Survivorship, Version 2.2018

Clinical Practice Guidelines in Oncology

Crystal S. Denlinger, MD; Tara Sanft, MD; K. Scott Baker, MD, MS; Gregory Broderick, MD; Wendy Demark-Wahnefried, PhD, RD; Debra L. Friedman, MD, MS; Mindy Goldman, MD; Melissa Hudson, MD; Nazanin Khakpour, MD; Allison King, MD; Divya Koura, MD; Robin M. Lally, PhD, RN, MS; Terry S. Langbaum, MAS; Allison L. McDonough, MD; Michelle Melisko, MD; Jose G. Montoya, MD; Kathi Mooney, RN, PhD; Javid J. Moslehi, MD; Tracey O’Connor, MD; Linda Overholser, MD, MPH; Electra D. Paskett, PhD; Jeffrey Peppercorn, MD, MPH; William Pirl, MD; M. Alma Rodriguez, MD; Kathryn J. Ruddy, MD, MPH; Paula Silverman, MD; Sophia Smith, PhD, MSW; Karen L. Syrjala, PhD; Amye Tevaarwerk, MD; Susan G. Urba, MD; Mark T. Wakabayashi, MD, MPH; Phyllis Zee, MD, PhD; Nicole R. McMillian, MS; and Deborah A. Freedman-Cass, PhD

Anthracycline-Induced Cardiac Toxicity

Many cancer treatments, including chemotherapeutics, targeted agents, hormonal therapies, and radiotherapy, are associated with cardiovascular toxicities.1–7 Cardiovascular sequelae can include arrhythmias, pericardial disease, hypertension, thrombosis, cardiomyopathy/heart failure, and vascular and metabolic issues. Survivors of some cancer types have a

Abstract

The NCCN Guidelines for Survivorship provide screening, evaluation, and treatment recommendations for common physical and psychosocial consequences of cancer and cancer treatment to help healthcare professionals who work with survivors of adult-onset cancer in the posttreatment period. This portion of the guidelines describes recommendations regarding the management of anthracycline-induced cardiotoxicity and lymphedema. In addition, recommendations regarding immunizations and the prevention of infections in cancer survivors are included.

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.
Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.
Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.
Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Clinical trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines® is expected to use independent medical judgment in the context of individual circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their applications or use in any way. The full NCCN Guidelines for Survivorship are not printed in this issue of JNCCN but can be accessed online at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2018. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

Disclosures for the NCCN Survivorship Panel

At the beginning of each NCCN Guidelines panel meeting, panel members review all potential conflicts of interest. NCCN, in keeping with its commitment to public transparency, publishes these disclosures for panel members, staff, and NCCN itself.

Individual disclosures for the NCCN Survivorship Panel members can be found on page 1247. (The most recent version of these guidelines and accompanying disclosures are available on the NCCN Web site at NCCN.org.)

These guidelines are also available on the Internet. For the latest update, visit NCCN.org.
markedly increased risk of developing cardiovascular disease compared with noncancer populations. As a result, a new field called “cardio-oncology,” focused on the cardiovascular health of patients with cancer and survivors, has become established.

Anthracyclines (eg, doxorubicin, epirubicin, daunorubicin) are used to treat many cancer types, including lymphoma, sarcoma, and breast cancer, and are among the best studied and most common causes of cancer treatment-induced cardiac injury. The mechanism by which anthracyclines cause cardiomyopathy is not fully understood, but likely involves the formation of reactive oxygen species, oxidative injury, and the subsequent induction of apoptosis in cardiac cells. A role for topoisomerase-IIβ in cardiomyocytes in the production of reactive oxygen species in response to anthracyclines has been suggested.

Studies suggest that the incidence of clinical congestive heart failure after anthracycline-based therapy for adult-onset cancer is <5%. For instance, in the NSABP B-31 trial of patients with breast cancer, the rates of symptomatic heart failure after 7 years were 4% in patients treated with anthracycline-based chemotherapy and trastuzumab and 1.3% in those treated with anthracycline-based chemotherapy alone. However, a significantly higher percentage of patients have evidence of subclinical heart failure, with reports of asymptomatic left ventricular ejection fraction (LVEF) decline being 9% to 50% in various studies.

The panel has focused specifically on anthracycline-induced cardiac toxicity in these guidelines. Other systemic therapies (eg, HER2-targeting agents) could also be considered in the development of cardiotoxicity, and studies are needed to determine if there is a synergistic effect. Additionally, the use of agents such as ranolazine to reduce cardiac toxicity or amifampridine to reverse cardiomyopathy induced by anthracyclines is a potential treatment strategy. It is important to monitor cardiac function in patients undergoing anthracycline therapy, and to modify treatment as necessary to prevent cardiotoxicity.

NCCN Survivorship Panel Members

*Crystal S. Denlinger, MD/Chair†
 Fox Chase Cancer Center
*Tara Sanft, MD/Vice-Chair†
 Cancer Center
K. Scott Baker, MD, MSCE
 Fred Hutchinson Cancer Research Center/
 Seattle Cancer Care Alliance
*Gregory Broderick, MD
 Mayo Clinic Cancer Center
Wendy Demark-Wahnefried, PhD, RD
 University of Alabama at Birmingham Comprehensive Cancer Center
Debra L. Friedman, MD, MSE†
 Vanderbilt-Ingram Cancer Center
*Mindy Goldman, MD
 UCSF Helen Diller Family Comprehensive Cancer Center
Melissa Hudson, MD,E†
 St. Jude Children’s Research Hospital/
 The University of Tennessee Health Science Center
Nazarin Khakpour, MD
 Moffitt Cancer Center
Allison King, MD,E†
 Siteman Cancer Center at Barnes-Jewish Hospital and
 Washington University School of Medicine
Divya Koura, MD†
 UC San Diego Moores Cancer Center
Robin M. Lally, PhD, RN, MS#
 Fred & Pamela Buffett Cancer Center
Terry S. Langbaum, MAS Y
 The Sidney Kimmel Comprehensive Cancer Center at
 Johns Hopkins
Allison L. McDonough, MD
 Massachusetts General Hospital Cancer Center
Michelle Melisko, MD†
 UCSF Helen Diller Family Comprehensive Cancer Center
*Jose G. Montoya, MD†
 Stanford Cancer Institute
Kathi Mooney, RN, PhD‡
 Huntsman Cancer Institute at the University of Utah
*Javid J. Mosleh, MD,H
 Vanderbilt-Ingram Cancer Center
Tracey O’Connor, MD†
 Roswell Park Comprehensive Cancer Center
Linda Overholser, MD, MPH†
 University of Colorado Cancer Center
*Electra D. Paskett, PhD,D†
 The Ohio State University Comprehensive Cancer Center –
 James Cancer Hospital and Solove Research Institute
Jeffrey Peppercorn, MD, MPH†
 Massachusetts General Hospital Cancer Center
William Pirl, MD†
 Dana-Farber/Brigham and Women’s Cancer Center
M. Alma Rodriguez, MD,D†
 The University of Texas MD Anderson Cancer Center
Kathryn J. Ruddy, MD, MPH†
 Mayo Clinic Cancer Center
Paula Silverman, MD†
 Case Comprehensive Cancer Center/
 University Hospitals Seidman Cancer Center and
 Cleveland Clinic Taussig Cancer Institute
Sophia Smith, PhD, MSW
 Duke Cancer Institute
*Karen L. Syrjala, PhD,E†
 Fred Hutchinson Cancer Research Center/
 Seattle Cancer Care Alliance
Amye Tevaarwerk, MD†
 University of Wisconsin Carbone Cancer Center
*Susan G. Urba, MD,D†
 University of Michigan Rogel Cancer Center
Mark T. Wakabayashi, MD, MPH,H
 City of Hope National Medical Center
Phyllis Zee, MD, PhD,D†
 Robert H. Lurie Comprehensive Cancer Center of
 Northwestern University
NCCN Staff: Deborah A. Freedman-Cass, PhD, and
 Nicole R. McMillian, MS

KEY:
*Discussion Section Writing Committee
Specialties: †Medical Oncology; PInterventional Medicine; EPediatric
Oncology; BBone Marrow Transplantation; UUrology; NNutrition
Science/Dietitian; HHematology/Hematology Oncology; DGenecology/
Genecologic Oncology; Ssurgery/Surgical Oncology; YNeurology/
Neuro-Oncology; #Nursing; PPatent Advocacy; SSupportive Care
Including Palliative, Pain Management, Pastoral Care, and Oncology
Social Work; Infectious Diseases; Cardiology; Epidemiology;
Psychiatry, Psychology, Including Health Behavior.
ANTRACYCLINE-INDUCED CARDIAC TOXICITY

PRINCIPLES OF ANTRACYCLINE-INDUCED CARDIAC TOXICITY

• Cancer treatments can result in diverse cardiovascular issues. These guidelines focus specifically on heart failure or cardiomyopathy that may arise from anthracycline therapy. Other systemic therapies may also cause cardiomyopathy (eg, HER2-targeted therapies), and some of the concepts presented in these recommendations may apply to these other cardiomyopathies.
• Anthracycline-induced heart failure may take years or even decades to manifest. Data suggest that signs of cardiac dysfunction can be seen prior to the development of symptoms. If detected early, anthracycline-induced heart failure may be responsive to cardioprotective medications, although prospective studies evaluating these medications are lacking.
• Survivors may have risk factors that predispose them to heart failure. Some survivors may have structural heart disease (such survivors are considered to have Stage B heart failure) even if they have no actual symptoms. A history of anthracycline exposure is a risk factor that predisposes survivors to cardiac disease.* (See SCARDIO-3).
• Having a history of anthracycline exposure plus additional cardiovascular risk factors increases the risk of developing cardiomyopathy and heart failure. It is encouraged that such survivors should have heart failure risk factors, including hypertension, dyslipidemia, and diabetes addressed in coordination with primary care.
• The risk for cardiovascular problems varies greatly depending on the type of anthracycline used and the cumulative dose received.
• For these guidelines, the panel has placed an emphasis on early recognition and prevention of clinical heart failure, as well as early treatment of patients at risk with appropriate cardioprotective medications to prevent cardiac remodeling over time. Therefore, for high-risk survivors, the panel emphasizes the need for a thorough clinical screening for heart failure within one year after completion of anthracycline therapy.

SCARDIO-1
Cancer treatments can result in diverse cardiovascular issues. These guidelines focus specifically on heart failure or cardiomyopathy that may arise from anthracycline therapy. Other systemic therapies may also cause cardiomyopathy (eg, HER2-targeted therapies), and some medications, although prospective studies evaluating these medications are lacking.

For these guidelines, the panel has placed an emphasis on early recognition and prevention of clinical heart failure, as well as early treatment of patients at risk with appropriate cardioprotective medications to prevent cardiac remodeling over time. Therefore, for high-risk survivors, the panel emphasizes the need for a thorough clinical screening for heart failure within one year after completion of anthracycline therapy.

Data suggest that signs of cardiac dysfunction can be seen prior to the development of symptoms. If detected early, anthracycline-induced heart failure may be responsive to cardioprotective therapies. It is encouraged that such survivors should have heart failure risk factors, including hypertension, dyslipidemia, and diabetes that predispose survivors to cardiac disease. (See SCARDIO-3).

Having a history of anthracycline exposure plus additional cardiovascular risk factors increases the risk of developing cardiomyopathy and heart failure. It is important to consider the cumulative anthracycline dose, even if the patient has received only a single course of therapy.

ANTHRACYCLINE-INDUCED CARDIAC TOXICITY

INITIAL CLINICAL ASSESSMENT FOR PATIENTS WHO HAVE RECEIVED PREVIOUS ANTHRACYCLINE THERAPY

- History and physical
 - Assess for signs and symptoms of heart failure
 - Assess patient’s ability to perform routine and desired activities of daily living
 - Evaluate for presence of heart failure risk factors
 - Hypertension
 - Dyslipidemia
 - Diabetes mellitus
 - Family history of cardiomyopathy
 - Age >65 years
 - High cumulative anthracycline dose (ie, cumulative doxorubicin dose at or higher than 250 mg/m² or equivalent)
 - Low-normal LVEF (50%–54%) at baseline
 - History of other cardiovascular comorbidities (ie, atrial fibrillation, known coronary artery disease [CAD], baseline evidence of structural heart disease)
 - Smoking
 - Obesity
 - Review medications, alcohol use, and other substance use
 - Review oncologic history
 - Review total cumulative dose of anthracycline
 - Other systemic therapy and/or chest radiation therapy

- No evidence of structural heart disease, but symptomatic
 - Cardiovascular risk factor management
 - Consider two-dimensional echocardiogram (ECHO) with doppler flow study for survivors with one or more risk factors within 1 year after completion of anthracycline therapy

- No evidence of structural heart disease and asymptomatic or No ECHO performed and asymptomatic
 - See Stage A (SCARDIO-3)

- Evidence of structural heart disease (asymptomatic or symptomatic):
 - Left ventricular (LV) dysfunction
 - LV hypertrophy
 - Valvular disease
 - LV dilatation and/or wall thinning

- Referral to other specialties (eg, pulmonology or cardiology)

- Workup for other causes of symptoms

- Determine stage of cardiomyopathy (heart failure)
 - (See SCARDIO-3)

SCARDIO-2

Signs and symptoms of heart failure include: Shortness of breath or chest pain after physical activity or exercise, shortness of breath when sleeping, waking up at night due to shortness of breath, and swelling in the legs.

Patients with symptoms of heart failure should undergo an echocardiogram.

Trastuzumab, pertuzumab (other HER2-targeted therapy), VEGF signaling pathway (VSP) inhibitors, taxanes in combination with anthracyclines.

Encourage primary care provider involvement in treatment of cardiovascular risk factors and encourage routine follow-up in coordination with primary care provider.

Referral to cardiologist/cardio-oncologist if there are echocardiographic abnormalities.
Stages of Cardiomyopathy (Heart Failure)

Stage A
- **(No structural disorder of the heart, but at risk of developing heart failure)**
 - Patients may have any of the following:
 - History of potentially cardiotoxic chemotherapy
 - History of chest irradiation (especially mantle and left-sided)
 - Hypertension, CAD, diabetes mellitus
 - History of alcohol abuse, personal history of rheumatic fever, family history of cardiomyopathy
 - Measures under Stage A as appropriate
 - Address underlying risk factors (hypertension, lipids, tobacco use, obesity, metabolic syndrome, diabetes)
 - Recommend regular physical activity and healthy diet habits
 - Consider referral to cardiologist for management

Stage B
- **(Structural heart disease but no signs or symptoms of heart failure)**
 - Patients may have any of the following:
 - LV hypertrophy
 - LV dilatation or hypocontractility
 - Asymptomatic valvular heart disease
 - Previous myocardial infarction
 - Measures under Stage A as appropriate
 - Referral to cardiologist for management

Stage C
- **(Signs and symptoms of heart failure with underlying structural heart disease)**

Stage D
- **(Advanced structural heart disease and marked symptoms of heart failure at rest despite maximal medical therapy and requiring specialized interventions)**
 - Referral to cardiologist for management

*Available online, in these guidelines, at NCCN.org.

Defini
- **Lymphedema occurs when lymph fluid accumulates in the interstitial tissue, causing swelling of the limb or other areas such as the neck, trunk, or genitals. It is a common side effect of cancer treatment, occurring on the same side of the body as the cancer treatment, as a result of dysfunction of the lymphatic system.

Definition:
- **Stage 0 (latent/subclinical):** Lymphatic dysfunction without swelling; subtle symptoms, such as a feeling of heaviness or fatigue in the limb, sensation of heaviness, fatigue, fullness or tightness in the skin, or pain. Symptoms including decreased range of motion or strength and tissue fibrosis.
- **Stage 1 (mild):** Soft, non-pitting edema; small amount of fluid leakage and blisters are common.
- **Stage 2 (irreversible):** Spongy tissue consistency, with pitting edema that becomes less evident as swelling increases; tissue fibrosis causing hardness and increase in size. For the limbs, swelling is not relieved with elevation.
- **Stage 3 (lymphostatic elephantiasis):** Severe dry, scaly, thickened skin; increased swelling and girth of affected area; can be debilitating. Infections can require hospitalization for IV antibiotics. Therefore, survivors with or at risk for lymphedema should be educated to inform healthcare providers of these symptoms.

Clinical trials:
NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

© JNCCN—Journal of the National Comprehensive Cancer Network | Volume 16 Number 10 | October 2018
PRINCIPLES OF LYMPHEDEMA

Lympedema is a potential side effect after the treatment of cancer resulting from damage to the lymphatic system. Lympedema is most often diagnosed within 18 months of treatment; however, it can develop anytime in the life of the survivor. Depending on stage of diagnosis, lympedema can be an acute or chronic condition.

- Swelling on the same side as the cancer treatment is a universal symptom of lympedema. Additional initial symptoms may include sensation of heaviness, fatigue, fullness or tightness in the skin, or pain. Symptoms including decreased range of motion or strength and thickening of the skin may occur in later stages.
- Survivors who had surgery or radiation to the axillary, supraclavicular, cervical, or inguinal lymph node system are at risk for the development of lympedema. Sentinel node biopsy also increases the risk of lympedema, although it poses less risk than complete dissection or radiation to the nodal group.
- Obese (BMI >30 kg/m²), localized infection, increased number of nodes removed, and higher initial extent of disease raise the risk of lympedema development.
- Pretreatment limb measurement of both sides should be performed as a baseline for survivors with treatment-related or individual risk factors, preferably by a trained lympedema specialist.
- Early detection/diagnosis is key for optimal lympedema management because stages 0 and 1 are reversible, whereas stages 2 and 3 are less responsive to treatment. Therefore, survivors should be told to inform their medical provider if subtle swelling or any other symptoms (eg, fullness, tightness, heaviness, pain) on the treated side are noted.
- Lympedema may cause or exacerbate psychological distress (See SANXDE-1).
- Survivors at risk for lympedema and those with lympedema are at a higher risk of localized infection in the affected area. These infections can require hospitalization for IV antibiotics. Therefore, survivors with or at risk for lympedema should be educated to inform their medical provider immediately for signs of infection in the affected area.
- Progressive weight training under supervision and physical activity are not associated with exacerbation or development of lympedema.
- Observational studies have demonstrated that air travel, venipuncture, and blood pressure measurement (via arm cuff) are not associated with exacerbation or development of lympedema, and precautionary measures are likely unnecessary.
- Sentinel node biopsy also increases the risk of lympedema, although it poses less risk than complete dissection or radiation to the nodal group.
- The effect of these procedures on the risk of lympedema is less responsive to treatment. Therefore, survivors should be told to inform their medical provider if subtle swelling or any other symptoms (eg, fullness, tightness, heaviness, pain) on the treated side are noted.
- Lympedema may cause or exacerbate psychological distress.

*Available online, in these guidelines, at NCCN.org.

NCCN Clinical Practice Guidelines in Oncology
Survivorship, Version 2.2018
LYMPHEDEMA

DEFINITION AND STAGES OF LYMPHEDEMA

- **Definition:** Lympedema occurs when lymph fluid accumulates in the interstitial tissue, causing swelling of the limb or other areas such as the neck, trunk, or genitals. It is a common side effect of cancer treatment, occurring on the same side of the body as the cancer treatment, as a result of dysfunction of the lymphatic system.
- **Stage 0 (latent/subclinical):** Lymphatic dysfunction without swelling; subtle symptoms, such as a feeling of heaviness or fatigue in the limb, may be present.
- **Stage 1 (spontaneously reversible):** Accumulation of fluid and protein causing swelling; pitting edema may be evident; increased girth, heaviness, and/or stiffness of affected area. For the limbs, swelling is relieved with elevation.
- **Stage 2 (irreversible):** Spongy tissue consistency, with pitting edema that becomes less evident as swelling increases; tissue fibrosis causing hardness and increase in size. For the limbs, swelling is not relieved with elevation.
- **Stage 3 (lymphostatic elephantiasis):** Severe dry, scaly, thickened skin; increased swelling and girth of affected area; can be debilitating. In the limbs, fluid leakage and blisters are common.

NATIONAL LYNMPHEDMA NETWORK: https://www.lymphnet.org/resources-position-paper-exercise.

© JNCCN—Journal of the National Comprehensive Cancer Network | Volume 16 Number 10 | October 2018
Lymphedema

Survivor at Risk for Lymphedema

- Inquire about swelling or feeling of heaviness, fatigue, or fullness

Symptom Assessment

Symptoms Present

- Inquire at each visit about:
 - Frequency and severity of swelling
 - Swelling that interferes with daily activities
 - Pain/discomfort
 - Range of motion and mobility (i.e., bending, stretching, flexibility)
 - Strength

Symptoms Not Present

- Re-evaluate and inquire about symptoms at each visit

Workup if Lymphedema is Suspected

- Rule out recurrence of cancer
- Refer to a certified lymphedema therapist (if available) for assessments such as:
 - Subjective symptoms/signs
 - Limb volume measurement\(^k\)
- Clinical examination, which may include, but is not limited to:
 - Range of motion, muscle performance, circulation, sensation, hemodynamic monitoring, and functional mobility
- Assess distress (See SANXDE-1*)

Treatment

- Survivor lymphedema education, including self-care management (See SLYMPH-A)
- Refer to certified lymphedema therapist (if available) for consideration of the following:
 - Compression garments\(^l\)
 - Review fit of garments
 - Review use of garments
 - Progressive resistance training under supervision\(^m,n\)
 - Manual lymphatic drainage\(^j,o\)
- Refer to physical therapy for range-of-motion exercises

Surveillance

- Follow-up with treatment team as clinically indicated
- Inquire about fit and age of compression garments
- Replace compression garments as clinically indicated
- Check range of motion
- Inquire about performance of prescribed exercises
- Inquire about self-care management
- Continue survivor lymphedema education (See SLYMPH-A)
- Continue treatment as clinically indicated (See SLYMPH-3)
- Assess distress (See SANXDE-1, available online, in these guidelines, at NCCN.org)

*Available online, in these guidelines, at NCCN.org.

1. Certified lymphedema therapists can be located using the following resource: https://www.clt-lana.org/search/therapists/.
2. If baseline measurement is not available, measure unaffected contralateral limb as a reference.
3. Compression garments should be prescribed. Optimaly, they should be fitted and measured by a certified lymphedema therapist.
4. If a certified therapist is not available, survivors with lymphedema can perform resistance training with a professional trainer who has knowledge of cancer-related physical activity principles. Weights should be slowly progressed as tolerated, and lymphedema should be evaluated periodically.
5. See Principles of Physical Activity for Survivors with or At Risk for Lymphedema (SLYMPH-B).
6. If a certified lymphedema therapist is not available, consider referral to appropriate provider for treatment.

SLYMPH-3
SURVEILLANCE

Follow-up with treatment team as clinically indicated

- Inquire about fit and age of compression garments
- Replace compression garments as clinically indicated
- Check range of motion
- Inquire about performance of prescribed exercises
- Inquire about self-care management
- Continue survivor lymphedema education (See SLYMPH-A)
- Continue treatment as clinically indicated (See SLYMPH-3)
- Assess for distress (See SANXDE-1, available online, in these guidelines, at NCCN.org)

SURVIVOR AT RISK FOR LYMPHEDEMA

Inquire about swelling or feeling of heaviness, fatigue, or fullness

Symptoms present
- Re-evaluate and inquire about symptoms at each visit
- Symptoms not present

Surveillance
- Follow-up with treatment team as clinically indicated
- Inquire about fit and age of compression garments
- Replace compression garments as clinically indicated
- Check range of motion
- Inquire about performance of prescribed exercises
- Inquire about self-care management
- Continue survivor lymphedema education (See SLYMPH-A)
- Continue treatment as clinically indicated (See SLYMPH-3)
- Assess for distress (See SANXDE-1, available online, in these guidelines, at NCCN.org)

SLYMPH-4
LYMPHEDEMA

SURVIVOR LYMPHEDEMA EDUCATION

- Survivors should be educated regarding:
 - Signs and symptoms of lymphedema and the importance of rapid reporting to the treatment team.
 - Signs and symptoms of infection (eg, redness, pain, skin streaking/warm to touch) in the affected area and the importance of rapid reporting to the treatment team.
 - Self-care management: Infection prevention measures,\(^1\) risk reduction strategies,\(^2\) maintenance of skin integrity on the affected side
 - Survivors should also be informed that:
 - Progressive weight training under supervision and physical activity are not associated with exacerbation or development of lymphedema.\(^3,4,5\) (See SLYMPH-B)
 - Progressive resistance training under supervision may improve lymphedema symptoms. However, caution is advised in this population, and survivors with or at risk for lymphedema should discuss physical activity plans with a lymphedema specialist before starting a program that involves strength or resistance training. (See SLYMPH-B)
 - Studies have demonstrated that air travel, venipuncture, and blood pressure measurement (via arm cuff) are not associated with exacerbation or development of lymphedema, and precautionary measures are likely unnecessary.\(^6,7\) However, medical procedures such as venipuncture and blood pressure measurements should be done on the non–at-risk arm/limb if possible.\(^8\) If necessary, procedures may be done using the at-risk arm/limb.

\\(^1\)Risk of infections can be reduced by safe pet care and gardening techniques (See SIMIN-2).

PRINCIPLES OF PHYSICAL ACTIVITY FOR SURVIVORS WITH OR AT RISK FOR LYMPHEDEMA

- Lymphedema is not a contraindication for physical activity, and no special precautions are required if participating in cardiovascular/aerobic exercise or strength training of unaffected limbs.
- Continued full use of the extremity and range-of-motion exercises are encouraged to maintain strength and range of motion even in the presence of lymphedema.
- Progressive resistance training/weight lifting: Gradually increase resistance by smallest increment possible with monitoring.\(^1\)
- Compression garments may be required during resistance training.
- Consider referral to lymphedema specialist for evaluation prior to starting a physical activity program that involves strength or progressive resistance training of the affected or at-risk limb.
- Survivors with lymphedema should initiate strength training exercise involving affected body part only if lymphedema specialist or other appropriate health care provider determines that lymphedema is stable. Factors that may be considered include:
 - No need for lymphedema therapy within past 3 months
 - No recent limb infections requiring antibiotics
 - No change in limb circumference >10%
 - No change in ability to perform activities of daily living
- Survivors with or at risk for lymphedema should work with trained exercise professionals for weight training or progressive resistance training.\(^2\)
- Survivors should stop exercise and see a lymphedema specialist if exacerbation of lymphedema occurs.

\\(^1\)In progressive resistance training/weight lifting, resistance is gradually increased by smallest increment possible with monitoring.
\\(^2\)Trained personnel can include physical and occupational therapists, certified exercise professionals, and rehabilitation specialists. Specialized training in working with survivors is available for both physical therapists and exercise professionals (American College of Sports Medicine [ACSM] [http://www.acsm.org/get-stay-certified] or American Physical Therapy Association [APTA] Oncology section [http://oncologyapt.org]).

SLYMPH-A
SLYMPH-B
Survivorship, Version 2.2018

IMMUNIZATIONS AND INFECTIONS

GENERAL PRINCIPLES OF IMMUNIZATIONS

• These principles apply to cancer survivors, including those with hematologic or solid tumor malignancies and those post transplant.

• Clinicians should consider and encourage the administration of inactivated vaccines (eg, influenza) or vaccines made of purified antigens (eg, pneumococcus), bacterial components (eg, diphtheria-tetanus-pertussis), or genetically engineered recombinant antigens (eg, hepatitis B) in all cancer and transplant survivors. In the absence of known harm, administration of inactivated vaccines with the hope of achieving some protection may be worthwhile. The usual doses and schedules are recommended.8,9,6

• Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2018 https://www.cdc.gov/vaccines/schedules/downloads/adult/adult-combined-schedule.pdf

• Vaccines as a strategy to prevent infection represents a unique challenge in cancer and transplant survivors. Vaccines may not trigger protective immune responses in actively immunocompromised individuals or in survivors with residual immune deficits. In addition, certain vaccines such as those that are live attenuated (eg, zoster, MMR) are contraindicated in actively immunosuppressed individuals because of a proven or theoretical increased risk of prolonged shedding and disease from the live organism present in the vaccine; other live attenuated vaccines might also be contraindicated in survivors’ close contacts. When other vaccine options exist, they should be preferred over live attenuated vaccines in survivors (eg, recombinant zoster vaccine).

• Ideally, clinicians should have administered all indicated vaccines to patients before initiation of cancer treatment (if possible, at least 2 weeks before cancer treatment).9

• Inactivated or recombinant vaccines should be administered 2 or more weeks before cancer treatment and 3 or more months after cancer chemotherapy. While this schedule is preferred, the inactivated influenza vaccine can be administered during cancer treatment.

• Live viral vaccines can be administered 4 or more weeks before cancer treatment or 3 or more months after cancer chemotherapy, but consultation with an infectious disease specialist or physician familiar with vaccination in survivors and/or patients with cancer is strongly recommended.

• In survivors who received anti–B-cell antibody therapy, vaccination should be delayed for at least 6 months after chemotherapy and the last dose of such therapy.

See Vaccines Contraindicated or to Be Used With Caution in Actively Immunocompromised Survivors/Live Vaccines That Can Be Used With Caution in Close Contacts of Immunocompromised Survivors (SIMIN-A).

Cancer treatment includes chemotherapy, surgery, treatment with immunosuppressive drugs, radiation, and splenectomy.
Clinical trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.
IMMUNIZATIONS AND INFECTIONS

VACCINE TYPEd)

- Inactivated, purified antigens or bacterial components

TREATMENTj)

- Inactivated influenza vaccine (IIV) or recombinant influenza vaccine (RIV) recommended annually
- Tetanus, diphtheria, pertussis (Tdap)
- Recombinant zoster vaccine in all survivors 50 years or older
- Human papillomavirus (HPV) in previously unvaccinated females and males through 26 years of age

- Pneumococcal vaccine
- Hepatitis B
 - 3 doses (at 0, 1, and 6 months) 40 mcg/mL
- Hepatitis A
 - 2 doses
- Haemophilus influenzae type b
- Meningococcus
 - Typhoid bacterial capsular polysaccharide
 - Inactivated polio vaccine (IPV)
 - Japanese encephalitis
 - Rabies virus

d) See Vaccines Contraindicated or to Be Used With Caution in Actively Immunocompromised Survivors/Live Vaccines That Can Be Used With Caution In Close Contacts of Immunocompromised Survivors (SIMIN-A).
j) For dosing and schedule, See General Principles of Vaccines in Cancer Survivors (SIMIN-B).

Inactivated or purified antigens or bacterial components should be administered beginning at least 3 months after chemotherapy or radiation therapy and 6 months after hematopoietic cell transplantation (HCT) (a dose of inactivated influenza vaccine can be given as early as 4 months after HCT, but a second dose should be considered in this situation).

These vaccines should be considered if there are unique circumstances such as functional or anatomic asplenia or in patient's lifestyle, upcoming travel, or local epidemic or risks that merit their use. Please consult with an infectious disease or travel medicine specialist. Vaccination precautions for survivors who had hematopoietic cell transplant can be found on SIMIN-B (2 of 3).

See Principles of Influenza Vaccine(s) (SIMIN-C).

See Vaccines Contraindicated or to Be Used With Caution in Actively Immunocompromised Survivors/Live Vaccines That Can Be Used With Caution In Close Contacts of Immunocompromised Survivors (SIMIN-A).

Recommended in high-risk patients or those with functional or anatomic asplenia. Committee on Infectious Diseases. Recommendations for serogroup B meningococcal vaccine for persons 10 years and older. Pediatrics 2016;138.
VACCINES CONTRAINDIQUED OR TO BE USED WITH CAUTION IN ACTIVELY IMMUNOCOMPROMISED SURVIVORS

<table>
<thead>
<tr>
<th>Live attenuated vaccines<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Measles, mumps, rubella (MMR)</td>
</tr>
<tr>
<td>• Varicella zoster (VAR or ZVL)<sup>2,3,4</sup></td>
</tr>
<tr>
<td>• Oral typhoid</td>
</tr>
<tr>
<td>• Yellow fever</td>
</tr>
<tr>
<td>• Rotavirus</td>
</tr>
</tbody>
</table>

LIVE VACCINES THAT CAN BE USED WITH CAUTION IN CLOSE CONTACTS OF IMMUNOCOMPROMISED SURVIVORS⁵

| • Measles, mumps, and rubella (MMR) |
| • Varicella zoster (VAR or ZVL)^{2,3,4} |
| • Oral typhoid |
| • Yellow fever |
| • Rotavirus⁶ |

1. Severe complications have followed vaccination with live attenuated vaccines among immunocompromised patients. They should not be offered to an actively immunocompromised or transplant survivor or their close contacts, unless cleared by a clinician experienced in vaccine use or by an infectious disease specialist. If a live attenuated vaccine is inadvertently administered to a survivor's close contact, close contact with the survivor should be avoided for 2 to 6 weeks following vaccination depending on the type of administered vaccine.

2. For additional recommendations regarding Zoster vaccine, see Principles of Zoster (Shingles) Vaccine Use in Cancer or Transplant Survivors (SIMIN-D).

3. Immunocompromised patients should avoid contact with persons who develop skin lesions after receipt of varicella or zoster vaccine, until the lesions clear.

4. A new recombinant zoster vaccine has become available in the United States and should be considered the preferred zoster vaccine for cancer survivors.

6. Immunocompromised survivors should avoid handling diapers of children who have been vaccinated with rotavirus vaccine for 4 weeks after vaccination.
GENERAL PRINCIPLES OF VACCINES IN CANCER SURVIVORS

Vaccination in Non-Transplant Survivors

- These principles apply to survivors of hematologic or solid tumor malignancies except those receiving anti–B-cell antibodies.

- The following vaccines can be administered to cancer survivors:
 - Influenza vaccine annually (See Principles of Influenza Vaccine(s) SIMIN-C)
 - Pneumococcal vaccine
 - Recommended for adults 65 years or older and for younger adults who are immunocompromised
 - 13-valent pneumococcal conjugate vaccine (PCV13) x 1 dose if never vaccinated against pneumococcus
 - 23-valent pneumococcal polysaccharide vaccine (PPSV23) should be administered at least 8 weeks after the indicated dose(s) of PCV13.
 - For those who received PPSV23, PCV13 should be administered ≥1 year after the last PPSV23 dose.
 - A second dose of PPSV23 is recommended 5 years after the first dose for immunocompromised survivors and those with functional or anatomic asplenia.
 - Tetanus, diphtheria, pertussis vaccine (Td/Tdap):
 - Administer a one-time dose of Tdap to adults younger than 65 years of age who have not received Tdap previously or for whom vaccine status is unknown to replace one of the 10-year Td boosters (substitute 1-time dose of Tdap for Td booster; then boost with Td every 10 years). Otherwise administer Td booster every 10 years.
 - Consider administering a Tdap booster every 5 years.
 - Consider human papillomavirus (HPV) vaccine in survivors through age 26 years. For dosing and schedules see https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/hpv.html

VACCINES CONTRAINDICATED OR TO BE USED WITH CAUTION IN ACTIVELY IMMUNOCOMPROMISED SURVIVORS

- Live attenuated vaccines
 - Measles, mumps, rubella (MMR)
 - Varicella zoster (VAR or ZVL)
 - Oral typhoid
 - Yellow fever
 - Rotavirus

LIVE VACCINES THAT CAN BE USED WITH CAUTION IN CLOSE CONTACTS OF IMMUNOCOMPROMISED SURVIVORS

- Measles, mumps, and rubella (MMR)
- Varicella zoster (VAR or ZVL)
- Oral typhoid
- Yellow fever
- Rotavirus

3In survivors who received anti-B cell antibody therapy, the above vaccines can be given, but should be delayed for at least 6 months after chemotherapy and the last dose of such therapy.
GENERAL PRINCIPLES OF VACCINES IN CANCER SURVIVORS

Vaccination in Hematopoietic Cell Transplant (HCT) Survivors

- Influenza vaccine annually
 - (See Principles of Influenza Vaccine(s) SIMIN-C)
 - One dose should be administered annually to all cancer survivors starting 6 months after HCT and starting 4 months after if there is a community outbreak of influenza as defined by the local health department.
- Pneumococcal vaccine
 - Three doses (1 month apart) of PCV13 should be administered 3–6 months after HCT.
 - At 12 months after HCT, 1 dose of PPSV23 should be given provided the patient does not have chronic graft-versus-host disease (GVHD).
- Haemophilus influenzae type b (Hib) vaccine
 - Three doses of Hib vaccine should be administered 6–12 months after HCT.
- Meningococcal conjugate vaccine quadrivalent (MCV4)
 - The MCV4 vaccine may be considered in outbreak situations or in endemic areas.
- Tetanus, diphtheria, pertussis (Td/Tdap) vaccine
 - Three doses of tetanus/diphtheria–containing vaccine should be administered 6 months after HCT (administer the first 2 doses at least 4 weeks apart and the third dose 6–12 months after the second). This three-dose regimen should be followed by Td boosters every 10 years.
 - Administration of 3 doses of Tdap should be considered (can replace second and third dose by Td).
- Zoster vaccine (VZV)
 - A 2-dose series of VZV vaccine should be administered 24 months after HCT to varicella-seronegative patients with neither GVHD nor ongoing immunosuppression and 8–11 months after the last dose of immune globulin intravenous (IGIV).

- Hepatitis B (HepB) vaccine
 - Three doses of HepB vaccine should be administered 6–12 months after HCT.
 - If a postvaccination anti-Hepatitis B surface antigen (anti-HBs) concentration of ≥10 mIU/mL is not obtained, a second 3-dose series of HepB vaccine is recommended.
- Conjugated tetanus, diphtheria, and acellular pertussis (Tdap) vaccine
 - A 2-dose series of Tdap vaccine should be administered 6–12 months after HCT or within 2 weeks before starting HCT.
 - A 2-dose series of Tdap vaccine should be administered to women simultaneously with human papillomavirus vaccine.
- Oral polio vaccine (OPV)
 - One dose of OPV should be given to children starting 6 months after HCT.
- Inactivated polio vaccine (IPV)
 - Three doses of IPV vaccine should be administered 6–12 months after HCT.
- Measles, mumps, rubella (MMR) vaccine
 - A 2-dose series of MMR vaccine should be administered to children starting 6 months after HCT.
- Meningococcus:
 - Quadrivalent (IIV4), standard dose
 - Pentavalent (IIV5), standard dose
 - Meningococcal vaccine (serotype B) 8
 - Three doses of Hib vaccine should be administered 6–12 months after HCT.
- Pneumococcus:
 - Quadrivalent (IIV4), standard dose
 - Pentavalent (IIV5), standard dose
 - Pneumococcal conjugate vaccine (PCV)
 - Three doses of PCV13 should be administered 1 month after HCT.
 - For patients with chronic GVHD, a fourth dose of PCV13 can be given 12 months after HCT.
- Recombinant viral antigens
 - Mumps vaccine
 - A single dose of mumps vaccine should be given to children starting 6 months after HCT.
 - Measles vaccine
 - A single dose of measles vaccine should be given to children starting 6 months after HCT.
 - Live viral vaccines should not be administered to HCT survivors within 4 weeks before HCT or within 2 weeks after HCT.
 - Live viral vaccines should not be administered to HCT survivors with active GVHD or ongoing immunosuppression.

Continued

5HCT includes peripheral blood stem cell transplantation, bone marrow transplantation (BMT), and cord blood transplantation.
GENERAL PRINCIPLES OF VACCINES IN CANCER SURVIVORS

<table>
<thead>
<tr>
<th>Vaccines Considered Safe for Cancer and Transplant Survivors and Close Contacts6</th>
<th>Recombinant viral antigens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated or purified antigens or bacterial components7</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>• Influenza: inactivated influenza virus vaccine8</td>
<td>• Human papillomavirus (HPV) female and HPV male</td>
</tr>
<tr>
<td>▶ Trivalent (IIV3), standard dose</td>
<td>• Recombinant trivalent influenza vaccine (RIV3)9</td>
</tr>
<tr>
<td>▶ Trivalent (IIV3), high dose</td>
<td>• Zoster (RZV)</td>
</tr>
<tr>
<td>▶ Quadrivalent (IIV4), standard dose</td>
<td></td>
</tr>
<tr>
<td>• Pneumococcus:</td>
<td></td>
</tr>
<tr>
<td>▶ Pneumococcal conjugate vaccine (PCV)</td>
<td></td>
</tr>
<tr>
<td>▶ PPSV</td>
<td></td>
</tr>
<tr>
<td>• Haemophilus influenzae type b</td>
<td></td>
</tr>
<tr>
<td>• Meningococcus:</td>
<td></td>
</tr>
<tr>
<td>▶ Quadrivalent meningococcal conjugate vaccine (MCV4: serotypes A, C, W, Y)</td>
<td></td>
</tr>
<tr>
<td>▶ Meningococcal vaccine (serotype B)8</td>
<td></td>
</tr>
<tr>
<td>• Tetanus, diphtheria, pertussis (Td/Tdap)</td>
<td></td>
</tr>
<tr>
<td>• Hepatitis A</td>
<td></td>
</tr>
<tr>
<td>• Haemophilus influenzae type b</td>
<td></td>
</tr>
</tbody>
</table>

6Ideally, clinicians should have administered all indicated vaccines to patients at least 2 weeks before initiation of cancer treatment (ie, chemotherapy, surgery, treatment with immunosuppressive drugs, radiation, splenectomy).

7For patients traveling to endemic countries, vaccines such as typhoid bacterial capsular polysaccharide, inactivated polio vaccine (IPV), Japanese encephalitis, and rabies virus are recommended by the Centers for Disease Control and Prevention (www.cdc.gov).

9Administration of the flu vaccine to survivors with egg allergy symptoms (other than hives) should be done at a center that can manage severe allergic reactions. Kim DK, Riley LE, Hunter P. Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older - United States, 2018. MMWR Morb Mortal Wkly Rep 2018;67:158-160.
IMMUNIZATIONS AND INFECTIONS

PRINCIPLES OF INFLUENZA VACCINE(S)\(^1,2\)

- Annual influenza vaccination is recommended\(^2\) for all cancer and transplant survivors. Live attenuated influenza vaccines should be avoided in these individuals unless they have been cleared to do so by an infectious disease specialist or physician familiar with vaccination in this population.
- For a summary of recommendations for prevention and control of influenza with vaccines see: https://www.cdc.gov/mmwr/volumes/66/rr/rr6602a1.htm
- Components of the influenza vaccine are determined each year by the World Health Organization (WHO) according to reports of the most common influenza viruses that are likely to circulate that year.
- Influenza vaccines can be inactivated or recombinant. They may contain standard or higher doses of the antigen. They can be trivalent or quadrivalent.

Preferred Vaccines
- Inactivated influenza vaccine
 - Trivalent (IIV3), standard dose
 - Trivalent (IIV3), high dose
 - Quadrivalent (IIV4), standard dose
- Recombinant influenza vaccine\(^3\)
 - Trivalent (RIV3)
 - Quadrivalent (RIV4)

To date, there is no evidence that one vaccine is superior to any other vaccine.

\(^3\)Administration of the flu vaccine to survivors with egg allergy symptoms (other than hives) should be done at a center that can manage severe allergic reactions. Kim DK, Riley LE, Hunter P. Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older - United States, 2018. MMWR Morb Mortal Wkly Rep 2018;67:158-160.
To date, there is no evidence that one vaccine is superior to any other vaccine.

SIMIN-C

Annual influenza vaccination is recommended for all cancer and transplant survivors. Live attenuated influenza vaccines should be preferred vaccines.

For a summary of recommendations for prevention and control of influenza with vaccines see:

Components of the influenza vaccine are determined each year by the World Health Organization (WHO) according to reports of the most common influenza viruses that are likely to circulate that year.

Recombinant influenza vaccine

Although the recombinant influenza vaccine is preferred, the live attenuated influenza vaccine can be given if the recombinant influenza vaccine is unavailable or access to the recombinant vaccine is an issue.

Live attenuated influenza vaccine may be considered in survivors with a history of solid tumors or leukemia whose disease is in remission, who have restored their immunocompetence, and who have not received chemotherapy or radiation for at least 3 months.

If live attenuated influenza vaccine is given prior to starting therapy, it should be administered at least 4 weeks prior to the first dose of immunosuppressive therapy.

The vaccine can be administered to select immunocompetent survivors regardless of whether they report a prior episode of herpes zoster.

Licensed antiviral medications active against members of the herpes virus family (eg, acyclovir, famciclovir, valacyclovir, valganciclovir) might interfere with replication of the live, varicella zoster virus (VZV)-based zoster vaccine.

A single dose of live attenuated zoster vaccine is recommended for cancer or transplant survivors 60 years of age and older assuming that active or ongoing immunodeficiency is not present and that there is no history of cellular immunodeficiency.

For survivors aged 50–59 years, live attenuated zoster vaccination should be considered in those with a history of varicella or zoster infection or VZV seropositive with no previous doses of varicella vaccine.

Live attenuated zoster vaccine should be avoided:

in patients with lymphomas, other malignant neoplasms affecting the bone marrow or lymphatic system, or a history of cellular immunodeficiency;

in patients on immunosuppressive therapy, including high-dose corticosteroids (>20 mg/d of prednisone or equivalent) lasting 2 or more weeks; and

in patients undergoing or with history of HCT. The experience of HCT recipients with VZV-containing vaccines (eg, zoster vaccine) is limited. Physicians should assess the immune status of the recipient on a case-by-case basis to determine the relevant risks. If a decision is made to vaccinate with zoster vaccine, the vaccine should be administered at least 24 months after transplantation in patients without active graft-versus-host disease (GVHD) or enhanced immunosuppression.

Recombinant zoster vaccine

A new recombinant zoster vaccine has become available in the United States. The recombinant vaccine is the preferred zoster vaccine for cancer survivors, and is recommended for survivors aged 50 years and older.

In survivors who have previously received the live attenuated zoster vaccine, immunization with recombinant zoster vaccine should be considered. The recombinant vaccine should not be given less than 2 mo after receiving the live attenuated vaccine.

Live attenuated zoster vaccine

A new recombinant zoster vaccine has become available in the United States. The recombinant vaccine is the preferred zoster vaccine for cancer survivors, and is recommended for survivors aged 50 years and older.

In survivors who have previously received the live attenuated zoster vaccine, immunization with recombinant zoster vaccine should be considered. The recombinant vaccine should not be given less than 2 mo after receiving the live attenuated vaccine.

Live attenuated zoster vaccine

Although the recombinant zoster vaccine is preferred, the live attenuated zoster vaccine can be given if the recombinant vaccine is unavailable or access to the recombinant vaccine is an issue.

Live attenuated zoster vaccine may be considered in survivors with a history of solid tumors or leukemia whose disease is in remission, who have restored their immunocompetence, and who have not received chemotherapy or radiation for at least 3 months.

If live attenuated zoster vaccine is given prior to starting therapy, it should be administered at least 4 weeks prior to the first dose of immunosuppressive therapy.

The vaccine can be administered to select immunocompetent survivors regardless of whether they report a prior episode of herpes zoster.

Licensed antiviral medications active against members of the herpes virus family (eg, acyclovir, famciclovir, valacyclovir, valganciclovir) might interfere with replication of the live, varicella zoster virus (VZV)-based zoster vaccine.

A single dose of live attenuated zoster vaccine is recommended for cancer or transplant survivors 60 years of age and older assuming that active or ongoing immunodeficiency is not present and that there is no history of cellular immunodeficiency.

For survivors aged 50–59 years, live attenuated zoster vaccination should be considered in those with a history of varicella or zoster infection or VZV seropositive with no previous doses of varicella vaccine.

Live attenuated zoster vaccine should be avoided:

in patients with lymphomas, other malignant neoplasms affecting the bone marrow or lymphatic system, or a history of cellular immunodeficiency;

in patients on immunosuppressive therapy, including high-dose corticosteroids (>20 mg/d of prednisone or equivalent) lasting 2 or more weeks; and

in patients undergoing or with history of HCT. The experience of HCT recipients with VZV-containing vaccines (eg, zoster vaccine) is limited. Physicians should assess the immune status of the recipient on a case-by-case basis to determine the relevant risks. If a decision is made to vaccinate with zoster vaccine, the vaccine should be administered at least 24 months after transplantation in patients without active graft-versus-host disease (GVHD) or enhanced immunosuppression.

PRINCIPLES OF ZOSTER (SHINGLES) VACCINE USE IN CANCER OR TRANSPLANT SURVIVORS

Recombinant zoster vaccine

A new recombinant zoster vaccine has become available in the United States. The recombinant vaccine is the preferred zoster vaccine for cancer survivors, and is recommended for survivors aged 50 years and older.

In survivors who have previously received the live attenuated zoster vaccine, immunization with recombinant zoster vaccine should be considered. The recombinant vaccine should not be given less than 2 mo after receiving the live attenuated vaccine.

Live attenuated zoster vaccine

Although the recombinant zoster vaccine is preferred, the live attenuated zoster vaccine can be given if the recombinant vaccine is unavailable or access to the recombinant vaccine is an issue.

Live attenuated zoster vaccine may be considered in survivors with a history of solid tumors or leukemia whose disease is in remission, who have restored their immunocompetence, and who have not received chemotherapy or radiation for at least 3 months.

If live attenuated zoster vaccine is given prior to starting therapy, it should be administered at least 4 weeks prior to the first dose of immunosuppressive therapy.

The vaccine can be administered to select immunocompetent survivors regardless of whether they report a prior episode of herpes zoster.

Licensed antiviral medications active against members of the herpes virus family (eg, acyclovir, famciclovir, valacyclovir, valganciclovir) might interfere with replication of the live, varicella zoster virus (VZV)-based zoster vaccine.

A single dose of live attenuated zoster vaccine is recommended for cancer or transplant survivors 60 years of age and older assuming that active or ongoing immunodeficiency is not present and that there is no history of cellular immunodeficiency.

For survivors aged 50–59 years, live attenuated zoster vaccination should be considered in those with a history of varicella or zoster infection or VZV seropositive with no previous doses of varicella vaccine.

Live attenuated zoster vaccine should be avoided:

in patients with lymphomas, other malignant neoplasms affecting the bone marrow or lymphatic system, or a history of cellular immunodeficiency;

in patients on immunosuppressive therapy, including high-dose corticosteroids (>20 mg/d of prednisone or equivalent) lasting 2 or more weeks; and

in patients undergoing or with history of HCT. The experience of HCT recipients with VZV-containing vaccines (eg, zoster vaccine) is limited. Physicians should assess the immune status of the recipient on a case-by-case basis to determine the relevant risks. If a decision is made to vaccinate with zoster vaccine, the vaccine should be administered at least 24 months after transplantation in patients without active graft-versus-host disease (GVHD) or enhanced immunosuppression.

2Zoster vaccination is not indicated to treat acute zoster, to prevent persons with acute zoster from developing postherpetic neuralgia (PHN, a common complication of zoster that results in chronic, often debilitating pain that can last months or even years), or to treat ongoing PHN. Before routine administration of zoster vaccine, it is not necessary to ask patients about their history of varicella (chickenpox) or to conduct serologic testing for varicella immunity. Dooling KL, Guo A, Patel M, et al. Recommendations of the Advisory Committee on Immunization Practices for use of herpes zoster vaccines. MMWR Morb Mortal Wkly Rep 2018;67:103-108.

3Survivors taking chronic acyclovir, famciclovir, valacyclovir, or valganciclovir should discontinue these medications at least 24 hours before administration of zoster vaccine. These medications should not be used for at least 2 weeks after vaccination, by which time the immunologic effect should be established.

Panel Considerations Regarding Anthracycline-Induced Cardiac Toxicity

Anthracycline-induced heart failure may take years or decades to manifest. Previous dogma has suggested that anthracycline-induced heart failure portends poor prognosis and is not responsive to therapy. However, emerging data in heart failure due to other types of cardiac injury suggest that signs of cardiac dysfunction can be seen early, before the development of symptoms. Additionally, data from these other types of cardiac injury suggest that early intervention with cardioprotective medications results in better long-term cardiac function. It is possible that if anthracycline-induced cardiac dysfunction is detected early, it may also be responsive to cardioprotective medications. In fact, data from a prospective study that followed 2,625 patients who received anthracycline-containing therapy through the survivorship phase suggest that early initiation of heart failure therapy may allow for at least partial recovery of LVEF in this population. In this study, survivors were started on treatment when LVEF decreased by >10 absolute points and was <50%. A full recovery was observed in 11% of treated survivors (LVEF increased to the baseline value), and 71% had partial recovery (LVEF increased by >5 absolute points and reached >50%). In addition, a growing body of preclinical, observational, and pilot research suggests that lifestyle changes, such as weight control, dietary modification (either through correcting dietary deficiencies or increasing intakes of various nutrients), and exercise, may also be helpful at these early stages, before the onset of heart failure symptoms, although more research is necessary.

These emerging issues in anthracycline-induced cardiomyopathy are consistent with the changes in the cardiology community’s approach to heart failure at large. Clinical heart failure has established risk factors, and the earliest signs of heart failure begin with the accumulation of these risk factors over time, ultimately resulting in structural cardiac abnormalities and later symptomatic heart failure. As a result, more than a decade ago, this evolutionary and progressive nature of heart failure was recognized by cardiologists and incorporated into the American Heart Association (AHA)/American College of Cardiology (ACC) Guidelines for the Evaluation and Management of Heart Failure. In 2001, the AHA/ACC guidelines proposed a new classification for heart failure. Traditional classifications only recognized heart failure when patients presented with clinical signs and symptoms. The 2001 classification scheme, in contrast, introduced stages of heart failure beginning before the patient is symptomatic and emphasized the importance of prevention in heart failure management.

The panel believes that this revised AHA/ACC classification is particularly relevant to cardio-oncology populations. Therefore, in formulating the present recommendations for screening, evaluation, and treatment of cardiac dysfunction in survivors who received anthracyclines during their cancer treatment, the panel took into consideration the updated AHA/ACC classification and guidelines for management of heart failure. For these NCCN Guidelines for Survivorship, the panel emphasized early recognition of cardiac toxicity with the goal of preventing the development of clinical, symptomatic heart failure by addressing other known risk factors for heart failure. In particular, appropriate use of cardioprotective medications, such as neurohormonal antagonists (ie, angiotensin-converting enzyme [ACE] inhibitors, beta blockers), can be considered with the goal of preventing cardiac remodeling over time in some patients. In this respect, the panel emphasizes a thorough clinical screen for heart failure for all survivors with exposure to anthracyclines after completion of therapy, with the additional consideration of an echocardiographic screen in high-risk survivors, as discussed in more detail subsequently.
The panel also believes that early involvement of a cardio-oncologist or cardiologist in the care of the cancer survivor is important. Therefore, there should be a low threshold for referral to a cardio-oncologist or cardiologist. In addition, symptoms of heart failure may mimic other conditions such as pulmonary issues and/or cardiac ischemia; therefore, a global approach may be necessary when assessing survivors with decreased cardiorespiratory fitness.42

Classification of the Stages of Heart Failure

The revised AHA/ACC classification identifies patients who do not have symptoms associated with heart failure but are either at risk for heart failure (stage A) or have structural abnormalities of the heart (stage B).41 This revised classification has both diagnostic and therapeutic utility, because evidence suggests that treatments prescribed in the absence of structural heart abnormalities or symptoms can reduce the morbidity and mortality of heart failure in the general population.2,20,26-29 Left untreated, however, the accumulation of cardiac risk factors leads to injury or stress on the myocardium and generates a cascade of signaling events in the heart. The subsequent change in the geometry and structure of the left ventricle, often referred to as cardiac remodeling (stage B), may manifest as cardiac hypertrophy or chamber dilatation. In other cases, the result may be decreased cardiac contractility, which can result in decreased LVEF (also stage B). Cardiac remodeling generally precedes the development of symptoms (by months or even years), continues after symptoms become evident, and contributes substantially to symptom progression and mortality despite treatment. Individuals are considered to have stage C heart failure when clinical signs and symptoms accompany structural changes to the heart. Stage D is the most advanced stage, with patients showing advanced structural heart disease and significant heart failure symptoms at rest that are refractory to medical therapy; these patients require specialized interventions.

The panel also considered the New York Heart Association’s (NYHA) functional classification of heart failure.43 In this system, which is based on limitations to physical activity and the effect of physical activity on heart failure symptoms, NYHA class I is similar to AHA/ACC stage B, while NYHA class II and III would be considered AHA/ACC stage C and NYHA class IV is similar to AHA/ACC stage D.

Assessment for Anthracycline-Induced Cardiac Toxicity

The panel recognizes a lack of high-quality data to inform the benefits of screening for heart failure among patients treated with anthracyclines. However, the panel believes that all survivors who have completed anthracycline therapy should undergo a clinical evaluation to assess for signs and symptoms of heart failure. The lack of data is illustrated in a 2007 clinical evidence review by ASCO, which concluded that no studies had systematically addressed the benefits of screening adult cancer survivors with a history of anthracyclines for cardiotoxicity.44 The review also found no direct evidence showing the effectiveness of cardiac treatment on outcomes of asymptomatic survivors.45 A 2008 multidisciplinary task force from the Children’s Oncology Group came to largely similar conclusions regarding screening for cardiotoxicity in survivors of pediatric cancers.45 Some reasons for the lack of data on screening survivors for cardiotoxicity have been discussed,46 and, unfortunately, high-quality data have not been forthcoming since ASCO’s 2007 review.

In the absence of data, the Children’s Oncology Group relied on the collective clinical experience of its panel members and recommended echocardiograms or comparable imaging to evaluate cardiac anatomy and function for survivors of pediatric cancer at the conclusion of treatment and then every 1 to 5 years depending on age at treatment, anthracycline dose, and chest irradiation (http://www.survivorshipguidelines.org). An international collaborative supports lifelong echocardiographic surveillance at least every 5 years in survivors of childhood cancer treated with anthracyclines.47 Although the frequency of cardiac assessment using echocardiograms or multigated acquisition (MUGA) scans in this population has been a matter of debate, there is general support for at least one assessment in children who have completed anthracycline therapy.48,49 A 2014 joint expert consensus statement from the American Society of Echocardiography and the European Association of Cardiovascular Imaging recommends yearly cardiovascular assessment of adult survivors after the completion of potentially cardiotoxic therapy to look for early signs and symptoms of cardiovascular disease, with cardiac imaging used at the discretion of the clinician.50 The groups recommend echocardiogram as the preferred imag-
Survivorship, Version 2.2018

Assessment for Symptoms of Heart Failure: According to the 2013 AHA/ACC guidelines, the cardinal manifestations of clinical heart failure (stage C) include dyspnea and fatigue (which may lead to limited exercise tolerance) or fluid retention (which may lead to pulmonary and peripheral edema). These symptoms can lead to decreased functional capacity and affect quality of life. Heart failure symptoms associated with fluid retention may also include orthopnea or paroxysmal nocturnal dyspnea. Therefore, the panel recommends a history and physical to look for these symptoms to help identify survivors who might already be symptomatic. These survivors should undergo evaluation with an echocardiogram. If no evidence of structural heart disease is seen, then a workup for other causes of the symptoms is warranted with referral to other specialties (eg, pulmonology or cardiology) as needed. Symptomatic survivors with evidence of structural heart disease require immediate referral to a cardio-oncologist or cardiologist.

Assessment of Comorbidities and Cardiovascular Risk Factors: The panel recommends assessment of comorbidities and other traditional risk factors for heart disease. Furthermore, the oncologic history of the survivor should be reviewed. Chest radiation can increase the risk of ischemic cardiac disease, which can contribute to heart failure. The addition of other cardiotoxic therapies (eg, HER2-targeted agents) to anthracyclines can further increase the risk of heart failure over that seen with the use of anthracyclines alone. Older survivors, those with a higher cumulative anthracycline dose (cumulative doxorubicin dose of 250 mg/m² or equivalent), those with underlying cardiovascular disease or risk factors, and those who had a low-normal (50%–54%) baseline ejection fraction are also at increased risk for the development of heart failure. Recent data also showed that being overweight or obese is a risk factor for cardiotoxicity from anthracyclines in breast cancer survivors. In addition, the risk of cardiac events and death in survivors of breast cancer has been shown to increase as the number of cardiovascular risk factors increases.

Imaging: When developing these imaging guidelines for screening for cardiotoxicity in survivors with a history of anthracycline exposure, the panel considered several questions: 1) Is the prevalence of structural heart disease high enough to warrant screening of anthracycline-treated survivors? 2) Is an abnormal echocardiogram after anthracycline therapy associated with an increased risk for the future development of symptomatic heart failure? 3) Does the recognition of cardiac abnormalities and treatment of cardiac risk factors after anthracycline therapy affect outcomes?

As for the prevalence of structural heart disease in patients treated with anthracyclines, a study of 2,625 patients with cancer (mostly breast cancer or non-Hodgkin’s lymphoma) assessed LVEF before, every 3 months during anthracycline chemotherapy and during the following year, every 6 months for the next 4 years, and annually after that. Cardiotoxicity, defined as LVEF <50% and decreased by >10 absolute points, was observed in 9% of the study population. In the large randomized controlled NSABP B-31 trial, cardiac function was assessed by cardiac imaging in patients after initial anthracycline-based therapy as a requirement for further treatment with trastuzumab. More than 7% of patients experienced cardiac symptoms and/or a decrease in LVEF of >15% after receiving anthracyclines, thus excluding them from being considered for trastuzumab. It is...
important to note that this was a clinical trial patient population without significant cardiac risk factors or history of cardiac disease. In a nonclinical trial population of patients with cancer, many may already have cardiac risk factors or actual cardiomyopathy before treatment, thus elevating the risk of developing heart failure. Together, these results indicate that a significant proportion of survivors with early-onset stage B or greater heart failure can be identified with appropriate imaging after therapy. However, it is not clear that these declines in LVEF after anthracycline therapy were associated with an increased risk of developing subsequent heart failure.

Regarding the second question, little is known regarding the natural history of heart failure in survivors with stage B heart failure after anthracycline therapy, and the long-term prognosis of survivors with cardiac structural abnormalities after anthracycline exposure is not known. However, regarding the final question, limited evidence suggests that further remodeling of the heart may be able to be mitigated by initiation of cardioprotective medications. A number of observational and retrospective studies have suggested that early intervention with cardioprotective medication may decrease the rate of cardiac remodeling and progression to heart failure. A randomized controlled trial of 135 survivors of pediatric cancer with ≥1 cardiac abnormality found that the ACE inhibitor enalapril reduced left ventricular end-systolic wall stress compared with placebo (P=.03). The authors concluded that any theoretical benefit of reduced left ventricular end-systolic wall stress must be weighed against the side effects of treatment; dizziness or hypotension was observed in 22% of the treatment group versus 3% of those receiving placebo (P=.003), and fatigue was observed in 10% versus 0% (P=.013) of participants.

More recently, a review of 247 patients with cancer and declines in LVEF at the Stanford cardiology clinic found that mean LVEF increased after treatment (most often with ACE inhibitors and beta-blockers) and rose to ≥50% in 77% of patients. In addition, a study of 201 adult patients with cancer who were treated with anthracyclines and had an LVEF of ≤45% found that earlier initiation of enalapril (and sometimes the beta-blocker carvedilol) was associated with a higher likelihood of LVEF recovery. In addition, in the larger study by this group (2,625 patients), heart failure therapy was initiated in all patients with LVEF <50% that had decreased by >10 absolute points, and 82% of patients experienced a full or partial recovery. In the noncancer setting, a randomized controlled trial of >4,200 participants found that treatment of patients with asymptomatic left ventricular dysfunction (ejection fraction ≤35%) with enalapril reduced the incidence of heart failure compared with placebo (20.7% vs 30.2%; P<.001). Considering these data, the panel believes that survivors with one or more risk factors who have completed anthracycline therapy can be considered for assessment for structural heart disease with appropriate cardiac imaging within 12 months of the last anthracycline dose. In one study with a median follow-up of 5.2 years, 98% of cases of cardiotoxicity were observed within the first year after treatment. The prevalence of late-onset cardiotoxicity has not been well studied beyond 5 years. Risk factors to consider include age >65 years, a high cumulative anthracycline dose, underlying cardiovascular disease/risk factors, or a low-normal baseline LVEF.

The panel recommends two-dimensional echocardiogram, coupled with Doppler flow studies, as the cardiac imaging modality of choice when imaging is performed. This technique is widely available and inexpensive, gives no radiation exposure, and is the most useful diagnostic test in the evaluation of patients with possible heart failure. It can recognize early stages of heart failure by revealing abnormalities of the pericardium, myocardium, and heart valves. Although radionuclide ventriculography (also called radionuclide angiography or MUGA scan) can provide accurate measurements of left ventricular size and function and assessment of ventricular enlargement, it cannot assess valvular abnormalities or cardiac hypertrophy and exposes patients to radiation. Other imaging modalities for the assessment of heart failure have been reviewed elsewhere.

In agreement with these guidelines, ASCO’s guidelines that address monitoring of cardiac toxicity after treatment in survivors of adult-onset cancer indicate that echocardiogram can be considered for asymptomatic survivors deemed to be at increased risk for cardiac dysfunction, including survivors with a history of anthracycline therapy.

Biomarkers: The panel recognizes the growing body of literature suggesting the possible utility of cardiac
biomarkers (specifically troponin) as a noninvasive marker of cardiotoxicity. The panel believes that more prospective, multi-institutional studies are needed, but that biomarker use can be considered in select patients at high risk for heart failure. The optimal timing of troponin assessment in relation to completion of chemotherapy is currently unclear; the cut-off point for a positive test is undefined; and the optimal assay platform remains to be determined. In addition, the sensitivity and specificity of troponin I levels for predicting cardiotoxicity are fairly low, reported at 48% (95% CI, 0.27–0.69) and 73% (95% CI, 0.59–0.84), respectively. A systematic review of the role of posttreatment cardiac troponins as predictive markers of anthracycline-induced left ventricular dysfunction revealed few studies and inconsistent data. The utility of other potential cardiac biomarkers have been reviewed elsewhere.

Treatment of Anthracycline-Induced Cardiac Toxicity

Progression of heart failure is accelerated with accumulation of risk factors. Injury or stress on the myocardium (such as during and after treatment with anthracyclines) can lead to activation of endogenous neurohormonal systems, which play a critical role in cardiac remodeling and therefore progression to stage B heart failure.

The panel recommends that heart failure risk factors, including hypertension, obesity, metabolic syndrome, and diabetes, be addressed in all survivors who have completed anthracycline therapy. In addition, survivors with a history of anthracycline therapy should be advised to engage in regular physical activity, eat a healthy diet, and avoid behaviors that may increase the risk of heart failure or cardiovascular disease (eg, tobacco or illicit drug use). Physical activity has been shown to improve control of hypertension and to slow cardiac remodeling in patients with heart failure. Involvement of the survivor’s primary care provider in managing risk factors is encouraged.

The panel recommends that a low threshold be established for referral to a cardio-oncologist or cardiologist for all patients previously treated with an anthracycline. Additional recommendations for each stage of heart failure are discussed subsequently.

Treatment of Stage A Heart Failure: Stage A heart failure recognizes several well-established risk factors, each of which contribute to early stages of heart failure. These include hypertension, coronary artery disease, diabetes mellitus, a family history of heart failure, or a history of cardiotoxins such as anthracyclines. Therefore, all survivors with exposure to anthracyclines have, by definition, at least one risk factor that predisposes them to cardiac disease and should be treated as appropriate. Other anti-cancer systemic therapies are potentially cardiotoxic and may increase the risk of cardiac disease. Involvement of the survivor’s primary care provider in the management of survivors with cardiac risk factors is encouraged. Management can include addressing underlying risk factors, recommending physical activity and healthy dietary habits, and referral to a cardiologist.

Lymphedema

Lymphedema is a common side effect of cancer treatment, occurring on the same side of the body as the cancer treatment, resulting from damage to the lymphatic system. It occurs when lymph fluid accumulates in the interstitial tissue, causing swelling of the limb or other areas such as the neck, trunk, or genitals. Lymphedema is most often diagnosed within 18 months of treatment; however, it can develop any time in the life of the survivor.

More than 20% of cancer survivors reported lymphedema as a physical concern in a survey of almost 14 million survivors in the United States in a 2010 LIVESTRONG study. The incidence of lymphedema varies by disease site. In one study, 41% of almost 1,000 breast cancer survivors developed lymphedema by 10-year follow-up. In a study of survivors of gynecologic cancers, the incidence of lymphedema 2 years after surgery was 37%. In one study of 431 survivors of melanoma who had been treated with complete lymph node dissection and/or wide local excision and axillary sentinel lymph node surgery, the reported incidence of lymphedema was 25%.

Lymphedema may cause or exacerbate psychological distress. In a study that included 692...
breast cancer survivors with lymphedema, almost half reported moderate to extreme distress related to their lymphedema.60 Lymphedema can also affect social roles, employment, physical function, and quality of life and can cause disability.71–73 Unfortunately, only 55% of cancer survivors with self-reported lymphedema in the LIVESTRONG study said that they received care for lymphedema.64

Risk Factors for Lymphedema

Survivors whose cancer treatment included surgery and/or radiation to the axillary, supraclavicular, cervical, or inguinal lymph node system are at risk for the development of lymphedema.74–77 Sentinel lymph node biopsy also appears to increase the risk of lymphedema, although it poses less risk than complete dissection or radiation to the nodal group, and data are not completely consistent.75,78–82 Other treatment-related factors that have been associated with an increased risk of lymphedema are receipt of chemotherapy or radiation and the extent of lymph node dissection.65,66,74–77,80,82–84 Overweight (BMI \geq25 kg/m2) and obesity (BMI \geq30 kg/m2), localized infection, and higher initial stage of disease also raise the risk of lymphedema development.65,66,74–77,82,84–86

Assessment and Workup for Lymphedema

Survivors with a history of radiation or surgery to the lymph nodes should be asked about swelling or feeling of heaviness, fatigue, or fullness at each visit. Early detection and diagnosis is key for optimal lymphedema management, because stages 0 and 1 are reversible, whereas stages 2 and 3 are less responsive to treatment (see “Definition and Stages of Lymphedema,” page 1221). Swelling on the same side as the cancer treatment is a universal symptom of lymphedema. Additional initial symptoms may include pain or discomfort and/or sensations of heaviness, fatigue, fullness, and/or tightness in the skin. Symptoms, including decreased range of motion or strength and thickening of the skin, may occur in later stages. If symptoms are present, survivors should be asked about the frequency and severity of swelling, pain and/or discomfort, any issues with strength or range of motion and mobility (ie, bending, stretching, flexibility), and whether symptoms interfere with daily activities.

If lymphedema symptoms are present, a recurrence of cancer should be ruled out. The survivor should then be referred to a certified lymphedema therapist, if available, for additional assessments. These assessments can include subjective signs and symptoms of lymphedema and limb volume measurements. Ideally, pretreatment limb measurement of both sides should be performed as a baseline before initiation of any therapy for those with treatment-related or individual risk factors. If not, the contralateral limb can be used for comparison in the posttreatment setting. Clinical examination by a lymphedema therapist may include range of motion, muscle performance, circulation, sensation, hemodynamic monitoring, and functional mobility.

Survivors with lymphedema should also be assessed for distress (see “Anxiety, Depression, and Distress,” available online, in these guidelines, at NCCN.org).

Treatment of Lymphedema

High-level evidence supporting treatments for lymphedema are lacking, and most studies have been performed in breast cancer survivors.87–90 Most of the recommendations made by the panel are thus based on lower-level evidence, clinical experience, and expert consensus.

The oncology team should provide education regarding self-care management, including infection prevention measures, risk-reduction strategies, and maintenance of skin integrity on the affected side (see “Survivor Lymphedema Education,” next section). Distress should be treated if present (see “Anxiety, Depression, and Distress,” available in these guidelines at NCCN.org). Referral should be made to a certified lymphedema therapist, if available, for prescription and fitting of compression garments, performance of manual lymphatic drainage, and direction of supervised progressive resistance training. If a certified lymphedema therapist is not available, referral to an appropriate alternative provider for treatment should be considered.

Compression garments have been shown to reduce limb volume and are often used with other modalities such as manual lymphatic drainage.90,91 Manual lymphatic drainage is performed by a specific massage technique designed to encourage lymph fluid to drain from the affected area. Systematic reviews and meta-analyses have assessed the efficacy of manual lymphatic drainage in breast cancer survivors with lymphedema and found that it can pro-
Survivors at risk for lymphedema and those with lymphedema are at a higher risk of localized infection in the affected area. These infections can require hospitalization for intravenous antibiotics. Therefore, survivors with or at risk for lymphedema should be educated to inform their medical provider immediately for signs of infection in the affected area. Risk of infections can be reduced by safe pet care and gardening techniques (See “Immunizations and Prevention of Infections,” page 1241). Survivors should also be educated on how to maintain skin integrity with meticulous skin care of the affected area that includes avoidance of cuts, burns, skin irritants and allergens, insect bites, and pet scratches. The use of moisturizing soaps and over-the-counter, fragrance-free emollients may also be helpful.

Observational studies have shown that air travel, venipuncture, and blood pressure measurement (via arm cuff) are not associated with exacerbation or development of lymphedema, and precautionary measures are likely unnecessary. For instance, in one study of 632 women with breast cancer prospectively screened for lymphedema with 3,041 arm volume measurements, no association was found between the development of lymphedema and blood draws, injections, or air travel. In the absence of high-level data, however, the panel recommends that medical procedures such as venipuncture and blood pressure measurements be done on the non–at-risk arm/limb if possible. If necessary, procedures may be done using the at-risk arm/limb. More research is needed to determine the effect of these procedures on the risk of lymphedema.

Survivors should be informed that lymphedema is not a contraindication for physical activity and that no special precautions are required for cardiovascular/aerobic exercise or strength training of unaffected limbs. In addition, continued full use of the involved extremity and range-of-motion exercises should be encouraged to maintain strength and range of motion even in the presence of lymphedema. Progressive resistance/weight training under supervision is recommended for patients with lymphedema, as discussed previously (see “Treatment of Lymphedema,” previous section). Exercise and physical therapy may also help prevent lymphedema symptoms. In the randomized controlled Lymphedema Education and Prevention study (CALGB 70305), women randomized to the education plus

Survivor Lymphedema Education
Early detection and diagnosis is key for optimal lymphedema management because earlier stages are reversible. Therefore, survivors should be educated about the signs and symptoms of lymphedema and the importance of rapid reporting to the treatment team. Survivors should be told to inform their medical provider if subtle swelling or any other symptoms (eg, fullness, tightness, heaviness, pain) on the treated side are noted.

Provide additional benefit when added to standard therapy. In particular, compression bandaging alone leads to limb volume reductions of 30% to 39%, and manual lymphatic drainage appears to increase that reduction by an additional 7%.

Progressive resistance/weight training under supervision is recommended for survivors with lymphedema. Progressive resistance training and physical activity are not associated with exacerbation or development of lymphedema and may improve lymphedema symptoms. However, caution is advised in this population, and survivors with or at risk for lymphedema should consider discussing physical activity plans with a lymphedema specialist before starting a program that involves strength or resistance training. Survivors with lymphedema should initiate strength training exercise involving the affected body part only if lymphedema is stable (ie, no need for lymphedema therapy within the past 3 months, no recent limb infections requiring antibiotics, no change in limb circumference >10%, no change in the ability to perform activities of daily living). Survivors should undergo baseline and periodic evaluation for development or exacerbation of lymphedema and should stop exercise and see a lymphedema specialist if exacerbation of lymphedema occurs. If a certified therapist is not available for supervision, survivors with lymphedema can perform resistance training with a professional trainer who has knowledge of cancer-related physical activity principles. Weights should be slowly progressed as tolerated, and lymphedema should be evaluated periodically. Most survivors with or at risk for lymphedema require compression garments during resistance training. The National Lymphedema Network has published a position statement with additional guidance for exercise in individuals with lymphedema.
exercise arm self-reported greater range of motion at 12 months after lymph node dissection (a pre-specified secondary outcome) compared with women in the education-only arm (left, 91% vs 84%; P = .16; right, 90% vs 83%; P = .02).111

Survival of Survivors with Lymphedema
Survivors with lymphedema should have follow-up with the treatment team as clinically indicated. Clinicians should check range of motion, inquire about the fit and age of compression garments, replace compression garments if needed, and inquire about the performance of prescribed exercises and self-care management. Assessment for distress should also be performed as part of routine surveillance.

Immunizations and Prevention of Infections
Cancer survivors are at elevated risk for infection because of immune suppression associated with previous cancer treatments, such as chemotherapy, radiation, corticosteroids, certain surgeries, and stem cell transplantation. In fact, antibody titers to vaccine-preventable diseases decrease after anticancer treatment.112,113 In addition, survivors are at increased risk of complications from vaccine-preventable diseases, such as those caused by human papillomavirus and influenza viruses.113,114

Many infections in survivors can be prevented by the use of vaccines. However, data from the BRFSS found that 42% of survivors did not receive an influenza vaccination in 2009, and 52% reported never receiving a pneumococcal vaccination.115 Analysis of the SEER-Medicare database showed that survivors of breast cancer aged 65 years or older were less likely to receive an influenza vaccination than matched noncancer control subjects.116 A separate analysis of the SEER-Medicare database by another group found similar results.117

Vaccines represent a unique challenge in cancer and transplant survivors because they may or may not trigger the desired protective immune responses due to possible residual immune deficits.118-120 In addition, certain vaccines, such as those that are live attenuated (eg, zoster [ZVL or VAR]; measles, mumps, rubella [MMR]), are contraindicated in actively immunosuppressed survivors because of an increased risk of developing the disease and/or prolonged shedding of the live organism given in the vaccine.

Risk Assessment and Screening for Immunizations and Prevention of Infections
Survivors are at elevated risk for infections if their cancer treatment included chemotherapy, monoclonal antibodies (eg, rituximab, alemtuzumab), radiation, corticosteroids, splenectomy, and/or hematopoietic cell transplantation (HCT; which includes peripheral blood stem cell transplantation, bone marrow transplantation, and cord blood transplantation). Risk is also elevated if the survivor has prior or current exposure to endemic infections or epidemics, or has a history of blood transfusion.

Interventions for Prevention of Infections
Infection in survivors can be prevented by education, antimicrobial prophylaxis, and the judicious use of vaccines. For information regarding antimicrobial prophylaxis, please see the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections (available online at NCCN.org).

Education: Survivors should be educated about safe pet care, the avoidance of zoonosis, travel precautions, and gardening precautions.121-126 Contact with pets did not increase the risk of fever, bacteremia, pneumonia, and gastroenteritis in children with acute myeloid leukemia,127 and the panel believes that contact with pets is generally safe for most survivors. However, survivors should wash hands with soap and running water after handling animal feces. If possible, survivors at high risk for immune suppression should avoid direct contact with animal feces and other bodily secretions. Survivors with elevated risk of infection and those who are immunocompromised are at higher risk for zoonoses and should use extra caution and avoid contact with exotic animals (ie, snakes, turtles). Travel precautions include education on the need for pretravel vaccines, prophylaxis against specific infections, and education on how to prevent waterborne, airborne, and zoonotic infections.128 Travelers may find useful information from the CDC (https://wwwnc.cdc.gov/travel/yellowbook/2018/advising-travelers-with-specific-needs/immunocompromised-travelers) or by consulting a travel clinic. Gardening precautions include wearing gloves to avoid cuts and punctures that could be delayed in healing or become infected with fungus...
or staphylococcus/streptococcus that may be present on thorns, and wearing a protective mask to avoid inhalation of spores.

Immunizations: Vaccination, or “active immunization,” involves administration of all or part of a microorganism or a modified product of a microorganism (eg, a toxoid, a purified antigen, or an antigen produced by genetic engineering) to produce an immunologic response that mimics that of natural infection but usually presents little or no risk to the recipient. The use of vaccines that do not contain live organisms should be considered and encouraged in all cancer and transplant survivors who have completed immune-suppressive therapy (ie, chemotherapy or antibody-based therapy) at least 3 months before the planned vaccination. Patients receiving anti-estrogen or other hormone-modulating therapy do not have to delay vaccination for the completion of therapy. In general, the usual doses and schedules are recommended, as outlined by the Advisory Committee on Immunization Practices (ACIP).\(^{129}\) The Infectious Diseases Society of America (IDSA) has outlined guidance for vaccination in immunocompromised patients, including those with cancer and those post-HCT.\(^{130}\) The NCCN Survivorship Panel outlined immunization guidelines specific to survivors of hematologic malignancies and solid tumors, with separate guidelines for survivors who have received HCT. In survivors who received anti-B-cell antibody therapy, vaccination should be delayed for at least 6 months after chemotherapy or the last dose of such therapy to allow for reconstitution of the B-cell population. More details are available in the guidelines.

Before vaccination, immune system viability and history of allergic reactions to vaccines should be assessed. Baseline white blood cell counts should be in the normal range or within reasonable limits before starting vaccinations, unless they are elevated because of disease status. The survivor should not be on immunosuppressive drugs or chemotherapy, and ongoing infection should not be present.

The following vaccines should be considered and encouraged for all survivors, administered according to the usual doses and schedules: influenza vaccine (only inactivated or recombinant); tetanus, diphtheria, pertussis (Tdap); recombinant zoster (RZV) vaccine in all survivors 50 years or older; and human papillomavirus in previously unvaccinated survivors through age 26 years.\(^{129}\) These vaccines do not contain live organisms; instead they contain inactivated organisms, purified antigens, bacterial components, or genetically engineered recombinant antigens. Whereas the effectiveness of these vaccinations might be suboptimal because of lingering immune suppression,\(^{120}\) their administration is likely worthwhile to achieve some protection in the absence of known harm.

Pneumococcal vaccine (PPSV-23/PCV-13) is recommended for all adults age 65 years or older and those at any age with immunocompromising conditions.\(^{131,132}\) Pneumococcal vaccination is also recommended for survivors of lung cancer and those who had lung resection. Data from a population-based matched cohort study in Taiwan found that administration of PPSV-23 to ≥5-year survivors of cancer reduced hospitalization for pneumonia.\(^{133}\) Other vaccines, as listed in the guidelines, should be considered in consultation with an infectious disease or travel medicine specialist if unique circumstances in the survivor’s lifestyle, upcoming travel, functional or anatomic asplenia, or local epidemic/risks merit their use.

Live Viral Vaccines: Vaccines that contain live attenuated organisms (eg, live-attenuated influenza vaccine; MMR; live-attenuated ZVL, VAR, yellow fever vaccine) are contraindicated in actively immunocompromised survivors because of a proven or theoretical increased risk of disease and prolonged shedding of the live organism present in the vaccine. They should not be offered to actively immunocompromised survivors, unless cleared by a clinician experienced in vaccine use or by an infectious disease specialist.

Live viral vaccines can be administered, however, to immunocompetent survivors 3 or more months after chemotherapy or 6 or more months after anti-B-cell antibody therapy, although consultation with an infectious disease specialist or clinician familiar with vaccination in patients with cancer is strongly recommended. Live viral vaccines should not be administered to HCT survivors with active graft-versus-host disease (GVHD) or ongoing immunosuppression. They should only be administered to HCT survivors without active GVHD or ongoing immunosuppression after consultation with an infectious diseases specialist. For all survivors, when other vaccine options exist, they are preferred over live-attenuated vaccines (eg, RZV).
Healthy immunocompetent individuals who live in a household with immunocompromised survivors can receive the following live vaccines with caution: MMR, varicella zoster (VAR or ZVL), yellow fever, rotavirus, and oral typhoid vaccines.\(^{130}\) Immunocompromised survivors should avoid contact with persons who develop skin lesions after receipt of VAR or ZVL until the lesions clear. In addition, immunocompromised survivors should avoid handling diapers of children who have been vaccinated with rotavirus vaccine for 4 weeks after vaccination.

Influenza Vaccines: Annual influenza vaccination is recommended for all cancer and transplant survivors.\(^ {134}\) Live-attenuated influenza vaccines should be avoided in some survivors (see “Live Viral Vaccines,” previous section).\(^ {135}\) Therefore, preferred vaccines include inactivated influenza vaccines (ie, trivalent [IIV3] standard-dose, trivalent [IIV3] high-dose, and quadrivalent [IIV4] standard-dose) or recombinant influenza vaccine (ie, trivalent [RIV3] or quadrivalent [RIV4]).\(^ {129,135}\) Some evidence suggests that the high-dose IIV3 vaccine may provide better protection than standard-dose IIV3 in individuals 65 years or older.\(^ {136}\) No studies have addressed the superiority of any influenza vaccine in the cancer survivor population specifically. Administration of the influenza vaccine to survivors with egg allergy symptoms (other than hives) should be done at a center that can manage severe allergic reactions, as currently recommended for all individuals.\(^ {129}\)

Zoster (Shingles) Vaccine: A new recombinant zoster vaccine (RZV) has become available in the United States. The recombinant vaccine is the preferred zoster vaccine for cancer survivors, and is recommended for survivors aged ≥50 years.\(^ {137}\) In survivors who have previously received ZVL, immunization with RZV should be considered. The recombinant vaccine should not be given sooner than 2 months after administration of the live attenuated vaccine.

If RZV is unavailable or access to it is an issue, ZVL can be given as a single dose to survivors aged 60 years or older without active or ongoing immunodeficiency, no history of cellular immunodeficiency or HCT, and who have not received chemotherapy or radiation within the past 3 months, or it can be given at least 4 weeks before initiation of chemotherapy or immunosuppressive drugs.\(^ {130,138}\) ZVL can also be considered for survivors aged 50 to 59 years with a history of VZV infection or VZV seropositivity with no previous doses of VAR vaccine if the recombinant vaccine is unavailable. ZVL should be avoided in immunocompromised survivors, but VAR can be considered in transplant survivors without active GVHD or enhanced immunosuppression 24 or more months after transplantation.

Acknowledgments

The authors thank Drs. Anecita Fadol and Ella Ariza-Heredia for their review of the manuscript.

References

Survivorship, Version 2.2018

Individual Disclosures for Survivorship Panel

<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Clinical Research Support/Data Safety Monitoring Board</th>
<th>Scientific Advisory Boards, Consultant, or Expert Witness</th>
<th>Promotional Advisory Boards, Consultant, or Speakers Bureau</th>
<th>Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Scott Baker, MD, MS</td>
<td>Cincinnati Children's Medical Center</td>
<td>None</td>
<td>None</td>
<td>9/4/17</td>
</tr>
<tr>
<td>Gregory Broderick, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>9/1/18</td>
</tr>
<tr>
<td>Wendy Demark-Wahnefried, PhD, RD</td>
<td>None</td>
<td>American Society of Clinical Oncology</td>
<td>None</td>
<td>7/10/18</td>
</tr>
<tr>
<td>Crystal S. Denlinger, MD, FACP</td>
<td>Agios Pharmaceuticals, Inc.; Array Pharmaceuticals; AstraZeneca Pharmaceuticals LP; BelGene; Bristol-Myers Squibb Company; Eli Lilly and Company; Genentech, Inc.; MacroGenics, Inc.; MedImmune, Inc.; and Merrimack Pharmaceuticals</td>
<td>Bristol-Myers Squibb Company, and Merck & Co., Inc.</td>
<td>None</td>
<td>8/17/18</td>
</tr>
<tr>
<td>Debra L. Friedman, MD, MS</td>
<td>None</td>
<td>National Cancer Institute, and Rally Foundation</td>
<td>None</td>
<td>8/5/17</td>
</tr>
<tr>
<td>Mindy Goldman, MD</td>
<td>None</td>
<td>None</td>
<td>Madorra, Inc.</td>
<td>8/3/18</td>
</tr>
<tr>
<td>Melissa Hudson, MD</td>
<td>None</td>
<td>Pfizer Inc.</td>
<td>None</td>
<td>7/26/18</td>
</tr>
<tr>
<td>Nazanin Khakpour, MD, FACS</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2/26/16</td>
</tr>
<tr>
<td>Allison King, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/4/17</td>
</tr>
<tr>
<td>Divya Koura, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/16/17</td>
</tr>
<tr>
<td>Robin M. Lally, PhD, MS, RN, AOCN</td>
<td>Pfizer Inc.</td>
<td>NIH/NINR Study Section Oncology Nursing Society Foundation</td>
<td>None</td>
<td>6/28/18</td>
</tr>
<tr>
<td>Terry S. Langbaum, MAS</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>9/4/18</td>
</tr>
<tr>
<td>Allison L. McDonough, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7/31/18</td>
</tr>
<tr>
<td>Michelle Melisko, MD*</td>
<td>Celldex Therapeutics, Inc.; Galena Biopharma, Inc.; Eli Lilly and Company; Novartis Pharmaceuticals Corporation; and Puma Biotechnology</td>
<td>None</td>
<td>Agendia BV</td>
<td>8/24/17</td>
</tr>
<tr>
<td>Jose G. Montoya, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>9/20/17</td>
</tr>
<tr>
<td>Kathi Mooney, PhD, RN, FAAN</td>
<td>University of Utah</td>
<td>National Cancer Institute</td>
<td>None</td>
<td>7/31/17</td>
</tr>
<tr>
<td>Javid J. Moslehi, MD</td>
<td>None</td>
<td>Bristol-Myers Squibb Company; Ipsen; Novartis Pharmaceuticals Corporation; Pfizer Inc.; and Takeda Pharmaceuticals North America, Inc.</td>
<td>None</td>
<td>9/1/18</td>
</tr>
<tr>
<td>Tracey O'Connor, MD</td>
<td>None</td>
<td>None</td>
<td>Amgen Inc.</td>
<td>9/22/17</td>
</tr>
<tr>
<td>Linda Overholser, MD, MPH†</td>
<td>None</td>
<td>George Washington Cancer Institute Survivorship Project</td>
<td>University of Colorado Denver College of Arts and Media</td>
<td>9/28/17</td>
</tr>
<tr>
<td>Electra D. Paskett, PhD</td>
<td>Merck & Co., Inc.</td>
<td>None</td>
<td>None</td>
<td>7/12/18</td>
</tr>
<tr>
<td>Jeffrey Peppercorn, MD, MPH*</td>
<td>TG Therapeutics, Inc.</td>
<td>None</td>
<td>None</td>
<td>10/3/17</td>
</tr>
<tr>
<td>William Pirl, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7/10/18</td>
</tr>
<tr>
<td>M. Alma Rodriguez, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>9/4/18</td>
</tr>
<tr>
<td>Kathryn J. Ruddy, MD, MPH‡</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/6/18</td>
</tr>
<tr>
<td>Tara Sanft, MD</td>
<td>None</td>
<td>None</td>
<td>Biotheranostics, Inc.</td>
<td>4/18/18</td>
</tr>
<tr>
<td>Paula Silverman, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/16/18</td>
</tr>
<tr>
<td>Sophia Smith, PhD, MSW</td>
<td>Pfizer Inc.</td>
<td>None</td>
<td>None</td>
<td>7/26/18</td>
</tr>
<tr>
<td>Karen L. Syrjala, PhD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>9/4/18</td>
</tr>
<tr>
<td>Amye Tevaarswerk, MD</td>
<td>None</td>
<td>Epic Care Systems</td>
<td>None</td>
<td>8/2/18</td>
</tr>
<tr>
<td>Susan G. Urba, MD</td>
<td>None</td>
<td>Heron Therapeutics, and Merck & Co., Inc.</td>
<td>None</td>
<td>8/14/18</td>
</tr>
<tr>
<td>Mark T. Wakabayashi, MD, MPH</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/21/17</td>
</tr>
<tr>
<td>Phyllis Zee, MD, PhD</td>
<td>Eisai Inc.; Harmony Biosciences; Jazz Pharmaceuticals Inc.; Philips; and Technogel</td>
<td>Eisai Inc.; Harmony Biosciences; Merck & Co., Inc.; Philips; and sanofi-aventis U.S.</td>
<td>None</td>
<td>8/2/18</td>
</tr>
</tbody>
</table>

The NCCN Guidelines Staff have no conflicts to disclose.

*The following individuals have disclosed that they have a spouse/domestic partner-dependent potential conflict:
- Michelle Melisko, MD: Merrimack Pharmaceuticals
- Linda Overholser MD, MPH: Eli Lilly and Company
- Jeffrey Peppercorn MD, MPH: GlaxoSmithKline

†The following individuals have disclosed that they have an employment/governing board, patent, equity, or royalty:
- Linda Overholser MD, MPH: Springer Publishing
- Kathryn Ruddy MD, MPH: Merck & Co., Inc., and Pfizer Inc.