Search Results

You are looking at 1 - 6 of 6 items for

  • Author: David Hong x
  • Refine by Access: All x
Clear All Modify Search
Full access

Multidisciplinary Management of Early-Stage Rectal Cancer

John G. Phillips, Theodore S. Hong, and David P. Ryan

Because patients with locally advanced rectal cancer are at high risk for both recurrence and distant disease, they require adjuvant therapy. In the United States, the current standard of care is neoadjuvant chemoradiation followed by surgery and adjuvant chemotherapy. Neoadjuvant chemoradiation has been shown to improve local recurrence rates and decrease toxicity. However in the era of total mesorectal excision surgery, no study has shown a survival benefit to either chemoradiation or postoperative chemotherapy. Newer biologic therapies, although promising in initial early trials, have yet to show a significant benefit in adjuvant therapy for rectal cancer.

Full access

EPR24-109: Intentional Weight Loss and Associated Cancer Incidence Among Patients With Overweight or Obesity: A Systematic Literature Review

Chi-Yin Liao, Kristin M. Sheffield, Meredith M. Hoog, David Schapiro, Raghuvir Keni, Wambui Grace Gathirua-Mwangi, and Hong Kan

Full access

Effect of Patient Navigation on Completion of Lung Cancer Screening in Vulnerable Populations

Sheena Bhalla, Vijaya Natchimuthu, Jessica L. Lee, Urooj Wahid, Hong Zhu, Noel O. Santini, Travis Browning, Heidi A. Hamann, David H. Johnson, Hsienchang Chiu, Simon J. Craddock Lee, and David E. Gerber

Background: Although low-dose, CT–based lung cancer screening (LCS) can decrease lung cancer mortality in high-risk individuals, the process may be complex and pose challenges to patients, particularly those from minority underinsured and uninsured populations. We conducted a randomized controlled trial of telephone-based navigation for LCS within an integrated, urban, safety-net health care system. Patients and Methods: Patients eligible for LCS were randomized (1:1) to usual care with or without navigation at Parkland Health in Dallas, Texas. The primary endpoint was completion of the first 3 consecutive steps in a patient’s LCS process. We explored differences in completion of LCS steps between navigation and usual care groups, controlling for patient characteristics using the chi-square test. Results: Patients (N=447) were randomized to either navigation (n=225) or usual care (n=222). Mean patient age was 62 years, 46% were female, and 69% were racial/ethnic minorities. There was no difference in completion of the first 3 steps of the LCS algorithm between arms (12% vs 9%, respectively; P=.30). For ordered LCS steps, completion rates were higher among patients who received navigation (86% vs 79%; P=.03). The primary reason for step noncompletion was lack of order placement. Conclusions: In this study, lack of order placement was a key reason for incomplete LCS steps. When orders were placed, patients who received navigation had higher rates of completion. Clinical team education and enhanced electronic health record processes to simplify order placement, coupled with patient navigation, may improve LCS in safety-net health care systems.

Full access

Phase I Clinical Trial of Bendamustine and Bevacizumab for Patients With Advanced Cancer

Apostolia M. Tsimberidou, Alexandra M. Adamopoulos, Yang Ye, Sarina Piha-Paul, Filip Janku, Siqing Fu, David Hong, Gerald S. Falchook, Aung Naing, Jennifer Wheler, Adoneca Fortier, Razelle Kurzrock, and Kenneth R. Hess

Bendamustine, a cytotoxic alkylating agent, has shown promising results in solid tumors. An investigator-initiated phase I clinical trial of the anti-vascular endothelial growth factor agent bevacizumab and bendamustine was conducted in patients with advanced cancer, because the 2 drugs have different mechanisms of antitumor activity and nonoverlapping toxicity. Patients were treated with escalating doses of intravenous bendamustine (70, 80, 90, and 100 mg/m2; days 1 and 2) and intravenous bevacizumab (10 mg/kg; days 1 and 15). A conventional “3 + 3” study design was used. Forty-two patients were treated: 23 women and 19 men. The median age was 60 years. Patients had received a median of 4 prior therapies (range, 1-10). The most common cancer types were colorectal (n=9), head and neck (n= 8), non-small cell lung (n=6), and breast (n=5). Overall, 117 cycles were administered (median per patient, 2; range, 1-8). No dose-limiting toxicities were noted during the escalation phase. Therefore, the highest dose (level 4) of bendamustine (100 mg/m2) was used in the expansion phase. The most common toxicities were fatigue (n=22), nausea (n=14), anorexia (n=9), and thrombocytopenia (n=7). Of 38 patients who were evaluable for response, 23 (61%) had stable disease, including 2 (5.2%) who had stable disease for 6 months or more (1 with adenoid cystic carcinoma and 1 with non-small cell lung cancer). This regimen of bendamustine (100 mg/m2) and bevacizumab (10 mg/kg) was well tolerated and yielded disease stabilization in selected heavily pretreated patients with advanced cancer.

Full access

Incident Cancer Detection During Multiple Waves of COVID-19: The Tsunami After the Earthquake

Rui Fu, Rinku Sutradhar, Qing Li, Timothy P. Hanna, Kelvin K.W. Chan, Jonathan C. Irish, Natalie Coburn, Julie Hallet, Anna Dare, Simron Singh, Ambica Parmar, Craig C. Earle, Lauren Lapointe-Shaw, Monika K. Krzyzanowska, Antonio Finelli, Alexander V. Louie, Nicole J. Look Hong, Ian J. Witterick, Alyson Mahar, David Gomez, Daniel I. McIsaac, Danny Enepekides, David R. Urbach, and Antoine Eskander

No population-based study exists to demonstrate the full-spectrum impact of COVID-19 on hindering incident cancer detection in a large cancer system. Building upon our previous publication in JNCCN, we conducted an updated analysis using 12 months of new data accrued in the pandemic era (extending the study period from September 26, 2020, to October 2, 2021) to demonstrate how multiple COVID-19 waves affected the weekly cancer incidence volume in Ontario, Canada, and if we have fully cleared the backlog at the end of each wave.

Full access

Incident Cancer Detection During the COVID-19 Pandemic

Antoine Eskander, Qing Li, Jiayue Yu, Julie Hallet, Natalie G. Coburn, Anna Dare, Kelvin K.W. Chan, Simron Singh, Ambica Parmar, Craig C. Earle, Lauren Lapointe-Shaw, Monika K. Krzyzanowska, Timothy P. Hanna, Antonio Finelli, Alexander V. Louie, Nicole Look Hong, Jonathan C. Irish, Ian J. Witterick, Alyson Mahar, Christopher W. Noel, David R. Urbach, Daniel I. McIsaac, Danny Enepekides, and Rinku Sutradhar

Background: Resource restrictions were established in many jurisdictions to maintain health system capacity during the COVID-19 pandemic. Disrupted healthcare access likely impacted early cancer detection. The objective of this study was to assess the impact of the pandemic on weekly reported cancer incidence. Patients and Methods: This was a population-based study involving individuals diagnosed with cancer from September 25, 2016, to September 26, 2020, in Ontario, Canada. Weekly cancer incidence counts were examined using segmented negative binomial regression models. The weekly estimated backlog during the pandemic was calculated by subtracting the observed volume from the projected/expected volume in that week. Results: The cohort consisted of 358,487 adult patients with cancer. At the start of the pandemic, there was an immediate 34.3% decline in the estimated mean cancer incidence volume (relative rate, 0.66; 95% CI, 0.57–0.75), followed by a 1% increase in cancer incidence volume in each subsequent week (relative rate, 1.009; 95% CI, 1.001–1.017). Similar trends were found for both screening and nonscreening cancers. The largest immediate declines were seen for melanoma and cervical, endocrinologic, and prostate cancers. For hepatobiliary and lung cancers, there continued to be a weekly decline in incidence during the COVID-19 period. Between March 15 and September 26, 2020, 12,601 fewer individuals were diagnosed with cancer, with an estimated weekly backlog of 450. Conclusions: We estimate that there is a large volume of undetected cancer cases related to the COVID-19 pandemic. Incidence rates have not yet returned to prepandemic levels.