Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Salil Goorha x
Clear All Modify Search
Full access

Margaret R. O'Donnell, Camille N. Abboud, Jessica Altman, Frederick R. Appelbaum, Steven E. Coutre, Lloyd E. Damon, James M. Foran, Salil Goorha, Lori J. Maness, Guido Marcucci, Peter Maslak, Michael M. Millenson, Joseph O. Moore, Farhad Ravandi, Paul J. Shami, B. Douglas Smith, Richard M. Stone, Stephen A. Strickland, Martin S. Tallman and Eunice S. Wang

Overview In 2010, approximately 12,330 people were diagnosed with and 8950 died of acute myeloid leukemia (AML).1 As the population ages, the incidence of AML, along with myelodysplasia, seems to be rising. Equally disturbing is the increasing incidence of treatment-related myelodysplasia and leukemia in survivors of childhood tumors and young adulthood, such as Hodgkin disease, sarcomas, breast and testicular cancers, and lymphomas. Ionizing radiation and occupational exposure to benzene and petrochemicals are also associated with AML.2 The NCCN AML Panel convenes annually to update guidelines for the diagnosis and treatment of AML in adults. Clinical trials have led to significant improvements in treatment in some areas, primarily in acute promyelocytic leukemia (APL). However, recent large clinical trials have highlighted the need for new, innovative strategies because outcomes for patients, particularly older patients, have not substantially changed in the past 3 decades. The panel has focused on outlining reasonable treatment options based on recent clinical trials and data from basic science, which may identify new risk factors and treatment approaches. In some areas, panel members have divergent opinions about the relative risks and benefits of various treatment options. Therefore, these guidelines attempt to provide a rationale for the inclusion of several treatment options in some categories. Initial Evaluation Initial evaluation has 2 objectives. The first is to characterize the disease process, including factors such as 1) prior toxic exposure, 2) myelodysplasia, and 3) karyotypic or molecular abnormalities, which may provide prognostic information that could influence responsiveness to chemotherapy and risk of...
Full access

Margaret R. O'Donnell, Camille N. Abboud, Jessica Altman, Frederick R. Appelbaum, Daniel A. Arber, Eyal Attar, Uma Borate, Steven E. Coutre, Lloyd E. Damon, Salil Goorha, Jeffrey Lancet, Lori J. Maness, Guido Marcucci, Michael M. Millenson, Joseph O. Moore, Farhad Ravandi, Paul J. Shami, B. Douglas Smith, Richard M. Stone, Stephen A. Strickland, Martin S. Tallman, Eunice S. Wang, Maoko Naganuma and Kristina M. Gregory

Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for the largest number of annual deaths due to leukemias in the United States. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for AML provide recommendations on the diagnostic evaluation and workup for AML, risk assessment based on cytogenetic and molecular features, treatment options for induction and consolidation therapies for younger and older (age ≥ 65 years) adult patients, and key supportive care considerations.

Full access

Joseph C. Alvarnas, Patrick A. Brown, Patricia Aoun, Karen Kuhn Ballen, Naresh Bellam, William Blum, Michael W. Boyer, Hetty E. Carraway, Peter F. Coccia, Steven E. Coutre, Jennifer Cultrera, Lloyd E. Damon, Daniel J. DeAngelo, Dan Douer, Haydar Frangoul, Olga Frankfurt, Salil Goorha, Michael M. Millenson, Susan O'Brien, Stephen H. Petersdorf, Arati V. Rao, Stephanie Terezakis, Geoffrey Uy, Meir Wetzler, Andrew D. Zelenetz, Maoko Naganuma and Kristina M. Gregory

The inaugural NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for acute lymphoblastic leukemia (ALL) were developed as a result of meetings convened by a multi-disciplinary panel of experts in 2011. These NCCN Guidelines provide recommendations on the diagnostic evaluation and workup for ALL, risk assessment, risk-stratified treatment approaches based on the Philadelphia chromosome status and age (adults vs. adolescents/young adults), assessment of minimal residual disease, and supportive care considerations. It is recommended that patients be treated at specialized centers with expertise in the management of ALL.

Full access

Mary B. Daly, Jennifer E. Axilbund, Saundra Buys, Beth Crawford, Carolyn D. Farrell, Susan Friedman, Judy E. Garber, Salil Goorha, Stephen B. Gruber, Heather Hampel, Virginia Kaklamani, Wendy Kohlmann, Allison Kurian, Jennifer Litton, P. Kelly Marcom, Robert Nussbaum, Kenneth Offit, Tuya Pal, Boris Pasche, Robert Pilarski, Gwen Reiser, Kristen Mahoney Shannon, Jeffrey R. Smith, Elizabeth Swisher and Jeffrey N. Weitzel

Overview All cancers develop as a result of mutations in certain genes, such as those involved in the regulation of cell growth and/or DNA repair,1,2 but not all of these mutations are inherited from a parent. For example, sporadic mutations can occur in somatic/tumor cells only, and de novo mutations can occur for the first time in a germ cell (i.e., egg or sperm) or in the fertilized egg itself during early embryogenesis. However, family studies have long documented an increased risk for several forms of cancer among first-degree (i.e., parents, siblings, and children) and second-degree relatives (i.e., grandparents, aunts or uncles, grandchildren, and nieces or nephews) of affected individuals. These individuals may have an increased susceptibility to cancer as the result of 1 or more gene mutations present in parental germline cells; cancers developing in these individuals may be classified as hereditary or familial cancers. Hereditary cancers are often characterized by mutations associated with a high probability of cancer development (i.e., a high penetrance genotype), vertical transmission through either mother or father, and an association with other types of tumors.3,4 They often have an early age of onset and exhibit an autosomal dominant inheritance pattern (i.e., occur when the individual has a mutation in only 1 copy of a gene). Familial cancers share only some features of hereditary cancers. For example, although familial breast cancers occur in a given family more frequently than in the general population, they generally do not exhibit the inheritance patterns or onset age consistent...