Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Virginia Kaklamani x
Clear All Modify Search
Full access

Virginia G. Kaklamani and William J. Gradishar

Full access

Mary B. Daly, Robert Pilarski, Jennifer E. Axilbund, Saundra S. Buys, Beth Crawford, Susan Friedman, Judy E. Garber, Carolyn Horton, Virginia Kaklamani, Catherine Klein, Wendy Kohlmann, Allison Kurian, Jennifer Litton, Lisa Madlensky, P. Kelly Marcom, Sofia D. Merajver, Kenneth Offit, Tuya Pal, Boris Pasche, Gwen Reiser, Kristen Mahoney Shannon, Elizabeth Swisher, Nicoleta C. Voian, Jeffrey N. Weitzel, Alison Whelan, Georgia L. Wiesner, Mary A. Dwyer and Rashmi Kumar

During the past few years, several genetic aberrations that may contribute to increased risks for development of breast and/or ovarian cancers have been identified. The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian focus specifically on the assessment of genetic mutations in BRCA1/BRCA2, TP53, and PTEN, and recommend approaches to genetic testing/counseling and management strategies in individuals with these mutations. This portion of the NCCN Guidelines includes recommendations regarding diagnostic criteria and management of patients with Cowden Syndrome/PTEN hamartoma tumor syndrome.

Full access

Mary B. Daly, Jennifer E. Axilbund, Saundra Buys, Beth Crawford, Carolyn D. Farrell, Susan Friedman, Judy E. Garber, Salil Goorha, Stephen B. Gruber, Heather Hampel, Virginia Kaklamani, Wendy Kohlmann, Allison Kurian, Jennifer Litton, P. Kelly Marcom, Robert Nussbaum, Kenneth Offit, Tuya Pal, Boris Pasche, Robert Pilarski, Gwen Reiser, Kristen Mahoney Shannon, Jeffrey R. Smith, Elizabeth Swisher and Jeffrey N. Weitzel

OverviewAll cancers develop as a result of mutations in certain genes, such as those involved in the regulation of cell growth and/or DNA repair,1,2 but not all of these mutations are inherited from a parent. For example, sporadic mutations can occur in somatic/tumor cells only, and de novo mutations can occur for the first time in a germ cell (i.e., egg or sperm) or in the fertilized egg itself during early embryogenesis. However, family studies have long documented an increased risk for several forms of cancer among first-degree (i.e., parents, siblings, and children) and second-degree relatives (i.e., grandparents, aunts or uncles, grandchildren, and nieces or nephews) of affected individuals. These individuals may have an increased susceptibility to cancer as the result of 1 or more gene mutations present in parental germline cells; cancers developing in these individuals may be classified as hereditary or familial cancers.Hereditary cancers are often characterized by mutations associated with a high probability of cancer development (i.e., a high penetrance genotype), vertical transmission through either mother or father, and an association with other types of tumors.3,4 They often have an early age of onset and exhibit an autosomal dominant inheritance pattern (i.e., occur when the individual has a mutation in only 1 copy of a gene).Familial cancers share only some features of hereditary cancers. For example, although familial breast cancers occur in a given family more frequently than in the general population, they generally do not exhibit the inheritance patterns or onset age consistent...