Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Matthew Ellis x
Clear All Modify Search
Full access

Matthew Ellis

Deep genomic analysis in breast cancer and the identification of driver mutations will result in treatments based on molecular subtypes and pathways. Mutations not yet familiar to most oncologists will become part of the clinical oncology vernacular. Such discoveries will advance the concept of “biology first, not drug first,” because molecular biology will drive drug development and clinical trial design involving small, molecularly defined subsets of patients, according to a presentation at the NCCN 19th Annual Conference.

Full access

Allan Lipton, Robert Uzzo, Robert J. Amato, Georgiana K. Ellis, Behrooz Hakimian, G. David Roodman and Matthew R. Smith

Cancer and its treatment can compromise bone health, leading to fracture, pain, loss of mobility, and hypercalcemia of malignancy. Bone metastasis occurs frequently in advanced prostate and breast cancers, and bony manifestations are commonplace in multiple myeloma. Osteoporosis and osteopenia may be consequences of androgen-deprivation therapy for prostate cancer, aromatase inhibition for breast cancer, or chemotherapy-induced ovarian failure. Osteoporotic bone loss and bone metastasis ultimately share a pathophysiologic pathway that stimulates bone resorption by increasing the formation and activity of osteoclasts. Important mediators of pathologic bone metabolism include substances produced by osteoblasts, such as RANKL, the receptor activator of nuclear factor kappa B ligand, which spurs osteoclast differentiation from myeloid cells. Available therapies are targeted to various steps in cascade of bone metastasis.

Full access

Noa Efrat Ben-Baruch, Ron Bose, Shyam M. Kavuri, Cynthia X. Ma and Matthew J. Ellis

Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non–small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted.