Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Christopher D. Gocke x
Clear All Modify Search
Full access

Justin Lee, Jennifer Axilbund, W. Brian Dalton, Daniel Laheru, Stanley Watkins, David Chu, Karen Cravero, Berry Button, Kelly Kyker-Snowman, Ian Waters, Christopher D. Gocke, Josh Lauring and Ben Ho Park

Next-generation sequencing (NGS) is increasingly being used in cancer care to identify both somatic tumor driver mutations that can be targeted for therapy, and heritable mutations in the germline associated with increased cancer risk. This report presents a case of a JAK2 V617F mutation falsely identified as a duodenal cancer mutation via NGS. The patient was found to have a history of polycythemia vera, a disorder with a high incidence of JAK2 somatic mutations. Buccal cell DNA showed heterozygosity for the mutation, suggesting that it was potentially germline. However, subsequent resequencing of tumor, adjacent normal tissue, and fingernail DNA confirmed the mutation was somatic, and its presence in tumor and buccal cells resulted from contaminating blood cells. This report highlights important nuances of NGS that can lead to misinterpretation of results with potential clinical implications.

Full access

Razelle Kurzrock, A. Dimitrios Colevas, Anthony Olszanski, Wallace Akerley, Carlos L. Arteaga, William E. Carson III, Jeffrey W. Clark, John F. DiPersio, David S. Ettinger, Robert J. Morgan Jr, Lee S. Schwartzberg, Alan P. Venook, Christopher D. Gocke, Jonathan Tait and F. Marc Stewart

Background: With advances such as next-generation sequencing (NGS) increasing understanding of the basis of cancer and its response to treatment, NCCN believes it is important to understand how molecular profiling/diagnostic testing is being performed and used at NCCN Member Institutions and their community affiliates. Methods: The NCCN Oncology Research Program's Investigator Steering Committee and the NCCN Best Practices Committee gathered baseline information on the use of cancer-related molecular testing at NCCN Member Institutions and community members of the NCCN Affiliate Research Consortium through 2 separate surveys distributed in December 2013 and September 2014, respectively. Results: A total of 24 NCCN Member Institutions and 8 affiliate sites provided quantitative and qualitative data. In the context of these surveys, “molecular profiling/diagnostics” was defined as a panel of at least 10 genes examined as a diagnostic DNA test in a Clinical Laboratory Improvement Amendments (CLIA)–certified laboratory. Conclusions: Results indicated that molecular profiling/diagnostics are used at 100% of survey respondents' institutions to make patient care decisions. However, challenges relating to reimbursement, lack of data regarding actionable targets and targeted therapies, and access to drugs on or off clinical trials were cited as barriers to integration of molecular profiling into patient care. Frameworks for using molecular diagnostic results based on levels of evidence, alongside continued research into the predictive value of biomarkers and targeted therapies, are recommended to advance understanding of the role of genomic biomarkers. Greater evidence and consensus regarding the clinical and cost-effectiveness of molecular profiling may lead to broader insurance coverage and increased integration into patient care.