Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Rami Komrokji x
Clear All Modify Search
Full access

Peter L. Greenberg, Eyal Attar, John M. Bennett, Clara D. Bloomfield, Carlos M. De Castro, H. Joachim Deeg, James M. Foran, Karin Gaensler, Guillermo Garcia-Manero, Steven D. Gore, David Head, Rami Komrokji, Lori J. Maness, Michael Millenson, Stephen D. Nimer, Margaret R. O'Donnell, Mark A. Schroeder, Paul J. Shami, Richard M. Stone, James E. Thompson and Peter Westervelt

Overview The myelodysplastic syndromes (MDS) represent myeloid clonal hemopathies with relatively heterogeneous spectrums of presentation. The major clinical problems in these disorders are morbidities caused by cytopenias and the potential for MDS to evolve into acute myeloid leukemia (AML). In the general population, MDS occur in 5 per 100,000 people. However, among individuals older than 70 years, the incidence increases to between 22 and 45 per 100,000 and increases further with age. Managing MDS is complicated by the generally advanced age of the patients (median ages, 65–70 years), attendant nonhematologic comorbidities, and relative inability to tolerate certain intensive forms of therapy among older patients. In addition, when the illness progresses to AML, these patients experience lower response rates to standard therapy than those with de novo AML.1 Diagnostic Classification Initial evaluation of patients with suspected MDS requires careful assessment of their peripheral blood smear and blood counts, marrow morphology, duration of their abnormal blood counts, other potential causes for their cytopenias, and concomitant illnesses. The French-American-British (FAB) classification initially categorized patients for the diagnostic evaluation of MDS.2 Dysplastic changes in at least 2 of the 3 hematopoietic cell lines have been used by most histopathologists to diagnose MDS. These changes include megaloblastoid erythropoiesis, nucleocytoplasmic asynchrony in the early myeloid and erythroid precursors, and dysmorphic megakaryocytes.3 Patients with MDS are classified as having 1 of 5 subtypes of disease: refractory anemia (RA); RA with ringed sideroblasts (RARS); RA with excess of blasts (RAEB); RAEB in transformation (RAEB-T); or chronic myelomonocytic leukemia...
Full access

Peter L. Greenberg, Eyal Attar, John M. Bennett, Clara D. Bloomfield, Uma Borate, Carlos M. De Castro, H. Joachim Deeg, Olga Frankfurt, Karin Gaensler, Guillermo Garcia-Manero, Steven D. Gore, David Head, Rami Komrokji, Lori J. Maness, Michael Millenson, Margaret R. O’Donnell, Paul J. Shami, Brady L. Stein, Richard M. Stone, James E. Thompson, Peter Westervelt, Benton Wheeler, Dorothy A. Shead and Maoko Naganuma

The myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic disorders characterized by cytopenias, dysplasia in one or more myeloid lineages, and the potential for development of acute myeloid leukemia. These disorders primarily affect older adults. The NCCN Clinical Practice Guidelines in Oncology for MDS provide recommendations on the diagnostic evaluation and classification of MDS, risk evaluation according to established prognostic assessment tools (including the new revised International Prognostic Scoring System), treatment options according to risk categories, and management of related anemia.

Full access

Peter L. Greenberg, Richard M. Stone, Aref Al-Kali, Stefan K. Barta, Rafael Bejar, John M. Bennett, Hetty Carraway, Carlos M. De Castro, H. Joachim Deeg, Amy E. DeZern, Amir T. Fathi, Olga Frankfurt, Karin Gaensler, Guillermo Garcia-Manero, Elizabeth A. Griffiths, David Head, Ruth Horsfall, Robert A. Johnson, Mark Juckett, Virginia M. Klimek, Rami Komrokji, Lisa A. Kujawski, Lori J. Maness, Margaret R. O'Donnell, Daniel A. Pollyea, Paul J. Shami, Brady L. Stein, Alison R. Walker, Peter Westervelt, Amer Zeidan, Dorothy A. Shead and Courtney Smith

The myelodysplastic syndromes (MDS) comprise a heterogenous group of myeloid disorders with a highly variable disease course. Diagnostic criteria to better stratify patients with MDS continue to evolve, based on morphology, cytogenetics, and the presence of cytopenias. More accurate classification of patients will allow for better treatment guidance. Treatment encompasses supportive care, treatment of anemia, low-intensity therapy, and high-intensity therapy. This portion of the guidelines focuses on diagnostic classification, molecular abnormalities, therapeutic options, and recommended treatment approaches.

Full access

Peter L. Greenberg, Richard M. Stone, Rafael Bejar, John M. Bennett, Clara D. Bloomfield, Uma Borate, Carlos M. De Castro, H. Joachim Deeg, Amy E. DeZern, Amir T. Fathi, Olga Frankfurt, Karin Gaensler, Guillermo Garcia-Manero, Elizabeth A. Griffiths, David Head, Virginia Klimek, Rami Komrokji, Lisa A. Kujawski, Lori J. Maness, Margaret R. O’Donnell, Daniel A. Pollyea, Bart Scott, Paul J. Shami, Brady L. Stein, Peter Westervelt, Benton Wheeler, Dorothy A. Shead and Courtney Smith

The NCCN Guidelines for Myelodysplastic Syndromes (MDS) comprise a heterogeneous group of myeloid disorders with a highly variable disease course that depends largely on risk factors. Risk evaluation is therefore a critical component of decision-making in the treatment of MDS. The development of newer treatments and the refinement of current treatment modalities are designed to improve patient outcomes and reduce side effects. These NCCN Guidelines Insights focus on the recent updates to the guidelines, which include the incorporation of a revised prognostic scoring system, addition of molecular abnormalities associated with MDS, and refinement of treatment options involving a discussion of cost of care.

Full access

Brady L. Stein, Jason Gotlib, Murat Arcasoy, Marie Huong Nguyen, Neil Shah, Alison Moliterno, Catriona Jamieson, Daniel A. Pollyea, Bart Scott, Martha Wadleigh, Ross Levine, Rami Komrokji, Rebecca Klisovic, Krishna Gundabolu, Patricia Kropf, Meir Wetzler, Stephen T. Oh, Raul Ribeiro, Rita Paschal, Sanjay Mohan, Nikolai Podoltsev, Josef Prchal, Moshe Talpaz, David Snyder, Srdan Verstovsek and Ruben A. Mesa

The classical Philadelphia chromosome–negative myeloproliferative neoplasms (MPN), which include essential thrombocythemia, polycythemia vera, and myelofibrosis (MF), are in a new era of molecular diagnosis, ushered in by the identification of the JAK2V617F and cMPL mutations in 2005 and 2006, respectively, and the CALR mutations in 2013. Coupled with increased knowledge of disease pathogenesis and refined diagnostic criteria and prognostic scoring systems, a more nuanced appreciation has emerged of the burden of MPN in the United States, including the prevalence, symptom burden, and impact on quality of life. Biological advances in MPN have translated into the rapid development of novel therapeutics, culminating in the approval of the first treatment for MF, the JAK1/JAK2 inhibitor ruxolitinib. However, certain practical aspects of care, such as those regarding diagnosis, prevention of vascular events, choice of cytoreductive agent, and planning for therapies, present challenges for hematologists/oncologists, and are discussed in this article.