Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Lela Buckingham x
  • Refine by Access: All x
Clear All Modify Search
Full access

Exceptional Response to Olaparib in a Patient With Recurrent Ovarian Cancer and an Entire BRCA1 Germline Gene Deletion

Megan Randall, Kelly Burgess, Lela Buckingham, and Lydia Usha

PARP inhibitors are known to be effective in patients with ovarian cancer (OC) and germline mutations in BRCA1 and BRCA2 genes (BRCA mutations). Little is known, however, about any correlation between the deletion size and location of the BRCA mutation and the response to PARP inhibitors. Women with OC commonly undergo genetic testing because the presence of a germline BRCA mutation impacts therapeutic decisions and is important for cancer surveillance in patients and their family members. This report presents a case of a rare entire germline BRCA1 gene deletion and an exceptional response to a PARP inhibitor, olaparib, in a heavily pretreated patient with OC. Her disease course was also remarkable for complete responses to platinum-based chemotherapy and long chemotherapy-free intervals. Interestingly, the deletion of the entire BRCA1 gene was found after previously negative BRCA test results and is associated with a deletion of 6 adjacent genes without known clinical significance. She has remained progression-free and asymptomatic for >3 years on olaparib, with an overall survival of >12 years. We postulate that this unusually favorable response and prolonged overall survival is related to the cancer cells’ inability to reverse the entire gene deletion to wild-type (a common mechanism of resistance to PARP inhibition). This case shows the value of genetic testing for patients with OC and highlights the utility of additional testing with previously negative results and limited genetic testing. It also provides insight into a potential mechanism of an exceptional response to PARP inhibition.

Full access

Letter to the Editor: Significance of Clonal Hematopoiesis of Indeterminate Potential

Steven Sorscher

Full access

Misdiagnosis of Li-Fraumeni Syndrome in a Patient With Clonal Hematopoiesis and a Somatic TP53 Mutation

Rachel L. Mitchell, Cory Kosche, Kelly Burgess, Shreya Wadhwa, Lela Buckingham, Ritu Ghai, Jacob Rotmensch, Oleksandra Klapko, and Lydia Usha

Li-Fraumeni syndrome (LFS) is a rare genetic disorder that confers a high risk of developing certain malignancies at a young age. It is caused by germline mutations in the TP53 gene and is typically diagnosed by sequencing this gene in blood cells. The presence of a mutation in approximately half of the DNA reads (allelic fraction of 50%) is an indicator of a germline mutation, such as that in LFS. Clonal hematopoiesis (CH) is an expansion of a hematopoietic clone containing a somatic driver mutation with a low allelic fraction, usually not more than 10% to 20%. This report presents a patient with fallopian tube carcinoma who underwent multigene panel testing for cancer predisposition and was found to have a mutation in the TP53 gene, c.733G>T (p.Gly245Cys). Since the TP53 mutation had an allelic fraction of approximately 50%, it was interpreted as being germline, and the patient was diagnosed as having LFS. A year later, she developed acute myelogenous leukemia. Subsequent mutational analysis showed that the TP53 mutation was absent in her benign tissue sample but present in leukemic cells. Furthermore, sequencing of the fallopian tube tumor tissue revealed a different TP53 gene mutation, c.818G>T (p.Arg273Leu). These observations confirmed that the previously identified mutation in her blood was somatic rather than germline and that she had CH at the time of genetic testing. CH can occasionally lead to a misdiagnosis of a germline mutation and a cancer predisposition syndrome that has significant implications for patients and their families. Therefore, the abnormal result of genetic testing for hereditary cancer susceptibility should be carefully interpreted when the clinical presentation is atypical, when the patient is older, when the gene in question is known to have potential germline and somatic mutations such as the TP53 gene, and when the allelic fraction is approximately 50%.