Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Manoop S. Bhutani x
Clear All Modify Search
Full access

Prajnan Das, Yixing Jiang, Jeffrey H. Lee, Manoop S. Bhutani, William A. Ross, Paul F. Mansfield and Jaffer A. Ajani

Most patients with localized gastric cancer require multimodality therapy. Surgery is the primary treatment for localized gastric cancer, although controversy exists about the optimal extent of lymphadenectomy in these patients. Recent studies have evaluated the role of laparoscopic surgery and endoscopic mucosal resection in selected patients. Multimodality treatment options for these patients include post-operative chemoradiation and perioperative chemotherapy. The Intergroup 0116 trial demonstrated that patients treated with surgery and post-operative chemoradiation had significantly higher overall survival compared to patients treated with surgery alone. The MAGIC trial showed that patients treated with perioperative epirubicin, cisplatin, and 5-fluorouracil had significantly higher overall survival compared to patients treated with surgery alone. Other recent trials have evaluated the roles of preoperative chemoradiation and adjuvant chemotherapy. Multidisciplinary evaluation plays a crucial role in the management of these patients.

Full access

Kazuki Sudo, Xuemei Wang, Lianchun Xiao, Roopma Wadhwa, Hironori Shiozaki, Elena Elimova, David C. Rice, Jeffrey H. Lee, Brian Weston, Manoop S. Bhutani, Adarsh Hiremath, Nikolaos Charalampakis, Ritsuko Komaki, Mariela A. Blum, Stephen G. Swisher, Dipen M. Maru, Heath D. Skinner, Jeana L. Garris, Jane E. Rogers, Wayne L. Hofstetter and Jaffer A. Ajani

Background: Among patients with localized esophageal cancer (LEC), 35% or more develop distant metastases (DM) as first relapse, most in the first 24 months after local therapy. Implementation of novel strategies may be possible if DM can be predicted reliably. We hypothesized that clinical variables could help generate a DM nomogram. Patients and Methods: Patients with LEC who completed multimodality therapy were analyzed. Various statistical methods were used, including multivariate analysis to generate a nomogram. A concordance index (c-index) was established and validated using the bootstrap method. Results: Among 629 patients analyzed (356 trimodality/273 bimodality), 36% patients developed DM as first relapse. The median overall survival from DM was only 8.6 months (95% CI, 7.0–10.2). In a multivariate analysis, the variables associated with a higher risk for developing DM were poorly differentiated histology (hazard ratio [HR], 1.76; P<.0001), baseline T3/T4 primary (HR, 3.07; P=.0006), and baseline N+ LEC (HR, 2.01; P<.0001). Although variables associated with a lower risk for DM were age of 60 years or older (HR, 0.75; P=.04), squamous cell carcinoma (HR, 0.54; P=.013), and trimodality therapy (HR, 0.58; P=.0001), the bias-corrected c-index was 0.67 after 250 bootstrap resamples. Conclusions: Our nomogram identified patients with LEC who developed DM with a high probability. The model needs to be refined (tumor and blood biomarkers) and validated. This type of model will allow implementation of novel strategies in patients with LEC.

Full access

Takashi Taketa, Kazuki Sudo, Arlene M. Correa, Roopma Wadhwa, Hironori Shiozaki, Elena Elimova, Maria-Claudia Campagna, Mariela A. Blum, Heath D. Skinner, Ritsuko U. Komaki, Jeffrey H. Lee, Manoop S. Bhutani, Brian R. Weston, David C. Rice, Stephen G. Swisher, Dipen M. Maru, Wayne L. Hofstetter and Jaffer A. Ajani

Current algorithms for surveillance of patients with esophageal adenocarcinoma (EAC) after chemoradiation and surgery (trimodality therapy [TMT]) remain empiric. The authors hypothesized that the frequency, type, and timing of relapses after TMT would be highly associated with surgical pathology stage (SPS), and therefore SPS could be used to individualize the surveillance strategy. Between 2000 and 2010, 518 patients with EAC were identified who underwent TMT at The University of Texas MD Anderson Cancer Center and were frequently surveyed. Frequency, type, and timing of the first relapse (locoregional and/or distant) were tabulated according to SPS. Standard statistical approaches were used. The median follow-up time after esophageal surgery was 55.4 months (range, 1.0-149.2 months). Disease relapse occurred in 215 patients (41.5%). Higher SPS was associated with a higher rate of relapse (0/I vs II/III, P≤.001; 0/I vs II, P=.002; SPS 0/I vs III, P≤.001; and SPS II vs III, P=.005) and with shorter time to relapse (P<.001). Irrespective of the SPS, approximately 95% of all relapses occurred within 36 months of surgery. The 3- and 5-year overall survival rates were shorter for patients with a higher SPS than those with a lower SPS (0/I vs II/III, P≤.001; 0/I vs II, P≤.001; 0/I vs III, P≤.001; and II vs III, P=.014). The compelling data show an excellent association between SPS and frequency/type/timing of relapses after TMT in patients with EAC. Thus, the surveillance strategy can potentially be customized based on SPS. These data can inform a future evidence-based surveillance strategy that can be efficient and cost-effective.