NCCN Guidelines® Insights

Central Nervous System Cancers, Version 1.2015

Featured Updates to the NCCN Guidelines

Louis Burt Nabors, MD1,*; Jana Portnow, MD2,*; Mario Ammirati, MD, MBA3; Joachim Baehring, MD4; Henry Brem, MD5; Paul Brown, MD6; Nicholas Butowski, MD7; Marc C. Chamberlain, MD7; Robert A. Fenstermaker, MD8; Allan Friedman, MD9; Mark R. Gilbert, MD9; Jona Hattangadi- glut, MD10; Matthias Holdhoff, MD, PhD11; Larry Junck, MD12; Thomas Kaley, MD13; Ronald Lawson, MD14; Jay S. Loeffler, MD15; Mary P. Lovely, PhD, RN16; Paul L. Moots, MD17; Maciej M. Mrugala, MD, PhD, MPH18; Herbert B. Newton, MD19; Ian Parney, MD, PhD20; Jeffrey J. Raizer, MD21; Lawrence Recht, MD22; Nicole Shonka, MD23; Dennis C. Shrieve, MD, PhD24; Allen K. Sills Jr, MD25; Lode J. Swinnen, MB, ChB26; David Tran, MD, PhD27; Nam Tran, MD, PhD28; Frank D. Vrionis, MD, MPH, PhD29; Stephanie Weiss, MD30; Patrick Yung Wen, MD31; Nicole McMillian, MS32,*; and Anita M. Engh, PhD33,*

Abstract

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Central Nervous System (CNS) Cancers provide interdisciplinary recommendations for managing adult CNS cancers. Primary and metastatic brain tumors are a heterogeneous group of neoplasms with varied outcomes and management strategies. These NCCN Guidelines Insights summarize the NCCN CNS Cancers Panel’s discussion and highlight notable changes in the 2015 update. This article outlines the data and provides insight into panel decisions regarding adjuvant radiation and chemotherapy treatment options for high-risk newly diagnosed low-grade gliomas and glioblastomas. Additionally, it describes the panel’s assessment of new data and the ongoing debate regarding the use of alternating electric field therapy for high-grade gliomas. (J Natl Compr Canc Netw 2015;13:1191–1202)

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. The NCCN Guidelines® Insights highlight important changes to the NCCN Guidelines® recommendations from previous versions. Colored markings in the algorithm show changes and the discussion aims to further the understanding of these changes by summarizing salient portions of the NCCN Guideline Panel discussion, including the literature reviewed.

These NCCN Guidelines Insights do not represent the full NCCN Guidelines; further, the National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding the content, use, or application of the NCCN Guidelines and NCCN Guidelines Insights and disclaims any responsibility for their applications or use in any way.

The full and most current version of these NCCN Guidelines are available at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2015, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

*Provided content development and/or authorship assistance.
Central Nervous System Cancers, Version 1.2015

NCCN: Continuing Education

Accreditation Statement
This activity is designed to meet the educational needs of physicians, nurses, and pharmacists involved in the management of patients with cancer. There is no fee for this article. The National Comprehensive Cancer Network (NCCN) is accredited by the ACCME to provide continuing medical education for physicians. NCCN designates this journal-based CE activity for a maximum of 1.0 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

NCCN is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

NCCN designates this educational activity for a maximum of 1.0 contact hour. Accreditation as a provider refers to recognition of educational activities only; accredited status does not imply endorsement by NCCN or ANCC of any commercial products discussed/displayed in conjunction with the educational activity. Kristina M. Gregory, RN, MSN, OCN, is our nurse planner for this educational activity.

Disclosure of Relevant Financial Relationships

Editor:
Kerrin M. Green, MA, Assistant Managing Editor, JNCCN—Journal of the National Comprehensive Cancer Network. Ms. Green has disclosed that she has no relevant financial relationships.

CE Planners:
Deborah J. Moonan, RN, BSN, Director, Continuing Education
Ms. Moonan has disclosed that she has no relevant financial relationships.
Ann Gianola, MA, Senior Manager, Continuing Education Accreditation and Program Operations
Ms. Gianola has disclosed that she has no relevant financial relationships.
Kristina M. Gregory, RN, MSN, OCN, Vice President, Clinical Information Operations
Ms. Gregory has disclosed that she has no relevant financial relationships.
Rashmi Kumar, PhD, Senior Manager, Clinical Content, NCCN
Dr. Kumar has disclosed that she has no relevant financial relationships.

Individuals Who Provided Content Development and/or Authorship Assistance:
Louis B. Nabors, MD, Panel Chair, has disclosed that he serves as a scientific advisor for Cavion and receives other financial benefit from Boehringer Ingelheim GmbH.
Jana Portnow, MD, Panel Vice Chair, has disclosed that she receives grant/research support from Eisai Inc.
Nicole R. McMillian, MS, Guidelines Coordinator, NCCN, has disclosed that she has no relevant financial relationships.
Anita M. Engh, PhD, Oncology Scientist/Medical Writer, NCCN, has disclosed that she has no relevant financial relationships.

Supported by an educational grant from Eisai; a contribution from Exelixis Inc.; educational grants from Bristol-Myers Squibb, Genentech BioOncology, Merck, Novartis Oncology, Novocure; and by an independent educational grant from Boehringer Ingelheim Pharmaceuticals, Inc.

Learning Objectives:
Upon completion of this activity, participants will be able to:
• Integrate into professional practice the updates to the NCCN Guidelines for Central Nervous System Cancers
• Describe the rationale behind the decision-making process for developing the NCCN Guidelines for Central Nervous System Cancers
Central Nervous System Cancers, Version 1.2015

Overview

In 2015, an estimated 22,850 people in the United States will be diagnosed with primary malignant brain or other central nervous system (CNS) neoplasms, and these tumors will be responsible for approximately 15,320 deaths. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for CNS Cancers focus on management of adult CNS cancers: anaplastic gliomas and glioblastoma, low-grade infiltrative astrocytomas, oligodendrogliomas, ependymomas, brain metastases, leptomeningeal metastases, non–AIDS-related primary CNS lymphomas (PCNSLs), metastatic spinal tumors, meningiomas, primary spinal cord tumors, and primitive neuroectodermal tumors. These NCCN Guidelines Insights focus on changes to the recommendations for treatment of gliomas based on new data, including changes to the chemotherapy, radiation therapy (RT), and chemoradiation regimens recommended for postoperative adjuvant treatment.

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Clinical trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

ASTR-1

Adult Low-Grade Infiltrative Supratentorial Astrocytoma/Oligodendroglioma (Excluding Pilocytic Astrocytoma)

- **RADIOLOGIC PRESENTATION**
- **CLINICAL IMPRESSION**
- **SURGERY**
- **ADJUVANT TREATMENT**
- **FOLLOW-UP**

<table>
<thead>
<tr>
<th>MRI compatible with primary brain tumor</th>
<th>Maximal safe resection feasible</th>
<th>Maximal safe resection not feasible</th>
<th>Subtotal resection or open biopsy</th>
<th>Low risk</th>
<th>Fractionated external beam RT or Chemotherapy (category 2B)</th>
<th>MRI every 3–6 mo for 5 y then at least annually</th>
<th>See Recurrence (ASTR-2)</th>
</tr>
</thead>
</table>

- **M**MRI compatible with primary brain tumor
- **S**Maximal safe resection feasible
- **A**Maximal safe resection not feasible
- **O**Subtotal resection or open biopsy
- **C**Low risk

- **a**See Principles of Brain Tumor Imaging (BRAIN-A).
- **b**Consider a multidisciplinary review in treatment planning, especially once pathology is available (See Principles of Brain Tumor Management [BRAIN-E]).
- **c**Surgery is generally recommended, but serial observations are appropriate for selected patients.
- **d**See Principles of Brain Tumor Surgery (BRAIN-B).
- **e**Consider testing for deletions in 1p19q if tumor has components of oligodendroglioma for prognostic purposes.
- **f**Postoperative MRI should be done within 72 hours after surgery.
- **g**See Principles of Brain Tumor Surgery (BRAIN-B).
- **h**Consider testing for deletions in 1p19q if tumor has components of oligodendroglioma for prognostic purposes.
- **i**Postoperative MRI should be done within 72 hours after surgery.
- **j**Low-risk features: ≤40 y and gross total resection (GTR) oligodendroglioma or mixed oligoastrocytoma, KPS ≥70, tumor dimension <6 cm, minor or no neurological deficit, 1p and 19q codeleted, IDH1 or 2 mutated.
- **k**See Principles of Brain Tumor Surgery (BRAIN-B).
- **l**Oligodendrogliomas, particularly those that have chromosomal loss of combined 1p19q, have been reported to be sensitive to alkylator chemotherapy. Consider chemotherapy for these patients.
- **m**See Principles of Brain and Spinal Cord Tumor Systemic Therapy (BRAIN-D).

- **RT + adjuvant PCV chemotherapy (category 1)
- **RT + adjuvant temozolomide (category 2B)
- **RT + concurrent and adjuvant temozolomide (category 2B)**

- **Overview**

- **ADJUVANT TREATMENT**
- **FOLLOW-UP**

- **O**Observation
- **C**Maximal safe resection
- **S**Subtotal resection
- **O**Open biopsy
- **R**RT

- **H**High-risk features: >40 y or subtotal resection (STR). 3 or more of: Astrocytoma, Age ≥40 y, KPS <70, tumor dimension ≥6 cm, tumor crossing midline, preoperative neurological deficit of more than minor degree. One or no deletions on 1p and 19q, IDH1 or 2 not mutated, increased perfusion on imaging are also adverse factors that may be considered.

- **Regular follow-up is essential for patients receiving observation alone after resection. If GTR is achieved, consider further observation.**

- **Regular follow-up is essential for patients receiving observation alone after resection.**

- **See Principles of Brain Tumor Radiation Therapy (BRAIN-C).**

- **Oligodendrogliomas, particularly those that have chromosomal loss of combined 1p19q, have been reported to be sensitive to alkylator chemotherapy. Consider chemotherapy for these patients.**
of newly diagnosed high-risk low-grade gliomas (see ASTR-1, page 1193) and glioblastomas (see GLIO-3, this page). This article also summarizes the panel’s assessment and discussion of the clinical data on alternating electric field therapy for newly diagnosed and recurrent glioblastoma.

New Adjuvant Treatment Options for High-Risk Low-Grade Gliomas

Whereas noninfiltrative astrocytomas, usually pilocytic astrocytomas (WHO grade I), are typically noninvasive and curable by surgery alone, diffuse astrocytomas are poorly circumscribed and invasive, and most gradually evolve into high-grade astrocytomas.\(^5\) Diffusely infiltrative low-grade gliomas include astrocytomas, oligodendrogliomas, and mixed oligoastrocytomas; they are a diverse group classified as grade II under the WHO grading system\(^4\) that make up approximately 10% of newly diagnosed primary brain tumors.\(^5\) The aggressiveness of these tumors varies by subtype, and patients with grade II oligodendrogliomas have a much better 5-year survival rate (70%) than those with mixed gliomas (56%) and astrocytomas (37%).\(^5\) Other factors prognostic for progression-free survival (PFS) or overall survival (OS) in patients with grade II gliomas include age, tumor diameter, tumor crossing midline, neurologic or performance status prior to surgery, and the presence of certain molecular markers, such as a 1p19q codeletion in oligodendrogliomas and the presence of an isocitrate dehydrogenase (IDH) 1 or 2 mutation in grade II astrocytomas.\(^6\)–\(^15\)

For supratentorial WHO grade II gliomas, the NCCN Guidelines recommend that primary treatment aim to achieve as complete an excision as possible (based on postsurgical MRI verification) without compromising function. Multivariate analysis from a number of studies in patients with primary low-grade gliomas show that extent of resection is a significant

GLIO-3

\(^{a}\)This pathway includes the classification of mixed anaplastic oligoastrocytoma (AOA), anaplastic astrocytoma (AA), anaplastic oligodenroglioma (AO), and other rare anaplastic gliomas.
\(^{b}\)See Principles of Brain Tumor Imaging (BRAIN-A).
\(^{c}\)This pathway also includes gliosarcomas.
\(^{d}\)See Principles of Brain Tumor Radiation Therapy (BRAIN-C).
\(^{e}\)See Principles of Brain and Spinal Cord Tumor Systemic Therapy (BRAIN-D).
\(^{f}\)Treatment with carmustine wafer, reirradiation, or multiple prior systemic therapies may impact enrollment in some adjuvant clinical trials.
\(^{g}\)Combination of agents may lead to increased toxicity or radiographic changes.
\(^{h}\)Benefit of treatment with temozolomide for glioblastomas beyond 6 months is unknown. The optimal duration of treatment with temozolomide for anaplastic astrocytoma is unknown.
\(^{i}\)Temozolomide is recommended if tumor is methylguanine methyl-transferase (MGMT) promoter methylated.

ANAPLASTIC GLIOBLASTOMA

ADJUVANT TREATMENT

- **Standard focal brain RT\(^2\)** + concurrent and adjuvant temozolomide (category 1)\(^2,\)\(^a,\)\(^b\)
- **Standard or hypofractionated focal brain RT\(^1\)** or temozolomide\(^d\)
- **Palliative/Best supportive care**

FOLLOW-UP

- **MRI 2–6 wk after RT, then every 2–4 mo for 2–3 y, then less frequently**
- **See Recurrence (GLIO-4)**
prognostic factor for PFS and/or OS. Patients who undergo a subtotal resection, open biopsy, or stereotactic biopsy are therefore considered to be at higher risk for progression (see ASTR-1, page 1193).

Adjuvant RT after resection is supported by data from several retrospective studies comparing outcomes in patients with newly diagnosed low-grade gliomas who after surgery received no adjuvant treatment versus RT. The recommended dosing for postoperative RT is based on results from 2 phase III randomized trials showing that higher dose RT had no significant effect on OS or time to progression and several retrospective analyses showing similar results. Because higher doses offer no clear advantages, the NCCN CNS Cancers Panel recommends low-dose RT (45–54 Gy) for treatment of low-grade gliomas (grades I/II), including high-risk cases (see ASTR-1, page 1193). The timing of postoperative RT was tested in a phase III multicenter study (EORTC 22845) that showed improved PFS and greater reduction in seizure frequency in patients who received RT soon after surgery versus at time of disease progression. Early versus late postoperative RT did not significantly affect OS, however, suggesting that observation is a reasonable option for some patients with newly diagnosed gliomas. Results of EORTC 22845 were corroborated by several other analyses. The positive effect of RT on seizure control was confirmed in a retrospective study in patients with low-grade gliomas and medically intractable epilepsy. A large meta-analysis, including data from 4 phase III trials (EORTC 22844 and 22845, RTOG 9802, and NCCTG 86-72-51), confirmed that surgery followed by RT significantly improves PFS but not OS. A retrospective study (N=95) showed that administering RT within 3 months of surgery versus delaying RT until progression improved PFS but not OS. Although no consensus exists on the optimal timing of postoperative RT for low-grade gliomas in young healthy patients, the panel recom-
Combination chemotherapy with procarbazine, lomustine, and vincristine (PCV) has been used in the adjuvant setting for patients with newly diagnosed low-grade gliomas based on small retrospective and phase II studies showing positive outcomes in patients who had partial resection or biopsy.28-30 These data showing clinical activity of PCV as adjuvant therapy for newly diagnosed low-grade gliomas prompted a multicenter phase III randomized clinical trial, RTOG 9802, which assessed the efficacy of adjuvant RT versus RT followed by 6 cycles of PCV in patients with newly diagnosed supratentorial WHO grade II gliomas and at least 1 of 2 risk factors for disease progression: subtotal resection or age of 40 years or older.25 For randomization, patients were stratified by age, tumor histologic subtype, Karnofsky performance status (KPS), and presence of enhancement on preoperative MRI. Although the interim analysis (median follow-up, 5.9 years) showed that addition of PCV significantly improved PFS but not OS,25 results from long-term follow-up (median, 11.9 years) showed significant improvements in both PFS and OS.31,32 With the addition of PCV, median survival time increased from 7.8 to 13.3 years (P=.02), and the 10-year survival rate increased from 41\% to 62\%. Based on these results, the NCCN CNS Cancers Panel voted to include RT plus adjuvant PCV chemotherapy as a category 1 recommendation for adjuvant treatment of patients with newly diagnosed low-grade gliomas at high risk for recurrence as per the trial criteria: patients older than 40 years or of any age with residual disease after surgery (subtotal resection, open biopsy, stereotactic (see ASTR-1, page 1193). It is important to note, however, that roughly three-quarters of the study patients had a KPS of 90 to 100, and the median age was approximately 40 years.25 Given that the addition of PCV to adjuvant RT significantly increased the percent of patients who experienced grade 3 or 4 adverse events,25 the risk versus benefit of adjuvant PCV has yet to be determined for patients who are elderly or infirm. Furthermore, whether PCV is appropriate for all patients with high-risk low-grade glioma is not yet clear. For example, for patients with astrocytoma, the benefit provided by PCV (vs observation) was diminished relative to those with other tumor subtypes, such as oligodendroglioma or oligoastrocytoma. Significant improvement was observed for PFS but not OS in the patients with astrocytoma.32

Use of temozolomide as adjuvant monotherapy for newly diagnosed low-grade gliomas after surgery is supported by results from noncomparative studies showing objective responses and reduced seizure frequency.33-37 One retrospective comparative study showed that for patients with low-grade gliomas and new-onset seizures at presentation, adjuvant temozolomide monotherapy provided significant reduction in seizure frequency in significantly more patients compared with observation after surgery or biopsy.38 Preliminary results from a large multicenter phase III randomized trial (EORTC 22033-26033, N=477) show that PFS is not significantly different for adjuvant RT versus dose-dense temozolomide in patients with resected or biopsied supratentorial grade II glioma and more than 1 risk factor: age of 40 years or older; progressive, new, or worsening neurologic symptoms; and intractable seizures.39 Combined treatment with RT plus temozolomide is supported by a phase II multicenter trial (RTOG 0424) in patients with supratentorial WHO grade II tumors and at least 3 risk factors (age ≥40 years, astrocytoma, bihemispheric, tumor diameter ≥6 cm, neurologic function status >1).40 Patients treated with concurrent and adjuvant temozolomide had OS rates at 3 and 5 years of 73.1\% and 57.1\%, respectively, which are positive results when compared with survival estimates for patients with similar risk factors treated with postoperative RT alone in previous trials (EORTC trials 22844 and 22845, and North American Intergroup trial 86-72-51).6,7,26 However, because the historical controls included patients treated in an earlier period using different RT protocols, prospective controlled trials are needed to confirm the positive effect of adding temozolomide to adjuvant RT for the treatment of low-grade gliomas. Because panel consensus was nonuniform regarding the inclusion of RT with adjuvant temozolomide and RT with concurrent and adjuvant temozolomide, these options were included as category 2B recommendations for adjuvant treatment of patients with high-risk newly diagnosed low-grade gliomas (see ASTR-1, page 1193).

Based on the strength of the RTOG 9802 results, the panel agreed with adding RT with chemotherapy as a treatment option for patients with recurrent or
therapy) versus RT. Results from this and other ran-
som studies in patients with no prior RT showing that
temozolomide or PCV provide clinical responses (ra-
diologic) and reduction in seizures or other neurologic
symptoms. In addition, as mentioned earlier, the
EORTC 22033-26033 phase III trial included patients
with progressive low-grade gliomas, and initial results
suggest similar PFS for adjuvant temozolomide (mono-
therapy) versus RT. Results from this and other ran-
domized trials are needed to better inform treatment of
recurrent/progressive low-grade gliomas.

Adjuvant Therapy for Glioblastomas
Glioblastomas (grade IV astrocytomas) are the most
common primary malignant brain tumors in adults, ac-
counting for 54.7% of all gliomas. Glioblastomas are
the most aggressive brain tumor, with fewer than 50%
of patients surviving for 1 year, and only 5% living be-
yond 5 years. For first-line treatment of glioblasto-
mas, the NCCN Guidelines recommend maximal safe
resection with or without placement of a carmustine
(BCNU) wafer. If gross total resection is not feasible,
then subtotal resection or stereotactic/open biopsy are
options. After surgical intervention, the choice of ad-
juvant therapy for glioblastoma depends on a patient’s
age and performance status. To improve readabil-
ity, the panel reorganized the algorithm, providing
recommendations for adjuvant treatment of newly
diagnosed glioblastomas (see GLIO-3, page 1194).
Table 1 shows the recommended adjuvant treatment
options from the 2014 and 2015 NCCN Guidelines
for specific subgroups of patients based on age and per-
formance score. These recommendations are primar-
ily based on results from large randomized trials (Table
2). The notable changes include (1) removing stan-
dard RT as a treatment option for elderly patients (age
>70 years) with poor performance status (KPS ≤60),
and (2) adding hypofractionated RT with concurrent
and adjuvant temozolomide for elderly patients who
have a good performance status.

Hypofractionated Radiation Therapy for Elderly
Patients With a Poor Performance Status
Fractionated RT as adjuvant therapy for high-grade
gliomas is based on several randomized trials showing
improved survival compared with supportive care or
BCNU alone. Two randomized trials and a large
retrospective analysis have shown that, in elderly pa-
tients (age >60 years), adjuvant therapy with hypo-
fractionated RT (34-40 Gy in 10–15 fractions over
2–3 weeks) has similar or better efficacy compared
with standard RT (60 Gy in 30–33 fractions over 6–7
weeks; Table 2). The Nordic Clinical Brain Tu-
mor Study Group (NCBTSG) phase III multicenter
randomized trial also showed that, for patients aged
60 to 70 years, there was no significant difference in
survival between standard versus hypofractionated
RT, but patients older than 70 years had better me-
dian survival with hypofractionated versus standard
RT (Table 2). In the NCBTSG trial, hypofraction-
ated RT was better tolerated than standard RT, and
more patients were able to complete their full RT
course. For elderly patients (age >70 years) with glio-
blastoma who opt for adjuvant treatment with RT
alone, these findings support the recommendation
to use hypofractionated RT rather than standard RT.

Hypofractionated Radiation Therapy With
Concurrent and Adjuvant Temozolomide for
Elderly Patients With a Good Performance Status
Standard RT with concurrent and adjuvant temozolo-
mide is the standard of care for adjuvant treatment
of newly diagnosed glioblastoma in patients who are
younger and have a good performance status, based
on the EORTC 26981-22981/NCIC CE3 multicenter
international phase III randomized controlled trial
showing significantly improved PFS and OS compared
with RT alone (Table 2). The use of this regimen
in patients who are elderly or frail has been debated
because this landmark clinical trial did not include
patients older than 70 years and was not adequately
powered to assess treatment effects in the subset of pa-
tients aged 60 to 70 years. For patients older than 70
years but with good performance, some evidence from
small single-center studies suggests the usefulness
of temozolomide in addition to adjuvant RT.

Building on the findings that hypofractionated
RT (monotherapy) has similar or better efficacy and
safety compared with standard RT (monotherapy)
for adjuvant treatment of glioblastoma in the elder-
ly, a number of noncomparative studies have reported

© JNCCN—Journal of the National Comprehensive Cancer Network | Volume 13 Number 10 | October 2015
positive results from patients treated with hypofractionated RT plus concurrent and adjuvant temozolomide. These studies have shown median OS ranging from 15 to 20 months for adult populations with good performance status and broad age range,59–66 and median OS of 12.4 to 14.4 months for studies in patients who were elderly or had other risk factors.67–69 A large retrospective analysis of elderly patients treated with RT plus concurrent and adjuvant temozolomide found no significant differences in OS and PFS with standard versus hypofractionated RT (Table 2).50 This finding was confirmed by analysis of 90 propensity-score matched pairs and by stratified analyses of prognostic factors. However, standard RT therapy was associated with increased rates of failure to complete the course of RT, grade 2/3 neurologic toxicities, decline in KPS scores during treatment, and corticosteroid dose increase during or soon after their RT course (Table 2). Patients included in this retrospective analysis had a KPS of 60 or greater, so these findings support the use of hypofractionated RT with concurrent and adjuvant temozolomide as a reasonable adjuvant treatment option for elderly patients with a good performance status.

Alternating Electric Field Therapy

Alternating electric field therapy for treatment of high-grade gliomas is a topic of ongoing debate as evidence continues to emerge. In 2011, the FDA approved a portable medical device that generates low-intensity alternating electric fields, termed \textit{tumor treating fields} (TTF), for the treatment of recurrent glioblastoma. Approval was based on the results of a clinical trial (EF-11) that randomized 237 patients with recurrent glioblastoma to either TTF or the treating oncologist’s choice of chemotherapy.70 Although similar survival was observed in the 2 arms, TTF therapy was associated with lower toxicity and improved quality of life. This study was not blinded, however, and therefore quality-of-life assessments may have been compromised. A recent development in this area includes the publication of an analysis of the Patient Registry Dataset (PRiDe) reporting real-world outcomes for 457 patients who received TTF for recurrent glioblastoma.71 Although OS with TTF was significantly higher in the PRiDe data set analysis than in the EF-11 phase III trial,71 patients in the former may have received concomitant therapy that could account for the improvement in survival. Other recent developments that were discussed among the panel members were abstract presentations of EF-14,72,73 a phase III trial in patients with newly diagnosed glioblastoma (n=700) that showed an improvement in median PFS and OS in patients treated after radiation and concurrent temozolomide with temozolomide plus TTF versus adjuvant temozolomide monotherapy (PFS, 7.1 vs 4.2 months; \(P=.0010\); OS, 19.4 vs 16.6 months; \(P=.0222\)).71
Central Nervous System Cancers, Version 1.2015

Table 2 Key Trials in Adjuvant Care for Newly Diagnosed Glioblastoma*

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients Analyzed</th>
<th>Adjuvant Treatments and Median Follow-up</th>
<th>Efficacy Results</th>
<th>Safety/HRQoL Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective, randomized, multicenter, Canadian Roa et al., 2004</td>
<td>N=95 Age ≥60 y KPS ≥50</td>
<td>• Standard RT* (n=47) • HypoRT* (n=48) Stratification: biopsy vs resection, KPS <70 vs ≥70 Follow-up: until all dead</td>
<td>Failed to complete RT: 26% vs 10% No effect on survival*: • Median 5.1 vs 5.6 mo (P=.57) • 6-mo: 44.7% vs 41.7% • Similar results when stratified by extent resection</td>
<td>• KPS scores: effect of treatment NS difference between arms • Required corticosteroid dose increase (n=78 completed treatment): 49% vs 23% (P=.02)</td>
</tr>
<tr>
<td>EORTC 26981-22981/NCIC CE3 Phase III, randomized, multicenter, international ClinicalTrials.gov identifier: NCT00006353 Stupp et al., 2009</td>
<td>N=573 Age 18–70 y WHO PS 0–2</td>
<td>• Standard RT* (n=286) • Standard RT* + concurrent and adjuvant TMZ (n=287) Stratification: WHO PS, surgery type, institution Follow-up: 69 mo (11 d–79 mo)</td>
<td>TMZ improves OS: • Median 12.1 vs 14.6 mo • P<.0001 throughout follow-up • TMZ improved OS for both MGMT promoter methylated (P=.004) and unmethylated (P=.035) TMZ improves PFS: P<.0001</td>
<td>• HRQoL maintained in both arms • Toxicity low and HRQoL maintained in both arms • Late (>9 mo after RT completion) grade 3–4 AEs: 1 (fatigue) vs 2 (visual deficit, seizures)</td>
</tr>
<tr>
<td>NCBTSG Phase III, randomized, open-label, multicenter, international ClinicalTrials.gov identifier: NCT01502241 Malmstrom et al., 2011</td>
<td>N=342 Age ≥60 y WHO PS 0–2*</td>
<td>3-group randomization: • TMZ (n=93) • HypoRT* (n=96) • Standard RT* (N=100) 2-group randomization: • TMZ (n=26) • HypoRT* (n=25) Stratification: institution*</td>
<td>Completed RT: 95% vs 72% EFS: • Age 60–70 y: Ns for all treatment comparisons • Age >70 y: Standard RT vs TMZ: 5.2 vs 9.0 mo (P<.0001) Standard RT vs HypoRT: 5.2 vs 7.0 (P=.02) TMZ vs HypoRT: NS</td>
<td>• TMZ vs either RT arm: more nausea, vomiting, infection/fever, hematologic AEs • Standard RT vs HypoRT: more infection fever, intracranial hemorrhage, seizures, nausea, vomiting; fewer thromboembolic events, bleeding</td>
</tr>
<tr>
<td>NOA-08a Phase III, randomized, multicenter, Germany and Switzerland ClinicalTrials.gov identifier: NCT01502241 Wick et al., 2012</td>
<td>N=373 Age ≥65 y KPS ≥60</td>
<td>• RT* (n=178) • TMZ (n=195) Follow-up: 25.2 mo, minimum 12 mo</td>
<td>Survival: • Median 9.6 vs 8.6 mo • 1-y rate: 37.4% vs 34.4% • TMZ noninferior to RT EFS: • Median 4.7 vs 3.3 mo • 1-y rate: 12.0% vs 9.3% • TMZ noninferior to RT For MGMT methylation positive, TMZ significantly better than RT; for unmethylated, RT is significantly better</td>
<td>• Grade 2–3 neurologic toxicities: 40% vs 14% (P=.01) • KPS score worsened: 44% vs 23% (P=.01) • Corticosteroid dose increased (>4 mg during and/or early after RT): 48% vs 32% (P=.02)</td>
</tr>
<tr>
<td>Retrospective, multicenter, Italy Minniti et al., 2015</td>
<td>N=243 Age ≥65 y KPS ≥60</td>
<td>Concomitant and adjuvant TMZ + • Standard RT* (n=127) • HypoRT* (n=116) Follow-up: 24.0, 22.5 mo</td>
<td>Failed to complete RT: course: 8.3% vs 1.7% OS median: 12 vs 12.5 mo (NS) PFS median: 5.6 vs 6.7 mo (NS)</td>
<td>• More frequent with TMZ in all categories except cutaneous AEs</td>
</tr>
</tbody>
</table>

Abbreviations: AC, astrocytoma; AE, adverse events; EORTC, European Organization for Research and Treatment of Cancer; GBM, glioblastoma; HRQoL, health-related quality of life; hypoRT, hypofractionated radiotherapy; KPS, Karnofsky performance status; NCBTSG, Nordic Clinical Brain Tumor Study Group; NCIC, National Cancer Institute of Canada; NOA, Neuro-oncology Working Group of the German Cancer Society; NS, nonsignificant; OS, overall survival; PFS, progression-free survival; PS, performance status; RT, radiotherapy; STR, subtotal resection; TMZ, temozolomide.

*Patients included in these trials were newly diagnosed with glioblastoma, defined as WHO grade IV astrocytoma, except for 11% of the patients in the NOA-08 trial with anaplastic astrocytoma. All patients received resection or biopsy before adjuvant therapy.

*Standard RT: 60 Gy; 30 fractions, 5 d/wk, 6 wk.

**HypoRT: 40 Gy; 15 fractions.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients Analyzed</th>
<th>Adjuvant Treatments and Median Follow-up</th>
<th>Efficacy Results</th>
<th>Safety/HRQoL Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective, randomized, multicenter, Canadian Roa et al., 2004</td>
<td>N=95 Age ≥60 y KPS ≥50</td>
<td>• Standard RT* (n=47) • HypoRT* (n=48) Stratification: biopsy vs resection, KPS <70 vs ≥70 Follow-up: until all dead</td>
<td>Failed to complete RT: 26% vs 10% No effect on survival*: • Median 5.1 vs 5.6 mo (P=.57) • 6-mo: 44.7% vs 41.7% • Similar results when stratified by extent resection</td>
<td>• KPS scores: effect of treatment NS difference between arms • Required corticosteroid dose increase (n=78 completed treatment): 49% vs 23% (P=.02)</td>
</tr>
<tr>
<td>EORTC 26981-22981/NCIC CE3 Phase III, randomized, multicenter, international ClinicalTrials.gov identifier: NCT00006353 Stupp et al., 2009</td>
<td>N=573 Age 18–70 y WHO PS 0–2</td>
<td>• Standard RT* (n=286) • Standard RT* + concurrent and adjuvant TMZ (n=287) Stratification: WHO PS, surgery type, institution Follow-up: 69 mo (11 d–79 mo)</td>
<td>TMZ improves OS: • Median 12.1 vs 14.6 mo • P<.0001 throughout follow-up • TMZ improved OS for both MGMT promoter methylated (P=.004) and unmethylated (P=.035) TMZ improves PFS: P<.0001</td>
<td>• HRQoL maintained in both arms • Toxicity low and HRQoL maintained in both arms • Late (>9 mo after RT completion) grade 3–4 AEs: 1 (fatigue) vs 2 (visual deficit, seizures)</td>
</tr>
<tr>
<td>NCBTSG Phase III, randomized, open-label, multicenter, international ClinicalTrials.gov identifier: NCT01502241 Malmstrom et al., 2011</td>
<td>N=342 Age ≥60 y WHO PS 0–2*</td>
<td>3-group randomization: • TMZ (n=93) • HypoRT* (n=96) • Standard RT* (N=100) 2-group randomization: • TMZ (n=26) • HypoRT* (n=25) Stratification: institution*</td>
<td>Completed RT: 95% vs 72% EFS: • Age 60–70 y: Ns for all treatment comparisons • Age >70 y: Standard RT vs TMZ: 5.2 vs 9.0 mo (P<.0001) Standard RT vs HypoRT: 5.2 vs 7.0 (P=.02) TMZ vs HypoRT: NS</td>
<td>• TMZ vs either RT arm: more nausea, vomiting, infection/fever, hematologic AEs • Standard RT vs HypoRT: more infection fever, intracranial hemorrhage, seizures, nausea, vomiting; fewer thromboembolic events, bleeding</td>
</tr>
<tr>
<td>NOA-08a Phase III, randomized, multicenter, Germany and Switzerland ClinicalTrials.gov identifier: NCT01502241 Wick et al., 2012</td>
<td>N=373 Age ≥65 y KPS ≥60</td>
<td>• RT* (n=178) • TMZ (n=195) Follow-up: 25.2 mo, minimum 12 mo</td>
<td>Survival: • Median 9.6 vs 8.6 mo • 1-y rate: 37.4% vs 34.4% • TMZ noninferior to RT EFS: • Median 4.7 vs 3.3 mo • 1-y rate: 12.0% vs 9.3% • TMZ noninferior to RT For MGMT methylation positive, TMZ significantly better than RT; for unmethylated, RT is significantly better</td>
<td>• Grade 2–3 neurologic toxicities: 40% vs 14% (P=.01) • KPS score worsened: 44% vs 23% (P=.01) • Corticosteroid dose increased (>4 mg during and/or early after RT): 48% vs 32% (P=.02)</td>
</tr>
<tr>
<td>Retrospective, multicenter, Italy Minniti et al., 2015</td>
<td>N=243 Age ≥65 y KPS ≥60</td>
<td>Concomitant and adjuvant TMZ + • Standard RT* (n=127) • HypoRT* (n=116) Follow-up: 24.0, 22.5 mo</td>
<td>Failed to complete RT: course: 8.3% vs 1.7% OS median: 12 vs 12.5 mo (NS) PFS median: 5.6 vs 6.7 mo (NS)</td>
<td>• More frequent with TMZ in all categories except cutaneous AEs</td>
</tr>
</tbody>
</table>
Some panelists expressed the opinion that the results from EF-14 and PriDE provide additional evidence of clinical activity and thus give further support for TTF treatment in patients with recurrent glioblastoma. Others argued that data from the prospective, randomized EF-11 study provided a more accurate measure of the true efficacy in recurrent disease than the PriDE data. Based on the 2015 panel vote, the inclusion of “Consider alternating electric field therapy for glioblastoma” changed from a category 3 to a category 2B recommendation (see GLIO-4, page 1195). The panel awaits peer-reviewed publication of results from the EF-14 trial before deciding whether to add TTF as a treatment option for newly diagnosed glioblastoma.

Conclusions

The NCCN Guidelines for CNS Cancers are updated annually to include new information or treatment philosophies as they become available. The NCCN Guidelines are sometimes updated more often if new high-quality clinical data become available. Because this field evolves continually, practitioners should use all of the available information to determine the best clinical options for their patients. Expert medical clinical judgment is required to apply these guidelines in the context of an individual patient for providing optimal care. The physician and the patient have the responsibility to jointly explore and select the most appropriate option from among the available alternatives. When possible, consistent with NCCN philosophy, the NCCN CNS Cancers Panel strongly encourages participation in prospective clinical trials.

References

Instructions for Completion
To participate in this journal CE activity: 1) review the learning objectives and author disclosures; 2) study the education content; 3) take the posttest with a 66% minimum passing score and complete the evaluation at http://education.nccn.org/node/74932; and 4) view/print certificate. After reading the article, you should be able to answer the following multiple-choice questions. Credit cannot be obtained for tests completed on paper. You must be a registered user on NCCN.org. If you are not registered on NCCN.org, click on “New Member? Sign up here” link on the left hand side of the Web site to register. Only one answer is correct for each question. Once you successfully answer all posttest questions you will be able to view and/or print your certificate. Software requirements: Internet.

Posttest Questions
1. A 45-year old woman is diagnosed with WHO Grade II oligodendroglioma. The tumor has been completely resected. Which adjuvant treatment is recommended based on category 1 evidence and consensus?
 a. Fractionated external beam radiation therapy (without chemotherapy)
 b. Chemotherapy (without radiation therapy)
 c. Radiation therapy followed by adjuvant PCV (procarbazine, lomustine, and vincristine) chemotherapy
 d. Radiation therapy followed by adjuvant temozolomide

2. True or false: NCCN Guidelines recommend alternating electric field therapy for primary or recurrent glioblastoma based on phase 3 data showing improved survival and quality of life.

3. For patients with glioblastoma who are elderly (>70 years) but have good performance status (Karnofsky Performance Score ≥60), which of the following postoperative adjuvant treatments are recommended?
 1. Standard focal brain radiotherapy (alone)
 2. Hypofractionated focal brain radiotherapy (alone)
 3. Temozolomide (alone)
 4. Standard focal brain radiation therapy followed by temozolomide
 5. Standard focal brain radiation with concurrent and adjuvant temozolomide
 6. Hypofractionated focal brain radiation with concurrent and adjuvant temozolomide
 a. 1-3
 b. 2 and 3
 c. 2, 3, 5, 6
 d. 2-6