Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Xia Wang x
  • Refine by Access: All x
Clear All Modify Search
Full access

Xia Wang, Maxine D. Chang, Marie Catherine Lee, and Bethany L. Niell

Full access

Wen-Zhuo He, Wan-Ming Hu, Fang Wang, Yu-Ming Rong, Lin Yang, Qian-Kun Xie, Yuan-Zhong Yang, Chang Jiang, Hui-Juan Qiu, Jia-Bin Lu, Bei Zhang, Pei-Rong Ding, Xiao-Jun Xia, Jian-Yong Shao, and Liang-Ping Xia

Background: Differences between the features of primary cancer and matched metastatic cancer have recently drawn attention in research. This study investigated the concordance in microsatellite instability (MSI) and mismatch repair (MMR) status between primary and corresponding metastatic colorectal cancer (CRC). Methods: Consecutive patients with metastatic CRC who had both primary and metastatic tumors diagnosed at our institution in January 2008 through December 2016 were identified. Immunohistochemistry was used to test the MMR status of both primary and matched metastatic tumors, and PCR analysis was performed to test MSI in patients with deficient MMR (dMMR) status. Results: A total of 369 patients were included. Of the 46 patients with MSI-high primary tumors, 37 (80.4%) also had MSI-high metastatic tumors, whereas 9 (19.6%) had microsatellite stable (MSS) metastatic tumors. A high concordance was found in patients with liver, lung, or distant lymph node metastases. Interestingly, the discrepancy was more likely to be limited to peritoneal (5/20) or ovarian (4/4) metastasis (chi-square test, P<.001). These organ-specific features were also found in the pooled analysis. Along with the change of MSI-high in primary cancer to MSS in metastatic cancer, lymphocyte infiltration decreased significantly (P=.008). However, the change did not influence survival; the median overall survival of MSI-high and MSS metastatic tumors was 21.3 and 21.6 months, respectively (P=.774). The discrepancy rate was 1.6% for patients with proficient MMR primary tumors. Conclusions: For patients with dMMR primary tumors, the concordance of MSI and MMR status in primary CRC and corresponding metastatic cancer is potentially organ-specific. High concordance is found in liver, lung, and distant lymph node metastases, whereas discrepancy is more likely to occur in peritoneal or ovarian metastasis. Rebiopsy to evaluate MSI-high/dMMR status might be needed during the course of anti–PD-1 therapy in cases of peritoneal or ovarian metastasis.

Full access

Rongbo Lin, Sunzhi Lin, Shuitu Feng, Qingyi Wu, Jianqian Fu, Fang Wang, Hui Li, Xiaofeng Li, Gaowang Zhang, Yongzhi Yao, Min Xin, Tianyang Lai, Xia Lv, Yigui Chen, Shangwang Yang, Yubiao Lin, Lixia Hong, Zhenyu Cai, Jianfeng Wang, Gen Lin, Shaowei Lin, Shen Zhao, Jinfeng Zhu, and Cheng Huang

Background: Opioid titration is necessary to achieve rapid, safe pain relief. Medication can be administered via patient-controlled analgesia (PCA) or by a healthcare provider (non-PCA). We evaluated the efficacy of intravenous PCA versus non-PCA hydromorphone titration for severe cancer pain (≥7 at rest on the 11-point numeric rating scale [NRS]). Patients and Methods: Patients with severe cancer pain were randomized 1:1 to PCA or non-PCA titration, stratified by opioid-tolerant or opioid-naïve status. The PCA pump was set to no continuous dose, with a hydromorphone bolus dose 10% to 20% of the total previous 24-hour equianalgesic (for opioid-tolerant patients) or 0.5 mg (for opioid-naïve patients). For the non-PCA group, the initial hydromorphone bolus dose was identical to that in the PCA group, with the subsequent dose increased by 50% to 100% (for NRS unchanged or increased) or repeated at the current dose (for NRS 4–6). Hydromorphone delivery was initiated every 15 minutes (for NRS ≥4) or as needed (for NRS ≤3). The primary endpoint was time to successful titration (TST; time from first hydromorphone dose to first occurrence of NRS ≤3 in 2 consecutive 15-minute intervals). Results: Among 214 patients (PCA, n=106; non-PCA, n=108), median TSTs (95% CI) were 0.50 hours (0.25–0.50) and 0.79 hours (0.50–1.42) for the PCA and non-PCA groups, respectively (hazard ratio [HR], 1.64; 95% CI, 1.23–2.17; P=.001). TSTs in opioid-tolerant patients were 0.50 hours (0.25–0.75) and 1.00 hours (0.50–2.00) for the PCA and non-PCA groups, respectively (HR, 1.92; 95% CI, 1.32–2.78; P=.003); in opioid-naive patients, TST was not significantly different for the PCA versus non-PCA groups (HR, 1.35; 95% CI, 0.88–2.04; P=.162). Pain score (median NRS; interquartile range) over 24 hours was significantly lower in the PCA group (2.80; 2.15–3.22) than in the non-PCA group (3.00; 2.47–3.53; P=.020). PCA administration produces significantly higher patient satisfaction with pain control than non-PCA administration (P<.001). Conclusions: Intravenous hydromorphone titration for severe cancer pain was achieved more effectively with PCA than with non-PCA administration.