The ability to serially monitor tumor-derived cell-free DNA (cfDNA) brings with it the potential to measure response to anticancer therapies and detect minimal residual disease (MRD). This report describes a patient with HER2-positive metastatic breast cancer with an exceptional response to trastuzumab and nab-paclitaxel who remains in complete remission several years after cessation of therapy. Next-generation sequencing of the patient’s primary tumor tissue showed several mutations, including an oncogenic hotspot PIK3CA mutation. A sample of cfDNA was collected 6 years after her last therapy and then analyzed for mutant PIK3CA using digital PCR. No detectable mutations associated with the primary tumor were found despite assaying >10,000 genome equivalents, suggesting that the patient had achieved a molecular remission. Results of this case study suggest that serial monitoring of MRD using liquid biopsies could provide a useful method for individualizing treatment plans for patients with metastatic disease with extreme responses to therapy. However, large-scale clinical studies are needed to validate and implement these techniques for patient care.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Karen Cravero x
- Refine by Access: All x
Natasha Hunter, Sarah Croessmann, Karen Cravero, Daniel Shinn, Paula J. Hurley, and Ben Ho Park
Justin Lee, Jennifer Axilbund, W. Brian Dalton, Daniel Laheru, Stanley Watkins, David Chu, Karen Cravero, Berry Button, Kelly Kyker-Snowman, Ian Waters, Christopher D. Gocke, Josh Lauring, and Ben Ho Park
Next-generation sequencing (NGS) is increasingly being used in cancer care to identify both somatic tumor driver mutations that can be targeted for therapy, and heritable mutations in the germline associated with increased cancer risk. This report presents a case of a JAK2 V617F mutation falsely identified as a duodenal cancer mutation via NGS. The patient was found to have a history of polycythemia vera, a disorder with a high incidence of JAK2 somatic mutations. Buccal cell DNA showed heterozygosity for the mutation, suggesting that it was potentially germline. However, subsequent resequencing of tumor, adjacent normal tissue, and fingernail DNA confirmed the mutation was somatic, and its presence in tumor and buccal cells resulted from contaminating blood cells. This report highlights important nuances of NGS that can lead to misinterpretation of results with potential clinical implications.