Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Heather H. Cheng x
Clear All Modify Search
Full access

Heather H. Cheng, Alexandra O. Sokolova, Edward M. Schaeffer, Eric J. Small and Celestia S. Higano

It is increasingly important for clinicians involved in the management of prostate cancer to understand the relevance of heritable (germline) mutations that, for select patients, affect prostate cancer risk and cancer biology, and acquired (somatic) mutations that occur in prostate cancer cells. In the advanced disease setting, mutations in homologous recombination repair genes (eg, BRCA1, BRCA2, ATM, CHEK2, PALB2) suggest candidacy for platinum chemotherapy and PARP inhibitor trials. Similarly, microsatellite instability and mismatch repair deficiency, which may arise in the setting of MLH1, MSH2, MSH6, and PMS2 mutations, suggest potential vulnerability to PD-1 inhibitors. Germline genetic testing has potential importance in the treatment and assessment of familial risk, and tumor-directed somatic sequencing may guide treatment decision-making. This review provides clinicians with knowledge of basic genetic terminology, awareness of the importance of family history of cancer (not limited to prostate cancer), contrasts between the different but potentially related objectives of germline versus somatic testing of tumor tissue, and indications for genetic counseling. Specific clinical scenarios, objectives of testing, and nature of the assays are reviewed. Germline and somatic mutations of known and potential relevance to prostate cancer are discussed in the context of treatment options, and algorithms to assist clinicians in approaching this area are proposed.

Full access

Alexandra O. Sokolova, Brian H. Shirts, Eric Q. Konnick, Ginger J. Tsai, Bernardo H.L. Goulart, Bruce Montgomery, Colin C. Pritchard, Evan Y. Yu and Heather H. Cheng

With the promise and potential of clinical next-generation sequencing for tumor and germline testing to impact treatment and outcomes of patients with cancer, there are also risks of oversimplification, misinterpretation, and missed opportunities. These issues risk limiting clinical benefit and, at worst, perpetuating false conclusions that could lead to inappropriate treatment selection, avoidable toxicity, and harm to patients. This report presents 5 case studies illustrating challenges and opportunities in clinical next-generation sequencing interpretation and clinical application in solid tumor oncologic care. First is a case that dissects the origin of an ATM mutation as originating from a hematopoietic clone rather than the tumor. Second is a case illustrating the potential for tumor sequencing to suggest germline variants associated with a hereditary cancer syndrome. Third are 2 cases showing the potential for variant reclassification of a germline variant of uncertain significance when considered alongside family history and tumor sequencing results. Finally, we describe a case illustrating challenges with using microsatellite instability for predicting tumor response to immune checkpoint inhibitors. The common theme of the case studies is the importance of examining clinical context alongside expert review and interpretation, which together highlight an expanding role for contextual examination and multidisciplinary expert review through molecular tumor boards.