Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Yao Zhu x
  • Refine by Access: All x
Clear All Modify Search
Full access

Ying Zhou, Chenchen Zhu, Zhen Shen, Yanhu Xie, Wei Zhang, Jing Zhu, Tianjiao Zhang, Min Li, Jiwei Qin, Shuai Yin, Rongzhu Chen, Wei Wei, Sinan Sun, Guihong Wang, Zheng Zhou, Hanhui Yao, Dabao Wu, and Björn Nashan

Full access

Baijun Dong, Liancheng Fan, Bin Yang, Wei Chen, Yonghong Li, Kaijie Wu, Fengbo Zhang, Haiying Dong, Huihua Cheng, Jiahua Pan, Yinjie Zhu, Chenfei Chi, Liang Dong, Jianjun Sha, Lei Li, Xudong Yao, and Wei Xue

Background: This study aimed to describe the aberrations of DNA damage repair genes and other important driving genes in Chinese patients with metastatic castration-resistant prostate cancer (mCRPC) using circulating tumor (ctDNA) sequencing and to evaluate the associations between the clinical outcomes of multiple therapies and key genomic alterations in mCRPC, especially DNA damage repair genes. Patients and Methods: A total of 292 Chinese patients with mCRPC enrolled from 8 centers. Multigene targeted sequencing was performed on 306 ctDNA samples and 23 matched tumor biopsies. The frequency of genomic alterations were compared with the Stand Up to Cancer–Prostate Cancer Foundation (SU2C-PCF) cohort. The Kaplan-Meier method was used to evaluate progression-free survival (PFS) following standard systemic treatments for mCRPC. Cox regression analyses were performed to determine prognostic factors associated with PFS resulting from treatments for mCRPC. Results: In total, 33 of 36 (91.7%) mutations were found consistently between ctDNA and paired biopsy samples. The most common recurrent genomic alterations were found in AR (34.6%), TP53 (19.5%), CDK12 (15.4%), BRCA2 (13%), and RB1 (5.8%). The frequency of CDK12 alterations (15.4%) in our cohort was significantly higher than that in Western populations (5%–7%). AR amplification and TP53 and/or RB1 alterations were associated with resistance to abiraterone or docetaxel. Patients with a CDK12 defect showed rapid disease progression after abiraterone treatment. However, the clinical outcome after docetaxel treatment was similar between patients with and without CDK12 defects. In multivariate Cox regression analysis, a CDK12 defect was significantly associated with inferior PFS after abiraterone treatment. Patients with a BRCA2 defect showed marked response to both PARP inhibitors and platinum-based chemotherapy. Conclusions: Our study explored the genomic landscape of Chinese patients with mCRPC at different treatment stages using minimally invasive methods and evaluated the clinical implications of the driver genomic alterations on patients’ response to the most widely used therapies for mCRPC. We observed a significantly higher alteration frequency of CDK12 in our cohort compared with the SU2C-PCF cohort.

Full access

Yao Zhu, Yu Wei, Hao Zeng, Yonghong Li, Chi-Fai Ng, Fangjian Zhou, Caiyun He, Guangxi Sun, Yuchao Ni, Peter K.F. Chiu, Jeremy Y.C. Teoh, Beihe Wang, Jian Pan, Fangning Wan, Bo Dai, Xiaojian Qin, Guowen Lin, Hualei Gan, Junlong Wu, and Dingwei Ye

Background: Although China accounts for 7.8% of worldwide new prostate cancer (PCa) cases and 14.5% of new deaths according to GLOBOCAN 2020, the risk of PCa associated with germline mutations is poorly defined, hampered in part by lack of nationwide evidence. Here, we sequenced 19 PCa predisposition genes in 1,836 Chinese patients with PCa and estimated disease risk associated with inherited mutations. Patients and Methods: Patients were recruited from 4 tertiary cancer centers (n=1,160) and a commercial laboratory (n=676). Germline DNA was sequenced using a multigene panel, and pathogenic/likely pathogenic (P/LP) mutation frequencies in patients with PCa were compared with populations from the gnomAD (Genome Aggregation Database) and ChinaMAP (China Metabolic Analytics Project) databases. Clinical characteristics and progression-free survival were assessed by mutation status. Results: Of 1,160 patients from hospitals, 89.7% had Gleason scores ≥8, and 65.6% had metastases. P/LP mutations were identified in 8.49% of Chinese patients with PCa. Association with PCa risk was significant for mutations in ATM (odds ratio [OR], 5.9; 95% CI, 3.1–11.1), BRCA2 (OR, 15.3; 95% CI, 10.0–23.2), MSH2 (OR, 15.8; 95% CI, 4.2–59.6), and PALB2 (OR, 5.9; 95% CI, 2.7–13.2). Compared with those without mutations, patients with mutations in ATM, BRCA2, MSH2, or PALB2 showed a poor outcome with treatment using androgen deprivation therapy and abiraterone (hazard ratio, 2.19 [95% CI, 1.34–3.58] and 2.47 [95% CI, 1.23–4.96], respectively) but similar benefit from docetaxel. Conclusions: The present multicenter study confirmed that a significant proportion of Chinese patients with PCa had inherited mutations and identified predisposition genes in this underreported ethnicity. These data provide empirical evidence for precision prevention and prognostic estimation in Chinese patients with PCa.

Full access

Rongbo Lin, Sunzhi Lin, Shuitu Feng, Qingyi Wu, Jianqian Fu, Fang Wang, Hui Li, Xiaofeng Li, Gaowang Zhang, Yongzhi Yao, Min Xin, Tianyang Lai, Xia Lv, Yigui Chen, Shangwang Yang, Yubiao Lin, Lixia Hong, Zhenyu Cai, Jianfeng Wang, Gen Lin, Shaowei Lin, Shen Zhao, Jinfeng Zhu, and Cheng Huang

Background: Opioid titration is necessary to achieve rapid, safe pain relief. Medication can be administered via patient-controlled analgesia (PCA) or by a healthcare provider (non-PCA). We evaluated the efficacy of intravenous PCA versus non-PCA hydromorphone titration for severe cancer pain (≥7 at rest on the 11-point numeric rating scale [NRS]). Patients and Methods: Patients with severe cancer pain were randomized 1:1 to PCA or non-PCA titration, stratified by opioid-tolerant or opioid-naïve status. The PCA pump was set to no continuous dose, with a hydromorphone bolus dose 10% to 20% of the total previous 24-hour equianalgesic (for opioid-tolerant patients) or 0.5 mg (for opioid-naïve patients). For the non-PCA group, the initial hydromorphone bolus dose was identical to that in the PCA group, with the subsequent dose increased by 50% to 100% (for NRS unchanged or increased) or repeated at the current dose (for NRS 4–6). Hydromorphone delivery was initiated every 15 minutes (for NRS ≥4) or as needed (for NRS ≤3). The primary endpoint was time to successful titration (TST; time from first hydromorphone dose to first occurrence of NRS ≤3 in 2 consecutive 15-minute intervals). Results: Among 214 patients (PCA, n=106; non-PCA, n=108), median TSTs (95% CI) were 0.50 hours (0.25–0.50) and 0.79 hours (0.50–1.42) for the PCA and non-PCA groups, respectively (hazard ratio [HR], 1.64; 95% CI, 1.23–2.17; P=.001). TSTs in opioid-tolerant patients were 0.50 hours (0.25–0.75) and 1.00 hours (0.50–2.00) for the PCA and non-PCA groups, respectively (HR, 1.92; 95% CI, 1.32–2.78; P=.003); in opioid-naive patients, TST was not significantly different for the PCA versus non-PCA groups (HR, 1.35; 95% CI, 0.88–2.04; P=.162). Pain score (median NRS; interquartile range) over 24 hours was significantly lower in the PCA group (2.80; 2.15–3.22) than in the non-PCA group (3.00; 2.47–3.53; P=.020). PCA administration produces significantly higher patient satisfaction with pain control than non-PCA administration (P<.001). Conclusions: Intravenous hydromorphone titration for severe cancer pain was achieved more effectively with PCA than with non-PCA administration.