Search Results

You are looking at 1 - 8 of 8 items for

  • Author: Donald S. David x
Clear All Modify Search
Full access

Dawn Provenzale, Samir Gupta, Dennis J. Ahnen, Travis Bray, Jamie A. Cannon, Gregory Cooper, Donald S. David, Dayna S. Early, Deborah Erwin, James M. Ford, Francis M. Giardiello, William Grady, Amy L. Halverson, Stanley R. Hamilton, Heather Hampel, Mohammad K. Ismail, Jason B. Klapman, David W. Larson, Audrey J. Lazenby, Patrick M. Lynch, Robert J. Mayer, Reid M. Ness, Scott E. Regenbogen, Niloy Jewel Samadder, Moshe Shike, Gideon Steinbach, David Weinberg, Mary Dwyer and Susan Darlow

This is a focused update highlighting the most current NCCN Guidelines for diagnosis and management of Lynch syndrome. Lynch syndrome is the most common cause of hereditary colorectal cancer, usually resulting from a germline mutation in 1 of 4 DNA mismatch repair genes (MLH1, MSH2, MSH6, or PMS2), or deletions in the EPCAM promoter. Patients with Lynch syndrome are at an increased lifetime risk, compared with the general population, for colorectal cancer, endometrial cancer, and other cancers, including of the stomach and ovary. As of 2016, the panel recommends screening all patients with colorectal cancer for Lynch syndrome and provides recommendations for surveillance for early detection and prevention of Lynch syndrome-associated cancers.

Full access

Donald A. Podoloff, Douglas W. Ball, Edgar Ben-Josef, Al B. Benson III, Steven J. Cohen, R. Edward Coleman, Dominique Delbeke, Maria Ho, David H. Ilson, Gregory P. Kalemkerian, Richard J. Lee, Jay S. Loeffler, Homer A. Macapinlac, Robert J. Morgan Jr., Barry Alan Siegel, Seema Singhal, Douglas S. Tyler and Richard J. Wong

Use of PET is widespread and increasing in the United States, mainly for oncologic applications. In November 2006, the National Comprehensive Cancer Network (NCCN) gathered a panel of experts to review the literature and develop clinical recommendations for using PET scans in lymphoma and non–small cell lung, breast, and colorectal cancers. However, because its use is not restricted to these diseases, and evidence is accumulating for its application in other types of cancers, NCCN convened a second meeting in December 2008 to expand on the initial report. A multidisciplinary panel met to discuss the current data on PET application for various tumor types, including genitourinary, gynecologic, pancreatic, hepatobiliary, thyroid, brain, small cell lung, gastric, and esophageal cancers, and sarcoma and myeloma. This report summarizes the proceedings of this meeting, including discussions of the background of PET, the role of PET in oncology, principles of PET use, emerging applications, and possible future developments.

Full access

Randall W. Burt, James S. Barthel, Kelli Bullard Dunn, Donald S. David, Ernesto Drelichman, James M. Ford, Francis M. Giardiello, Stephen B. Gruber, Amy L. Halverson, Stanley R. Hamilton, Mohammad K. Ismail, Kory Jasperson, Audrey J. Lazenby, Patrick M. Lynch, Edward W. Martin Jr., Robert J. Mayer, Reid M. Ness, Dawn Provenzale, M. Sambasiva Rao, Moshe Shike, Gideon Steinbach, Jonathan P. Terdiman and David Weinberg

Overview Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and women in the United States. In 2009, an estimated 106,100 new cases of colon cancer and 40,870 new cases of rectal cancer will occur in the United States, and 49,920 people will die of colon and rectal cancers. Patients with lo-calized colon cancer have a 90% 5-year survival rate. CRC mortality can be reduced through early diagnosis and cancer prevention with polypectomy. Therefore, the goal of CRC screening is to detect cancer at an early, curable stage and to detect and remove clinically significant adenomas. Screening tests that can detect both early cancer and adenomatous polyps are encouraged, although the panel recognizes that patient preference and resource accessibility play a large role in test selection. Curent technology falls into 2 broad categories: structural and stool/fecal-based tests. Although some techniques are better established than others, panelists agreed that any screening is better than none. Structural Screening Tests Structural tests are able to detect both early cancer and adenomatous polyps using endoscopic or radiologic imaging. These have several limitations, including their relative invasiveness, the need for dietary preparation and bowel cleansing, and the time dedicated to the examination (typically a day). Endoscopic examinations require informed consent and sedation, and have related risks, including perforation and bleeding. Recently, a large cohort study of 53,220 Medicare patients between ages 66 and 95 years showed that risk for adverse events after colonoscopy increases with age. Colonoscopy Colonoscopy is the most complete...
Full access

Randall W. Burt, Jamie A. Cannon, Donald S. David, Dayna S. Early, James M. Ford, Francis M. Giardiello, Amy L. Halverson, Stanley R. Hamilton, Heather Hampel, Mohammad K. Ismail, Kory Jasperson, Jason B. Klapman, Audrey J. Lazenby, Patrick M. Lynch, Robert J. Mayer, Reid M. Ness, Dawn Provenzale, M. Sambasiva Rao, Moshe Shike, Gideon Steinbach, Jonathan P. Terdiman, David Weinberg, Mary Dwyer and Deborah Freedman-Cass

Mortality from colorectal cancer can be reduced by early diagnosis and by cancer prevention through polypectomy. These NCCN Guidelines for Colorectal Cancer Screening describe various colorectal screening modalities and recommended screening schedules for patients at average or increased risk of developing colorectal cancer. In addition, the guidelines provide recommendations for the management of patients with high-risk colorectal cancer syndromes, including Lynch syndrome. Screening approaches for Lynch syndrome are also described.

Full access

Douglas E. Wood, George A. Eapen, David S. Ettinger, Lifang Hou, David Jackman, Ella Kazerooni, Donald Klippenstein, Rudy P. Lackner, Lorriana Leard, Ann N. C. Leung, Pierre P. Massion, Bryan F. Meyers, Reginald F. Munden, Gregory A. Otterson, Kimberly Peairs, Sudhakar Pipavath, Christie Pratt-Pozo, Chakravarthy Reddy, Mary E. Reid, Arnold J. Rotter, Matthew B. Schabath, Lecia V. Sequist, Betty C. Tong, William D. Travis, Michael Unger and Stephen C. Yang

Full access

Dawn Provenzale, Kory Jasperson, Dennis J. Ahnen, Harry Aslanian, Travis Bray, Jamie A. Cannon, Donald S. David, Dayna S. Early, Deborah Erwin, James M. Ford, Francis M. Giardiello, Samir Gupta, Amy L. Halverson, Stanley R. Hamilton, Heather Hampel, Mohammad K. Ismail, Jason B. Klapman, David W. Larson, Audrey J. Lazenby, Patrick M. Lynch, Robert J. Mayer, Reid M. Ness, M. Sambasiva Rao, Scott E. Regenbogen, Moshe Shike, Gideon Steinbach, David Weinberg, Mary A. Dwyer, Deborah A. Freedman-Cass and Susan Darlow

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Colorectal Cancer Screening provide recommendations for selecting individuals for colorectal cancer screening, and for evaluation and follow-up of colon polyps. These NCCN Guidelines Insights summarize major discussion points of the 2015 NCCN Colorectal Cancer Screening panel meeting. Major discussion topics this year were the state of evidence for CT colonography and stool DNA testing, bowel preparation procedures for colonoscopy, and guidelines for patients with a positive family history of colorectal cancer.

Full access

Douglas E. Wood, Ella A. Kazerooni, Scott L. Baum, George A. Eapen, David S. Ettinger, Lifang Hou, David M. Jackman, Donald Klippenstein, Rohit Kumar, Rudy P. Lackner, Lorriana E. Leard, Inga T. Lennes, Ann N.C. Leung, Samir S. Makani, Pierre P. Massion, Peter Mazzone, Robert E. Merritt, Bryan F. Meyers, David E. Midthun, Sudhakar Pipavath, Christie Pratt, Chakravarthy Reddy, Mary E. Reid, Arnold J. Rotter, Peter B. Sachs, Matthew B. Schabath, Mark L. Schiebler, Betty C. Tong, William D. Travis, Benjamin Wei, Stephen C. Yang, Kristina M. Gregory and Miranda Hughes

Lung cancer is the leading cause of cancer-related mortality in the United States and worldwide. Early detection of lung cancer is an important opportunity for decreasing mortality. Data support using low-dose computed tomography (LDCT) of the chest to screen select patients who are at high risk for lung cancer. Lung screening is covered under the Affordable Care Act for individuals with high-risk factors. The Centers for Medicare & Medicaid Services (CMS) covers annual screening LDCT for appropriate Medicare beneficiaries at high risk for lung cancer if they also receive counseling and participate in shared decision-making before screening. The complete version of the NCCN Guidelines for Lung Cancer Screening provides recommendations for initial and subsequent LDCT screening and provides more detail about LDCT screening. This manuscript focuses on identifying patients at high risk for lung cancer who are candidates for LDCT of the chest and on evaluating initial screening findings.

Full access

Douglas E. Wood, Ella Kazerooni, Scott L. Baum, Mark T. Dransfield, George A. Eapen, David S. Ettinger, Lifang Hou, David M. Jackman, Donald Klippenstein, Rohit Kumar, Rudy P. Lackner, Lorriana E. Leard, Ann N.C. Leung, Samir S. Makani, Pierre P. Massion, Bryan F. Meyers, Gregory A. Otterson, Kimberly Peairs, Sudhakar Pipavath, Christie Pratt-Pozo, Chakravarthy Reddy, Mary E. Reid, Arnold J. Rotter, Peter B. Sachs, Matthew B. Schabath, Lecia V. Sequist, Betty C. Tong, William D. Travis, Stephen C. Yang, Kristina M. Gregory and Miranda Hughes

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Lung Cancer Screening provide recommendations for selecting individuals for lung cancer screening, and for evaluation and follow-up of nodules found during screening, and are intended to assist with clinical and shared decision-making. These NCCN Guidelines Insights focus on the major updates to the 2015 NCCN Guidelines for Lung Cancer Screening, which include a revision to the recommendation from category 2B to 2A for one of the high-risk groups eligible for lung cancer screening. For low-dose CT of the lung, the recommended slice width was revised in the table on “Low-Dose Computed Tomography Acquisition, Storage, Interpretation, and Nodule Reporting.”