search Google Scholar
    • Export Citation
  • 63

    Lipton A, Theriault RL, Hortobagyi GN. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: Long term follow-up of two randomized, placebo-controlled trials. Cancer 2000;88:10821090.

    • Search Google Scholar
    • Export Citation
  • 64

    Carlson RW, Anderson BO, Bensinger W. Update: NCCN Practice Guidelines for the Treatment of Breast Cancer. Oncology (Huntingt) 1999;13:187212.

    • Search Google Scholar
    • Export Citation
  • 65

    Green JR. Chemical and biological prerequisites for novel bisphosphonate molecules: Results of comparative preclinical studies (Review). Semin Oncol 2001;48:410.

    • Search Google Scholar
    • Export Citation
  • 66

    Coxon FP, Helfrich MP, van't Hof R. Protein geranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res 2000;15:14671476.

    • Search Google Scholar
    • Export Citation
  • 67

    Senaratne SG, Mansi JL, Colston KW. The bisphosphonate zoledronic acid impairs membrane localisation and induces cytochrome release in breast cancer cells. Br J Cancer 2002;86:14791486.

    • Search Google Scholar
    • Export Citation
  • 68

    Green JR, Muller K, Jaeggi KA. Preclinical pharmacology of CGP 42′446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 1994;9:745751.

    • Search Google Scholar
    • Export Citation
  • 69

    Evans CE, Braidman IP. Effects of two novel bisphosphonates on bone cells in vitro. Bone Miner 1994;26:95107.

  • 70

    Derenne S, Amiot M, Barille S. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J Bone Miner Res 1999;14:20482056.

    • Search Google Scholar
    • Export Citation
  • 71

    Marion G, Serre CM, Trzeciak MC. Bisphosphonates inhibit the platelet-aggregating activity of tumor cells, a process involved during hematogenous dissemination of metastatic cells (Abstr. T330). Bone 1998;23(Suppl 1):S279.

    • Search Google Scholar
    • Export Citation
  • 72

    Boissier S, Magnetto S, Delmas PD. Bisphosphonates inhibit prostate and breast carcinoma cell invasion, but not tumor cell migration, through a mechanism independent of apoptosis induction (Abstr. #SA128). Bone 1998;23(Suppl 7):S558.

    • Search Google Scholar
    • Export Citation
  • 73

    Berenson JR, Rosen LS, Howell A. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 2001;91:11911200.

    • Search Google Scholar
    • Export Citation
  • 74

    Rosen LS, Gordon D, Antonio BS. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: A phase III, double-blind, comparative trial. Cancer J 2001;7:377387.

    • Search Google Scholar
    • Export Citation
  • 75

    Rosen L, Gordon D, Dugan W. Zoledronic acid (4 mg) is more effective than pamidronate (90 mg) for treating bone metastases in breast cancer patients with at least 1 osteolytic lesion (Abstr. #629). Eur Soc Med Oncol Congr 2002; 18:22.

    • Search Google Scholar
    • Export Citation
  • 76

    Diel IJ, Solomayer EF, Costa SD. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998;6:357363.

    • Search Google Scholar
    • Export Citation
  • 77

    Diel IJ, Solomayer E, Gollan C. Bisphosphonates in the reduction of metastases in breast cancer – Results of the extended follow-up of the first study population (Abstr. #314). Proc Am Soc Clin Oncol 2000;19:82a.

    • Search Google Scholar
    • Export Citation
  • 78

    Powles TJ, Paterson AHG, Nevantaus A. Adjuvant clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer (Abstr. #468). Proc Am Soc Clin Oncol 1998;17:123a.

    • Search Google Scholar
    • Export Citation
  • 79

    Powles T, Paterson S, Kanis JA. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 2002;20:32193224.

    • Search Google Scholar
    • Export Citation
  • 80

    Saarto T, Blomqvist C, Virkkunen P. No reduction of bone metastases with adjuvant clodronate treatment in node-positive breast cancer patients (Abstr. #489). Proc Am Soc Clin Oncol 1999;18:128a.

    • Search Google Scholar
    • Export Citation
  • 81

    Saarto T, Blomqvist C, Virkkunen P. Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 2001;19:1017.

    • Search Google Scholar
    • Export Citation
  • 82

    Major PP, Lipton A, Berenson J. Oral bisphosphonates: A review of clinical use in patients with bone metastases. Cancer 2000;88:614.

  • 83

    Pavlakis N, Stockler M. Bisphosphonates for breast cancer. Cochrane Database Syst Rev 2002;4.

  • 84

    DesHarnais CL, Bajwa K, Markle JP. A microcosting analysis of zoledronic acid and pamidronate therapy in patients with metastatic bone disease. Support Care Cancer 2001;7:545551.

    • Search Google Scholar
    • Export Citation
  • 85

    Hillner BE, Weeks JC, Desch CE. Pamidronate in prevention of bone complications in metastatic breast cancer: A cost-effectiveness analysis. J Clin Oncol 2000;18:7279.

    • Search Google Scholar
    • Export Citation
  • 86

    Saad F, Gleason DM, Murray R. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:14581468.

    • Search Google Scholar
    • Export Citation
  • 87

    Sackett DL: Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 1989; 95(Suppl):2S4S.

  • 88

    Cook DL, Guyatt GH, Laupacis A. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 1992;102(Suppl):305S311S.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 131 1
PDF Downloads 19 16 1
EPUB Downloads 0 0 0