Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Eyal Attar x
Clear All Modify Search
Full access

Peter L. Greenberg, Eyal Attar, John M. Bennett, Clara D. Bloomfield, Carlos M. De Castro, H. Joachim Deeg, James M. Foran, Karin Gaensler, Guillermo Garcia-Manero, Steven D. Gore, David Head, Rami Komrokji, Lori J. Maness, Michael Millenson, Stephen D. Nimer, Margaret R. O'Donnell, Mark A. Schroeder, Paul J. Shami, Richard M. Stone, James E. Thompson and Peter Westervelt

Overview The myelodysplastic syndromes (MDS) represent myeloid clonal hemopathies with relatively heterogeneous spectrums of presentation. The major clinical problems in these disorders are morbidities caused by cytopenias and the potential for MDS to evolve into acute myeloid leukemia (AML). In the general population, MDS occur in 5 per 100,000 people. However, among individuals older than 70 years, the incidence increases to between 22 and 45 per 100,000 and increases further with age. Managing MDS is complicated by the generally advanced age of the patients (median ages, 65–70 years), attendant nonhematologic comorbidities, and relative inability to tolerate certain intensive forms of therapy among older patients. In addition, when the illness progresses to AML, these patients experience lower response rates to standard therapy than those with de novo AML.1 Diagnostic Classification Initial evaluation of patients with suspected MDS requires careful assessment of their peripheral blood smear and blood counts, marrow morphology, duration of their abnormal blood counts, other potential causes for their cytopenias, and concomitant illnesses. The French-American-British (FAB) classification initially categorized patients for the diagnostic evaluation of MDS.2 Dysplastic changes in at least 2 of the 3 hematopoietic cell lines have been used by most histopathologists to diagnose MDS. These changes include megaloblastoid erythropoiesis, nucleocytoplasmic asynchrony in the early myeloid and erythroid precursors, and dysmorphic megakaryocytes.3 Patients with MDS are classified as having 1 of 5 subtypes of disease: refractory anemia (RA); RA with ringed sideroblasts (RARS); RA with excess of blasts (RAEB); RAEB in transformation (RAEB-T); or chronic myelomonocytic leukemia...
Full access

Peter L. Greenberg, Eyal Attar, John M. Bennett, Clara D. Bloomfield, Uma Borate, Carlos M. De Castro, H. Joachim Deeg, Olga Frankfurt, Karin Gaensler, Guillermo Garcia-Manero, Steven D. Gore, David Head, Rami Komrokji, Lori J. Maness, Michael Millenson, Margaret R. O’Donnell, Paul J. Shami, Brady L. Stein, Richard M. Stone, James E. Thompson, Peter Westervelt, Benton Wheeler, Dorothy A. Shead and Maoko Naganuma

The myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic disorders characterized by cytopenias, dysplasia in one or more myeloid lineages, and the potential for development of acute myeloid leukemia. These disorders primarily affect older adults. The NCCN Clinical Practice Guidelines in Oncology for MDS provide recommendations on the diagnostic evaluation and classification of MDS, risk evaluation according to established prognostic assessment tools (including the new revised International Prognostic Scoring System), treatment options according to risk categories, and management of related anemia.

Full access

Margaret R. O'Donnell, Camille N. Abboud, Jessica Altman, Frederick R. Appelbaum, Daniel A. Arber, Eyal Attar, Uma Borate, Steven E. Coutre, Lloyd E. Damon, Salil Goorha, Jeffrey Lancet, Lori J. Maness, Guido Marcucci, Michael M. Millenson, Joseph O. Moore, Farhad Ravandi, Paul J. Shami, B. Douglas Smith, Richard M. Stone, Stephen A. Strickland, Martin S. Tallman, Eunice S. Wang, Maoko Naganuma and Kristina M. Gregory

Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for the largest number of annual deaths due to leukemias in the United States. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for AML provide recommendations on the diagnostic evaluation and workup for AML, risk assessment based on cytogenetic and molecular features, treatment options for induction and consolidation therapies for younger and older (age ≥ 65 years) adult patients, and key supportive care considerations.

Full access

Margaret R. O’Donnell, Martin S. Tallman, Camille N. Abboud, Jessica K. Altman, Frederick R. Appelbaum, Daniel A. Arber, Eyal Attar, Uma Borate, Steven E. Coutre, Lloyd E. Damon, Jeffrey Lancet, Lori J. Maness, Guido Marcucci, Michael G. Martin, Michael M. Millenson, Joseph O. Moore, Farhad Ravandi, Paul J. Shami, B. Douglas Smith, Richard M. Stone, Stephen A. Strickland, Eunice S. Wang, Kristina M. Gregory and Maoko Naganuma

These NCCN Guidelines Insights summarize several key updates to the NCCN Guidelines for Acute Myeloid Leukemia and discuss the clinical evidence that support the recommendations. The updates described in this article focus on the acute promyelocytic leukemia (APL) section, featuring recommendations for additional induction/consolidation regimens in patients with low- or intermediate-risk APL, and providing guidance on maintenance strategies for APL.