The Role of Maintenance Therapy in the Treatment of Multiple Myeloma

Ashraf Z. Badros, MD, Baltimore, Maryland

Key Words
Autologous stem cell transplantation, interferon, thalidomide, bortezomib, lenalidomide

Abstract
Maintenance therapy in multiple myeloma has been under investigation for more than 3 decades, without evidence of clear benefit until recently. Chemotherapy maintenance offers no benefit after conventional or high-dose treatment. Interferon-based maintenance is associated with minimal improvements in clinical outcomes, but is poorly tolerated. Results of corticosteroid maintenance studies have been conflicting; at least one randomized trial showed improved survival with prednisone maintenance after conventional chemotherapy. The role of the novel agents thalidomide, lenalidomide, and bortezomib as maintenance is emerging. Most reported maintenance studies have evaluated thalidomide, alone or in combination with a corticosteroid. Several of these studies suggest that thalidomide-based maintenance prolongs overall survival after autologous stem cell transplantation. Important questions that have not yet been resolved include the optimal dose and duration of thalidomide, whether clinical benefit depends on response to induction therapy and risk for relapse, and whether reported benefits are caused by cytoreduction or eradication of minimal residual disease, especially with bortezomib maintenance. Ongoing randomized trials are evaluating lenalidomide and bortezomib maintenance therapies to better define the role of these drugs as maintenance in multiple myeloma. (JNCCN 2010;8[Suppl 1]:S21–S27)

Maintenance Therapy in the Treatment of Multiple Myeloma (MM) comprises any therapy given “following completion of induction treatment in responding or nonprogressing patients, with the goal of prolonging survival.” However, maintenance therapy practice patterns vary considerably because of conflicting data about its effectiveness. Currently, NCCN recommends thalidomide (category 1 recommendation) with or without prednisone (category 2B) for maintenance therapy; the roles of interferon and corticosteroids are less clear (category 2B).

This article summarizes the results of many clinical trials that have been designed to evaluate maintenance after conventional chemotherapy and high-dose therapy and identifies areas of current controversy in an effort to understand the role of maintenance therapy in managing patients with newly diagnosed MM.

Maintenance After Conventional Chemotherapy
Because of the increased risk for acute myeloid leukemia with prolonged alkylating agent therapy, alternatives to this approach were being sought as early as the 1980s. Interferon-alpha was the subject of numerous trials that produced inconclusive results. Two meta-analyses, one performed using individual patient data and the other using published data, found a small but statistically significant survival benefit when interferon maintenance was used after conventional therapy. However, few patients can tolerate the substantial toxicities of interferon therapy, and therefore interferon maintenance is rarely used.

Several studies have evaluated corticosteroids, with or without interferon, as maintenance, but the data are insufficient to draw firm conclusions. When compared directly with interferon maintenance, dexamethasone, 20 mg/m², given orally on days 1 to 4 of a 28-day cycle produced a similar median duration of remission, but significantly fewer patients treated with dexamethasone maintenance responded to repeat melphalan/dexamethasone at relapse relative to those treated with in-
Data on bortezomib-based maintenance strategies are beginning to emerge. A randomized phase III trial conducted by the Italian Multiple Myeloma Group is comparing bortezomib/melphalan/prednisone/thalidomide (VMPT) induction followed by bortezomib/thalidomide maintenance to bortezomib/melphalan/prednisone (VMP) induction without maintenance in elderly patients with newly diagnosed myeloma. Results presented at the 2008 American Society of Hematology Annual Meeting showed a higher response rate for VMPT relative to VMP (complete response [CR] rate, 31% vs. 16%; \(P = .003 \); very good partial response [VGPR] rate, 55% vs. 42%; \(P = .02 \)) but no difference in OS at 3 years.

Maintenance After Autologous Stem Cell Transplantation

Chemotherapy and Interferon Maintenance After Autologous Stem Cell Transplantation

As with conventional induction regimens, chemotherapy is not currently recommended as a maintenance strategy after autologous stem cell transplantation (ASCT). Interferon is currently considered a maintenance option in the NCCN Clinical Practice Guidelines in Oncology for Multiple Myeloma (to view the most recent version of these guidelines, visit the NCCN Web site at www.NCCN.org), based on low-level evidence and non-uniform NCCN consensus (category 2B). However, given the lack of clear activity and substantial toxicity associated with interferon and the availability of new agents, research into interferon maintenance has been largely abandoned.

Novel Agents After ASCT

Thalidomide is the best studied of the novel agents in the post-ASCT maintenance setting, although randomized clinical trials of bortezomib and lenalidomide are underway (Table 1). Four randomized phase III trials have been completed to establish the role of thalidomide-based maintenance after ASCT (Table 2). In all 4 studies, improvements in response (CR) and PFS were seen. Of the 4 trials, 3 also reported significant improvements in OS, and a meta-analysis of these data showed a trend toward improved survival with maintenance thalidomide after ASCT (Figure 1). When the trial that in-
cluded thalidomide during induction was excluded, the OS benefit became significant (HR, 0.49; 95% CI, 0.32–0.74). Peripheral neuropathy complicated the treatment course in all 4 studies, and, unsurprisingly, the incidence was highest when the duration of thalidomide maintenance was prolonged. None of the studies, however, determined the optimal dose or duration of thalidomide-based maintenance after ASCT.

A recent update to one of the trials, conducted at a median follow-up of 6 years, suggests that thalidomide may benefit patients with high-risk myeloma. The estimated OS rate at 5 years was 56% for patients with cytogenetic abnormalities treated with thalidomide versus 43% for those with cytogenetic abnormalities in the control group ($P = .02$).

Results from other randomized trials of thalidomide maintenance were presented at national meetings within the past year, none of which supports an improvement in OS. The United Kingdom Medical Research Council (MRC) Myeloma IX study evaluated thalidomide maintenance after primary treatment of myeloma (either ASCT or conventional chemotherapy, depending on the clinical situation). A total of 820 patients were randomly assigned to thalidomide maintenance (100 mg/d until relapse) or no maintenance, making this the largest trial conducted. Overall, PFS was numerically higher in the thalidomide arm, but the improvement was statistically significant only among patients who ex-

<table>
<thead>
<tr>
<th>Clinical Trial and Accrual Goal</th>
<th>Primary Treatment</th>
<th>Maintenance Regimen(s)</th>
<th>Primary End Point</th>
</tr>
</thead>
</table>
| NCIC MY.10 (N = 324) [NCT00049673] | ASCT | • Thalidomide daily with alternate-day prednisone
• Observation
Maintenance × 4 y | OS |
| NHLBI/ BMTCTN0102 (N = 710) [NCT00075829] | Tandem transplantation (no HLA-matched sibling) or ASCT followed by mini-allogeneic SCT (HLA-matched sibling) | • Thalidomide/dexamethasone
• Observation
Maintenance × 1 y; only administered to patients undergoing tandem transplantation | 3-y PFS |
| CALGB 100104 (N = 462) [NCT00114101] | ASCT | • Lenalidomide
• Placebo
Maintenance continues as tolerated or until progression; only administered to patients with stable or responding disease after ASCT | TTP |
| IFM 2005-02 (N = 614) [NCT000430365] | ASCT | • Lenalidomide
• Placebo
Duration not specified | Duration of post-ASCT response |
| Gesellschaft für Medizinische Innovation (N = 194) [NCT00891384] | ASCT
Consolidation: lenalidomide, 25 mg, days 1–21 q4w × 6 | • Lenalidomide, 5 mg, days 1–21 q4w
• Lenalidomide, 25 mg/d, days 1–21 q4w
Maintenance continues until disease progression | EFS |
| HOVON-65/GMMG-HD4 (N = 825) | Induction: VAD vs. PAD
Stem cell collection: CAD ASCT: HDM | • Thalidomide 50 mg/d
• Bortezomib 1.3 mg/m² q2w
Maintenance × 2 y | PFS |
| PETHEMA GEM05 (N = 390) [NCT00461747] | Induction: VBMCP-VBAD-bortezomib vs. TD vs. VTD followed by ASCT | • Interferon
• Thalidomide
• Thalidomide plus bortezomib
Maintenance × 3 y | Not stated |

Abbreviations: ASCT, autologous stem cell transplantation; CAD, cyclophosphamide/doxorubicin/dexamethasone; EFS, event-free survival; HDM, high-dose melphalan; HLA, histocompatibility leukocyte antigen; OS, overall survival; PAD, bortezomib/doxorubicin/dexamethasone; PFS, progression-free survival; SCT, stem cell transplantation; TD, thalidomide/dexamethasone; TTP, time-to-progression; VAD, vincristine/doxorubicin/dexamethasone; VBMCP-VBAD, vincristine/carmustine/melphalan/cyclophosphamide/prednisone alternating with vincristine/carmustine/doxorubicin/dexamethasone; VTD, bortezomib/thalidomide/dexamethasone.
Two large studies have reported that the survival benefits with thalidomide were limited to patients who did not experience at least a VGPR, supporting the hypothesis that post-transplantation thalidomide provides additional cytoreduction rather than eradication or suppression of minimal residual disease. Currently, however, initial response to therapy should not be used to guide maintenance treatment decisions. Furthermore, the optimal dose and duration of maintenance thalidomide remains to be determined. The incidence of neuropathy is clearly cumulative and dose-related, partly leading to the recommendation that thalidomide not be used throughout the entire treatment course. Doses of 200 mg daily or more are difficult to administer on a long-term basis. Lower-dose (100 mg/d) and time-limited therapy (6–12 months) were efficacious in studies by the Tunisian Multiple Myeloma Study Group (TMMSG) and Australasian Leukaemia and Lymphoma Group (ALLG), but the United Kingdom MRC Myeloma IX study did not show a survival benefit with a 100-mg daily thalidomide maintenance regimen. Therefore, although data support a role for thalidomide-based maintenance therapy after ASCT, several important questions remain, such as whether thalidomide given post-transplantation truly maintains response versus early initiation of salvage therapy. Two large studies have reported that the survival benefits with thalidomide were limited to patients who did not experience at least a VGPR, supporting the hypothesis that post-transplantation thalidomide provides additional cytoreduction rather than eradication or suppression of minimal residual disease. Currently, however, initial response to therapy should not be used to guide maintenance treatment decisions.

Figure 1 Overall survival with maintenance thalidomide. (A) All trials. (B) Excluding Barlogie 2006. Abbreviations: HR, hazard ratio; OS, overall survival; SE, standard error.

Table 2: Published Randomized Trials of Thalidomide-based Maintenance Therapy After ASCT

<table>
<thead>
<tr>
<th>Study</th>
<th>Regimens</th>
<th>Thalidomide Regimen</th>
<th>Efficacy</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT2<sup>13</sup> Newly diagnosed progressive or symptomatic MM, ≤ 75 y (N = 668)</td>
<td>Induction: 4 cycles of chemotherapy, with or without thalidomide
ASCT: tandem transplantation with melphalan-based preparative regimens, with or without thalidomide
Consolidation: randomized to 1 of 3 regimens, with or without thalidomide
Maintenance: IFN tid; with or without thalidomide
Cycles of dexamethasone, 40 mg, given on days 1–4, 9–12, 17–20 q3mo for 4 cycles, first year only</td>
<td>Induction: 400 mg/d
ASCT: 100 mg/d, initiated after platelet recovery
Consolidation: 200 mg/d
Maintenance: 100 mg/d for the first year and 50 mg/d thereafter</td>
<td>Thalidomide vs. observation: CR: 62% vs. 43%; P < .001
5-y EFS: 56% vs. 44%; P = .01
MST after relapse: 1.1 vs. 2.7 y; P = .001</td>
<td>> Grade 2 AEs, thalidomide vs. observation: Thrombosis/embolism: 30% vs. 17%; P < .001
PN: 27% vs. 17%; P < .001
Bowel obstruction: 14% vs. 8%; P = .02
Tremor: 13% vs. 6%; P = .003
Syncope: 12% vs. 4%; P < .001</td>
</tr>
<tr>
<td>IFM 99-02<sup>14</sup> MM without or with one adverse prognostic factor, < 65 y (N = 708)</td>
<td>Induction: VAD × 3–4 cycles
ASCT: tandem transplantation with melphalan-based preparative regimens
Randomization to maintenance with: A) no maintenance
B) pamidronate, 90 mg, IV q4w until progression
C) pamidronate plus thalidomide</td>
<td>Maintenance arm C received thalidomide, 400 mg/d, with reduction to minimum of 50 mg/d allowed for toxicity; thalidomide given until disease progression</td>
<td>Arms A vs. B vs. C: Best response after randomization (P = .001): CR/VGPR: 55% vs. 57% vs. 67%
PR: 37% vs. 37% vs. 30%
MR: 7.5% vs. 5.5% vs. 3%
3-y probability of EFS: 36% vs. 37% vs. 52%; P < .009
4-y probability of OS: 77% vs. 74% vs. 87%; P < .04</td>
<td>Grade 3/4 AEs, arm A vs. B vs. C: PN: 1% vs. 2% vs. 7%; P < .001
Fatigue: 1% vs. 2% vs. 6%; P < .001
Constipation: 0% vs. 0% vs. 1%; P < .001
Neutropenia: 0% vs. 1% vs. 6%; P = .001
Cardiac: 0% vs. 0% vs. 1%; P = .04</td>
</tr>
<tr>
<td>TMM5G<sup>15</sup> Stage II/III Durie-Salmon MM, < 60 y (N = 202)</td>
<td>Induction: thalidomide with intermittent dexamethasone
ASCT: cyclophosphamide/GCSF for stem cell collection
Randomization: A) Tandem transplantation with melphalan-based preparative regimens; thalidomide given at progression or relapse
B) Single transplantation with melphalan-based preparative regimen, with thalidomide maintenance; second ASCT at progression or relapse</td>
<td>Induction: 200 mg/d for 75 d
Tandem transplantation: salvage thalidomide, 200 mg/d
Single transplantation arm: 100 mg/d initiated 3 mo post-ASCT and continued for 6 mo</td>
<td>Arm A vs. B: CR/VGPR: * 54% vs. 68%; P = .04
PR: * 39% vs. 27%; P = NS
MR: * 3% vs. 3%; P = NS
3-y PFS: 57% vs. 85%; P = .02
3-y OS: 65% vs. 85%; P = .04</td>
<td>Grade 3/4 AEs, salvage thalidomide (arm A) vs. maintenance thalidomide (arm B): PN: 11% vs. 4%; Fatigue: 6% vs. 3%; Contraction: 6% vs. 1%; Infection: 0% vs. 1%</td>
</tr>
<tr>
<td>ALLG MM6<sup>16</sup> Newly diagnosed, symptomatic MM, ≤ 70 y (N = 269)</td>
<td>Induction: thalidomide with intermittent dexamethasone
ASCT: single transplantation with melphalan-based preparative regimen
Randomization to: A) Prednisolone, 50 mg, every other day
B) Prednisolone plus thalidomide</td>
<td>Arm B received 100 mg/d, increased to 200 mg after 14 days as tolerated for up to 12 mo</td>
<td>Arm A vs. B: CR/VGPR at 1 y: 40% vs. 63%; P < .001
3-y PFS: 23% vs. 42%; P < .001
3-y OS: 75% vs. 86%; P = .004</td>
<td>Grade 3/4 AEs, arm A vs. arm B: PN: 0% vs. 10%; P < .001
Constipation: 0% vs. 4%; P = .047</td>
</tr>
</tbody>
</table>

Abbreviations: AEs, adverse events; ALLG, Australasian Leukaemia and Lymphoma Group; ASCT, autologous stem cell transplantation; CR, complete response; EFS, event-free survival; GCSF, granulocyte colony-stimulating factor; IFN, interferon-alpha; MM, multiple myeloma; MR, minimal response; MST, median survival time; NS, not significant; OS, overall survival; PFS, progression-free survival; PN, peripheral neuropathy; PR, partial response; TT2, Total Therapy 2; TTMSG, Tunisian Multiple Myeloma Study Group; VAD, vincristine/doxorubicin/dexamethasone; VGPR, very good partial response.

*Assessed 6 months after second transplantation in arm A and 3 months after thalidomide maintenance in arm B.
As these authors describe elsewhere in this supplement, increasing evidence suggests that the novel agents bortezomib and lenalidomide may overcome the poor prognosis associated with cytogenetic abnormalities in myeloma.²⁴ How these findings from the induction setting translate into the maintenance setting remains to be determined in appropriately designed clinical trials.

Conclusions
The role of maintenance therapy after conventional chemotherapy remains to be determined, but there is a paucity of ongoing research in this setting. Much work is needed to evaluate maintenance therapy after ASCT, yet the optimal treatment regimen has not been identified. Thalidomide is the first novel agent to be studied as a maintenance therapy and shows the most promise. However, it may work through a direct cytoreductive effect rather than a true maintenance effect, given that several trials showed benefit only in patients who had not experienced at least a VGPR before initiating maintenance treatment. The optimal dose and duration of thalidomide maintenance remains to be determined, as does the appropriate patient population for routine treatment. Moreover, whether thalidomide should be used as maintenance or at relapse remains a matter of debate. More robust results of trials with lenalidomide and bortezomib maintenance therapies are eagerly awaited.

Acknowledgment
The author thanks Lori Keys Pender, MPH, BCOP, for medical writing assistance.

References

