Search Results
You are looking at 1 - 7 of 7 items for
- Author: Jeffrey H. Lee x
- Refine by Access: All x
Mariela A. Blum Murphy, Takashi Taketa, Kazuki Sudo, Jeffrey H. Lee, and Jaffer A. Ajani
Prajnan Das, Yixing Jiang, Jeffrey H. Lee, Manoop S. Bhutani, William A. Ross, Paul F. Mansfield, and Jaffer A. Ajani
Most patients with localized gastric cancer require multimodality therapy. Surgery is the primary treatment for localized gastric cancer, although controversy exists about the optimal extent of lymphadenectomy in these patients. Recent studies have evaluated the role of laparoscopic surgery and endoscopic mucosal resection in selected patients. Multimodality treatment options for these patients include post-operative chemoradiation and perioperative chemotherapy. The Intergroup 0116 trial demonstrated that patients treated with surgery and post-operative chemoradiation had significantly higher overall survival compared to patients treated with surgery alone. The MAGIC trial showed that patients treated with perioperative epirubicin, cisplatin, and 5-fluorouracil had significantly higher overall survival compared to patients treated with surgery alone. Other recent trials have evaluated the roles of preoperative chemoradiation and adjuvant chemotherapy. Multidisciplinary evaluation plays a crucial role in the management of these patients.
Jeffrey Crawford, James Armitage, Lodovico Balducci, Pamela Sue Becker, Douglas W. Blayney, Spero R. Cataland, Mark L. Heaney, Susan Hudock, Dwight D. Kloth, David J. Kuter, Gary H. Lyman, Brandon McMahon, Hope S. Rugo, Ayman A. Saad, Lee S. Schwartzberg, Sepideh Shayani, David P. Steensma, Mahsa Talbott, Saroj Vadhan-Raj, Peter Westervelt, Michael Westmoreland, Mary Dwyer, and Maria Ho
Febrile neutropenia, a common side effect of myelosuppressive chemotherapy in patients with cancer, can result in prolonged hospitalization and broad-spectrum antibiotic use, often prompting treatment delays or dose reductions of drug regimens. Prophylactic use of myeloid growth factors (mainly the colony-stimulating factors filgrastim and pegfilgrastim) in patients of heightened risk can reduce the severity and duration of febrile neutropenia. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Myeloid Growth Factors provide recommendations on the use of these agents mainly in the oncology setting based on clinical evidence and expert consensus. This version includes revisions surrounding the issue of timing of pegfilgrastim administration. It also includes new sections on tbo-filgrastim, a recently approved agent that is biologically similar to filgrastim, and the role of myeloid growth factors in the hematopoietic cell transplant setting
Razelle Kurzrock, A. Dimitrios Colevas, Anthony Olszanski, Wallace Akerley, Carlos L. Arteaga, William E. Carson III, Jeffrey W. Clark, John F. DiPersio, David S. Ettinger, Robert J. Morgan Jr, Lee S. Schwartzberg, Alan P. Venook, Christopher D. Gocke, Jonathan Tait, and F. Marc Stewart
Background: With advances such as next-generation sequencing (NGS) increasing understanding of the basis of cancer and its response to treatment, NCCN believes it is important to understand how molecular profiling/diagnostic testing is being performed and used at NCCN Member Institutions and their community affiliates. Methods: The NCCN Oncology Research Program's Investigator Steering Committee and the NCCN Best Practices Committee gathered baseline information on the use of cancer-related molecular testing at NCCN Member Institutions and community members of the NCCN Affiliate Research Consortium through 2 separate surveys distributed in December 2013 and September 2014, respectively. Results: A total of 24 NCCN Member Institutions and 8 affiliate sites provided quantitative and qualitative data. In the context of these surveys, “molecular profiling/diagnostics” was defined as a panel of at least 10 genes examined as a diagnostic DNA test in a Clinical Laboratory Improvement Amendments (CLIA)–certified laboratory. Conclusions: Results indicated that molecular profiling/diagnostics are used at 100% of survey respondents' institutions to make patient care decisions. However, challenges relating to reimbursement, lack of data regarding actionable targets and targeted therapies, and access to drugs on or off clinical trials were cited as barriers to integration of molecular profiling into patient care. Frameworks for using molecular diagnostic results based on levels of evidence, alongside continued research into the predictive value of biomarkers and targeted therapies, are recommended to advance understanding of the role of genomic biomarkers. Greater evidence and consensus regarding the clinical and cost-effectiveness of molecular profiling may lead to broader insurance coverage and increased integration into patient care.
Takashi Taketa, Kazuki Sudo, Arlene M. Correa, Roopma Wadhwa, Hironori Shiozaki, Elena Elimova, Maria-Claudia Campagna, Mariela A. Blum, Heath D. Skinner, Ritsuko U. Komaki, Jeffrey H. Lee, Manoop S. Bhutani, Brian R. Weston, David C. Rice, Stephen G. Swisher, Dipen M. Maru, Wayne L. Hofstetter, and Jaffer A. Ajani
Current algorithms for surveillance of patients with esophageal adenocarcinoma (EAC) after chemoradiation and surgery (trimodality therapy [TMT]) remain empiric. The authors hypothesized that the frequency, type, and timing of relapses after TMT would be highly associated with surgical pathology stage (SPS), and therefore SPS could be used to individualize the surveillance strategy. Between 2000 and 2010, 518 patients with EAC were identified who underwent TMT at The University of Texas MD Anderson Cancer Center and were frequently surveyed. Frequency, type, and timing of the first relapse (locoregional and/or distant) were tabulated according to SPS. Standard statistical approaches were used. The median follow-up time after esophageal surgery was 55.4 months (range, 1.0-149.2 months). Disease relapse occurred in 215 patients (41.5%). Higher SPS was associated with a higher rate of relapse (0/I vs II/III, P≤.001; 0/I vs II, P=.002; SPS 0/I vs III, P≤.001; and SPS II vs III, P=.005) and with shorter time to relapse (P<.001). Irrespective of the SPS, approximately 95% of all relapses occurred within 36 months of surgery. The 3- and 5-year overall survival rates were shorter for patients with a higher SPS than those with a lower SPS (0/I vs II/III, P≤.001; 0/I vs II, P≤.001; 0/I vs III, P≤.001; and II vs III, P=.014). The compelling data show an excellent association between SPS and frequency/type/timing of relapses after TMT in patients with EAC. Thus, the surveillance strategy can potentially be customized based on SPS. These data can inform a future evidence-based surveillance strategy that can be efficient and cost-effective.
Kazuki Sudo, Xuemei Wang, Lianchun Xiao, Roopma Wadhwa, Hironori Shiozaki, Elena Elimova, David C. Rice, Jeffrey H. Lee, Brian Weston, Manoop S. Bhutani, Adarsh Hiremath, Nikolaos Charalampakis, Ritsuko Komaki, Mariela A. Blum, Stephen G. Swisher, Dipen M. Maru, Heath D. Skinner, Jeana L. Garris, Jane E. Rogers, Wayne L. Hofstetter, and Jaffer A. Ajani
Background: Among patients with localized esophageal cancer (LEC), 35% or more develop distant metastases (DM) as first relapse, most in the first 24 months after local therapy. Implementation of novel strategies may be possible if DM can be predicted reliably. We hypothesized that clinical variables could help generate a DM nomogram. Patients and Methods: Patients with LEC who completed multimodality therapy were analyzed. Various statistical methods were used, including multivariate analysis to generate a nomogram. A concordance index (c-index) was established and validated using the bootstrap method. Results: Among 629 patients analyzed (356 trimodality/273 bimodality), 36% patients developed DM as first relapse. The median overall survival from DM was only 8.6 months (95% CI, 7.0–10.2). In a multivariate analysis, the variables associated with a higher risk for developing DM were poorly differentiated histology (hazard ratio [HR], 1.76; P<.0001), baseline T3/T4 primary (HR, 3.07; P=.0006), and baseline N+ LEC (HR, 2.01; P<.0001). Although variables associated with a lower risk for DM were age of 60 years or older (HR, 0.75; P=.04), squamous cell carcinoma (HR, 0.54; P=.013), and trimodality therapy (HR, 0.58; P=.0001), the bias-corrected c-index was 0.67 after 250 bootstrap resamples. Conclusions: Our nomogram identified patients with LEC who developed DM with a high probability. The model needs to be refined (tumor and blood biomarkers) and validated. This type of model will allow implementation of novel strategies in patients with LEC.
Caitlin A. Hester, Giampaolo Perri, Laura R. Prakash, Jessica E. Maxwell, Naruhiko Ikoma, Michael P. Kim, Ching-Wei D. Tzeng, Brandon Smaglo, Robert Wolff, Milind Javle, Michael J. Overman, Jeffrey E. Lee, and Matthew H.G. Katz
Background: This study aimed to determine the clinical relevance of putative radiographic and serologic metrics of chemotherapy response in patients with localized pancreatic cancer (LPC) who do not undergo pancreatectomy. Studies evaluating the response of LPC to systemic chemotherapy have focused on histopathologic analyses of resected specimens, but such specimens are not available for patients who do not undergo resection. We previously showed that changes in tumor volume and CA 19-9 levels provide a clinical readout of histopathologic response to preoperative therapy. Methods: Our institutional database was searched for patients with LPC who were treated with first-line chemotherapy between January 2010 and December 2017 and did not undergo pancreatectomy. Radiographic response was measured using RECIST 1.1 and tumor volume. The volume of the primary tumor was compared between pretreatment and posttreatment images. The percentage change in tumor volume (%Δvol) was calculated as a percentage of the pretreatment volume. Serologic response was measured by comparing pretreatment and posttreatment CA 19-9 levels. We established 3 response groups by combining these metrics: (1) best responders with a decline in %Δvol in the top quartile and in CA 19-9, (2) nonresponders with an increase in %Δvol and in CA 19-9, and (3) other patients. Results: This study included 329 patients. Individually, %Δvol and change in CA 19-9 were associated with overall survival (OS) (P≤.1), but RECIST 1.1 was not. In all, 73 patients (22%) were best responders, 42 (13%) were nonresponders, and there were 214 (65%) others. Best responders lived significantly longer than nonresponders and others (median OS, 24 vs 12 vs 17 months, respectively; P<.01). A multivariable model adjusting for type of chemotherapy regimen, number of chemotherapy doses, and receipt of radiotherapy showed that best responders had longer OS than did the other cohorts (hazard ratio [HR], 0.35; 95% CI, 0.21–0.58 for best responders, and HR, 0.55; 95% CI, 0.37–0.83 for others). Conclusions: Changes in tumor volume and serum levels of CA 19-9—but not RECIST 1.1—represent reliable metrics of response to systemic chemotherapy. They can be used to counsel patients and families on survival expectations even if pancreatectomy is not performed.