NCCN Guidelines® Insights
Central Nervous System Cancers, Version 1.2017
Featured Updates to the NCCN Guidelines

Louis Burt Nabors, MD1; Jana Portnow, MD2; Mario Ammirati, MD, MBA3; Joachim Baehring, MD4; Henry Brem, MD5; Nicholas Butowski, MD6; Robert A. Fenstermaker, MD7; Peter Forsyth, MD8; Jona Hattangadi-Gluth, MD9; Matthias Holdhoff, MD, PhD10; Steven Howard, MD11; Larry Junck, MD12; Thomas Kaley, MD13; Priya Kumthekar, MD13; Jay S. Loeffler, MD14; Paul L. Moos, MD15; Maciej M. Mrugala, MD, PhD, MPH16; Seema Nagpal, MD17; Manjari Pandey, MD18; Ian Parney, MD, PhD19; Katherine Peters, MD, PhD20; Vinay K. Puduvalli, MD21; John Ragsdale III, MD22; Jason Rockhill, MD, PhD23; Lisa Rogers, DO24; Chad Rusthoven, MD25; Nicole Shonka, MD26; Dennis C. Shrieve, MD, PhD27; Allen K. Sills Jr, MD28; Lode J. Swinnen, MB, ChB29; Christina Tsien, MD30; Stephanie Weiss, MD31; Patrick Yung Wen, MD32; Nicole Willmarth, PhD32; Mary Anne Bergman33; and Anita Engh, PhD34.

Abstract
For many years, the diagnosis and classification of gliomas have been based on histology. Although studies including large populations of patients demonstrated the prognostic value of histologic phenotype, variability in outcomes within histologic groups limited the utility of this system. Nonetheless, histology was the only proven and widely accessible tool available at the time, thus it was used for clinical trial entry criteria, and therefore determined the recommended treatment options. Research to identify molecular changes that underlie glioma progression has led to the discovery of molecular features that have greater diagnostic and prognostic value than histology. Analyses of these molecular markers across populations from randomized clinical trials have shown that some of these markers are also predictive of response to specific types of treatment, which has prompted significant changes to the recommended treatment options for grade III (anaplastic) gliomas.

From 1University of Alabama at Birmingham Comprehensive Cancer Center; 2City of Hope Comprehensive Cancer Center; 3The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute; 4Yale Cancer Center/Smilow Cancer Hospital; 5The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins; 6UCSF Helen Diller Family Comprehensive Cancer Center; 7Roswell Park Cancer Institute; 8Moffitt Cancer Center; 9UC San Diego Moores Cancer Center; 10University of Wisconsin Carbone Cancer Center; 11University of Michigan Comprehensive Cancer Center; 12Memorial Sloan Kettering Cancer Center; 13Robert H. Lurie Comprehensive Cancer Center of Northwestern University; 14Massachusetts General Hospital Cancer Center; 15Vanderbilt-Ingram Cancer Center; 16Mayo Clinic Cancer Center; 17Stanford Cancer Institute; 18St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center; 19Duke Cancer Institute; 20University of Washington/Seattle Cancer Care Alliance; 21Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute; 22University of Colorado Cancer Center; 23Fred & Pamela Buffet Cancer Center; 24Huntsman Cancer Institute at the University of Utah; 25Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine; 26Fox Chase Cancer Center; 27Dana-Farber Cancer Institute/ Brigham and Women’s Cancer Center; 28American Brain Tumor Association; and 29National Comprehensive Cancer Network.

*Provided content development and/or authorship assistance.

Please Note
The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. The NCCN Guidelines® Insights highlight important changes to the NCCN Guidelines® recommendations from previous versions. Colored markings in the algorithm show changes and the discussion aims to further the understanding of these changes by summarizing salient portions of the NCCN Guideline Panel discussion, including the literature reviewed.

These NCCN Guidelines Insights do not represent the full NCCN Guidelines; further, the National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding the content, use, or application of the NCCN Guidelines and NCCN Guidelines Insights and disclaims any responsibility for their applications or use in any way.

The full and most current version of these NCCN Guidelines are available at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.
Disclosure of Relevant Financial Relationships

Editor:
Kerrin M. Green, MA, Assistant Managing Editor, JNCCN—Journal of the National Comprehensive Cancer Network, has disclosed that she has no relevant financial relationships.

JNCCN:
Kimberly Callan, MS, Senior Director, Professional and Patient Publications, NCCN, has disclosed that she has no relevant financial relationships.
Genevieve Emberger Hartzman, MA, Journal Production Specialist, NCCN, has disclosed that she has no relevant financial relationships.

CE Authors:
Deborah J. Moonan, RN, BSN, Director, Continuing Education, NCCN, has disclosed that she has no relevant financial relationships. (Employed by NCCN until 2/17/17.)
Karen Kanefield, Manager, Continuing Education Accreditation and Program Operations, NCCN, has disclosed that she has no relevant financial relationships.
Kathy Smith, Manager, CE Grant Writing & Project Management, NCCN, has disclosed that she has no relevant financial relationships.
Kristina M. Gregory, RN, MSN, OCN, Vice President, Clinical Information Operations, NCCN, has disclosed that she has no relevant financial relationships.
Rashmi Kumar, PhD, Director, Clinical Information Operations, NCCN, has disclosed that she has no relevant financial relationships.

Individuals Who Provided Content Development and/or Authorship Assistance:
Louis Burt Nabors, MD, Panel Chair, has disclosed that he serves as a scientific advisor for Bristol-Myers Squibb Company and ZioPharm. He also receives consulting fees/honoraria from and is on the product/speakers bureau for Merck & Co., Inc.
Jana Portnow, MD, Vice Chair, has disclosed that she has no relevant relationships.
Matthias Holdhoff, MD, PhD, Panel Member, has disclosed that he serves as a scientific advisor for Celgene and has received honoraria from Arbor.
Larry Junck, MD, Panel Member, has disclosed that he serves as a scientific advisor for Ignyta, Inc., PRA Health Services, and Tocagen.
Priya Kumthekar, MD, Panel Member, has disclosed that she serves as a scientific advisor for AbbVie Inc. and Vivacitas Oncology, Inc.
Paul L. Moots, MD, Panel Member, has disclosed that he has no relevant financial relationships.
Manjari Pandey, MD, Panel Member, has disclosed that she has no relevant financial relationships.
Katherine Peters, MD, PhD, Panel Member, has disclosed that she serves as a scientific advisor for AbbVie Inc. and Novocure. She also received grant/research support from Argos Therapeutics, Inc.; BioMimeticx Pharmaceutica, Inc.; Eisai Inc.; Genentech, Inc.; Merck & Co., Inc.; and VBL Therapeutics.
Lisa Rogers, DO, Panel Member, has disclosed that she has served as a scientific advisor for Novocure.
Mary Anne Bergman, Guidelines Coordinator, NCCN, has disclosed that she has no relevant financial relationships.
Anita Engh, PhD, Oncology Scientist/Medical Writer, NCCN, has disclosed that she has no relevant financial relationships.

This activity is supported by educational grants from Astellas, AstraZeneca, Celldex Therapeutics, Clovis Oncology, Genomic Health, Inc., Kyowa Hakko Kirin, Jazz Pharmaceuticals, Novartis Pharmaceuticals Corporation, and NOVOCURE. This activity is supported by an independent educational grant from Merck Co., Inc.
Overview

Estimates based on recent population analyses indicate that nearly 24,000 people in the United States are diagnosed with primary malignant brain or other central nervous system (CNS) neoplasms each year.\(^1\)\(^,\)\(^2\) In adults, the annual incidence of malignant primary brain and other CNS tumors is 8.7 per 100,000.\(^1\) These cancers are a leading cause of death in adults, especially for those <40 years old, and are estimated to be responsible for 16,700 deaths in the United States in 2017.\(^1\)\(^,\)\(^2\) High-grade gliomas are the most common type of brain cancer, accounting for more than half of all malignant primary tumors of the brain and CNS.\(^1\) Although the prognosis for glioblastoma (grade IV glioma) is grim (5-year survival rates between 1% and 19%, depending on age), outcomes for anaplastic gliomas (grade III gliomas) are typically better, depending on the molecular features of the grade III glioma.\(^1\) Clinicians are learning how to better predict survival and select treatments for patients with high-grade gliomas.
PRINCIPLES OF BRAIN TUMOR PATHOLOGY (1 OF 3)

Standard Histology
- Histologic subgrouping of CNS neoplasms provides valuable prognostic information, as is encompassed in the WHO classification of gliomas.1
- Inter-observer differences in histologic diagnosis and grading are a recognized issue.
- Even so, the traditional histologic distinction of CNS neoplasms into primary neuroectodermal neoplasms (eg, glial, neuronal, embryonal) from other primary CNS neoplasms (eg, lymphoma, germ cell, meningeal), metastatic neoplasms, and non-neoplastic conditions mimicking tumors, remains fundamental to any pathologic assessment.

Molecular/Genetic Characterization
- The development of sophisticated genetic and molecular characterization of CNS neoplasms has shown that histologically similar neoplasms can be characterized more accurately for prognosis and in some instances for response to different therapies.2-6
- Molecular characterization of primary brain tumors/gliomas has had a substantial impact on stratification and eligibility in clinical trials for CNS neoplasms over the last 10 years, and is increasingly becoming a common part of standard neuro-oncology management.
- Molecular/genetic characterization should not be used in lieu of standard histologic assessment, but serves as a complementary approach to provide additional diagnostic and prognostic information that may aid in treatment selection.
- There are no identified targeted agents with demonstrated efficacy in glioblastoma. Assessment of EGFR may lead practitioner to consider EGRF-targeted therapies in some patients.

Continued

BRAIN-F
1 OF 3

Molecular Profiling for Glioma Classification

Classification of Gliomas Based on Histology
Although molecular tests for subtyping gliomas have been in use at some institutions since the late 1980s, histologic features, as observed by pathologists’ review, have for many years been the primary basis for glioma grading and subtyping, and were the basis for the 2007 WHO classification system for gliomas.3 Supplemental eTable 1 (available online with this article at JNCCN.org) shows the 2007 WHO categories of gliomas covered in the first 2 sections of the NCCN Guidelines for CNS cancers (see ASTR and GLIO pages in the full version of these guidelines at NCCN.org). In the 2007 WHO system, grade II and III gliomas were further categorized based on cell types; the most commonly observed histologic subtypes are astrocytoma, oligodendroglioma, and oligoastrocytoma.3 Although the 2007 WHO system of grading and subtyping based on histology has been shown to provide some prognostic separation (for overall survival [OS] and progression-free survival [PFS]) in a few studies of larger populations (≥300 patients) with brain tumors,4,5 results from other studies are less convincing and more variable.6-13 Categorizing gliomas based solely on histology has also been
Central Nervous System Cancers, Version 1.2017

PRINCIPLES OF BRAIN TUMOR PATHOLOGY (2 OF 3)

MOLECULAR MARKERS

The following molecular markers are often used by neuropathologists to facilitate characterization of gliomas and/or by neuro-oncologists to guide treatment decisions:

Codeletion of 1p and 19q
- **Description:** This codeletion represents an unbalanced translocation (1p;19q)(q10;p10).
- **Detection:** The codeletion of 1p and 19q is detectable by FISH or PCR.
- **Diagnostic value:** It is strongly associated with oligodendrogial histology and helps confirm the oligodendrogial character of tumors with equivocal or mixed histologic features.7
- **Prognostic value:** The codeletion confers a favorable prognosis and is predictive of response to alkylating chemotherapy and combination therapy with radiation and alkylating chemotherapy.8,9

Isocitrate Dehydrogenase 1 and 2 (IDH1 and IDH2) Mutation
- **Description:** IDH1 and IDH2 are metabolic enzymes. Specific mutations of these enzymes are linked to the formation of D-2-hydroxyglutarate, an oncometabolite that causes epigenetic modifications.
- **Detection:** The most common IDH1 mutation (R132) is detectable by immunohistochemistry. Additional IDH1 as well as IDH2 mutations are detectable by PCR or pyrosequencing.
- **Diagnostic value:** Very common in grade II and III gliomas. Much less common in glioblastoma, but can help identify a glioblastoma as being a secondary glioblastoma (one that transformed from a lower grade glioma and generally does not behave as aggressively as a primary [de novo] glioblastoma).10,11
- **Prognostic value:**
 - IDH1 mutations are commonly associated with codeletion of 1p and 19q, and with MGMT promoter methylation.6
 - IDH1 or 2 mutations are associated with a favorable prognosis and are important in stratification for clinical trials.14
 - In grade II or III gliomas, wild-type IDH1 or 2 is associated with increased risk of aggressive disease.4
 - IDH1 or 2 mutations are associated with a survival benefit for patients treated with radiation or alkylator chemotherapy, but not for untreated patients.12,14

MGMT Promoter Methylation
- **Description:** MGMT (O6-methylguanine-DNA methyltransferase) is a DNA repair enzyme that reverses the DNA damage caused by alkylating agents, resulting in tumor resistance to temozolomide and nitrosourea-based chemotherapy. Methylation of the MGMT promoter silences MGMT, making the tumor more sensitive to treatment with alkylating agents.15
- **Detection:** Methylation of the MGMT promoter is detectable by methylation-specific PCR16 or pyrosequencing.17
- **Prognostic value:**
 - MGMT promoter methylation is strongly associated with IDH status and genome-wide epigenetic changes (G-CIMP phenotype).5
 - MGMT promoter methylation confers a survival advantage in glioblastoma and is used in risk stratification in clinical trials.18
 - MGMT promoter methylation is particularly useful in treatment decisions for elderly patients with high-grade gliomas (grades III–IV).19,20
 - Patients with glioblastoma that are not MGMT promoter methylated derive less benefit from treatment with temozolomide compared to those whose tumors are methylated.18

References available online, in the full version of this guideline, at NCCN.org [BRAIN-F 3 of 3]

shown to be limited by interobserver variability, especially for certain categories.14–21 The variability in outcomes for oligoastrocytoma is likely related to the high interobserver variability (between pathologists) in assigning this particular category.22–25 These challenges prompted searches for molecular characteristics to help better distinguish glioma subtypes and improve estimation of prognosis for patients with brain tumors.

Revised WHO Classification System for Gliomas

Findings from molecular analyses (described in more detail later) have prompted revision of the WHO classification system to incorporate molecular features that have been shown to have better prognostic value than standard pathology.36 **Supplemental Table 1** shows the categorization of patients with grade II/III gliomas according to the WHO classification system versions 2007 and 2016.12,36 Key changes for grade II/III gliomas are as follows: (1) oligodendroglia include only tumors with 1p19q codeletion (1p19q-codel) and IDH mutation (IDH-mut), unless molecular data are not available and cannot be obtained, in which case designation can be based on histology; (2) anaplastic gliomas are further subdivided according to IDH mutation status; and (3) oligoastrocytoma is no longer a valid designation unless molecular data (1p19q deletion and IDH mutation status) are not available and cannot be obtained, or there is phenotypic and genotypic evidence of spatially distinct oligodendroglioma (1p19q-codel) and astrocytoma (1p19q intact or deletion of only 1p or 19q) components in the same tumor.

Grade II/III Glioma: Search for Molecular Subgroups

Multiple independent studies on glioma tissue removed from the brain have conducted genome-wide analyses evaluating an array of molecular features (eg, mutations, DNA copy number, DNA methylation, mRNA, microRNA, protein expression) in large populations of patients with grade II–IV
disease.5,9,27–29 Unsupervised clustering analyses, an unbiased method for identifying molecularly similar tumors, have been used to identify subgroups of gliomas with distinct molecular profiles.5,9,27–29 Remarkably, further analysis showed that these molecular subgroups could be distinguished based on only a handful of molecular features, including mutation of \textit{IDH1} or \textit{IDH2} (\textit{IDH-mut}) and 1p19q-codel, biomarkers independently verified by many studies as hallmarks for distinguishing molecular subgroups in grade II/III glioma.4–7,9,13,28,30–39 Using these markers alone, most grade II/III tumors can be divided into 3 molecular subtypes: (1) mutation of either \textit{IDH1} or \textit{IDH2} with 1p19q codelleted (\textit{IDH-mut+1p19q-codel}), (2) \textit{IDH-mut} without deletion of 1p or 19q (\textit{1p19q int}act) or with isolated deletion of 1p or 19q, and (3) no mutation of \textit{IDH1} or \textit{IDH2} (\textit{IDH-wt}).5 Multiple studies have shown that codelletion of 1p and 19q is strongly associated with \textit{IDH-mut}, such that 1p19q codelletion in \textit{IDH-wt} tumors is rare.7,11,13,34,35

Analyses of large molecular databases have also suggested a number of other molecular markers as being potential characteristic/prognostic features of specific molecular subgroups.7,9,11,28,35,37,40 Molecular features suggested by more than one study as markers for subtyping grade II/III gliomas include (1) mutations in the \textit{TERT} promoter, \textit{NOTCH1}, \textit{CIC}, \textit{FUBP1}, \textit{PIK3CA}; (2) mutation in or overexpression of \textit{TP53}; (3) \textit{PTEN} loss or promoter methylation; (4) loss/deletion of \textit{ATRX} and \textit{CDKN2A/B}; (5) amplification of \textit{EGFR}; and (6) chromosome 7 gain, chromosome 10 loss.5,9,27,28,34–37,40 Due to variability in results across studies, these molecular markers are not currently widely accepted as useful for classifying gliomas. \textit{Supplemental eTable 2} shows the molecular, phenotypic, and demographic characteristics associated with the 3 molecular subgroups of grade II/III gliomas defined by \textit{IDH} and 1p19q status. It is important to note that the “associated molecular markers” listed in \textit{supplemental eTable 2} are not necessarily present in all tumors of a particular molecular subgroup and have not been fully validated as markers for assigning molecular subtype. Some of these markers can be found (not infrequently) in more than one molecular subgroup, but are merely more prevalent in one particular subgroup; other markers are found almost exclusively in one particular molecular subgroup.5,11,28,35,37 It is important to note that correlations between the molecularly defined 2016 WHO categories and the histology-based 2007 WHO categories are limited and vary across studies.5,7,14,37 Thus the change from 2007 WHO to 2016 WHO reclassifies a significant proportion of grade II–IV gliomas.

\section*{Central Nervous System Cancers, Version 1.2017}

\subsection*{Grade II/III Glioma: Prognostic Relevance of Molecular Subgroups}

Most importantly, the specific markers used to define molecular subgroups among grade II/III gliomas have been shown to have prognostic value. Numerous large studies of patients with brain tumors have shown that among grade II/III gliomas, 1p19q-codel is significantly correlated with improved PFS and OS.4,6,7,9,10,13,30,32,41,42 Many of these studies used heterogeneous populations treated with a variety of approaches, but a few showed statistically significant correlation between 1p19q-codel and outcome within a population of patients who received the same treatment. The independent prognostic value of 1p19q status was also confirmed through multivariate analyses from multiple studies in patients with grade II/III glioma.4,7,13,41,42 For \textit{IDH} mutation status, although a few analyses did not find a significant correlation with PFS, many more studies found that \textit{IDH-mut} was associated with improved PFS, including several multivariate analyses.4,9,10,42,43 Numerous large studies, including many multivariate analyses, all found that \textit{IDH-mut} is significantly associated with improved OS in patients with grade II/III glioma.4,5,7,9,13,27,28,32,34,35,37,41,43,44 Analyses within single-treatment arms showed that the \textit{IDH} status is prognostic for outcome across a variety of postoperative adjuvant options. For example, in the NOA-04 phase III randomized trial in newly diagnosed anaplastic gliomas, \textit{IDH-mut} was associated with improved PFS, time to treatment failure, and OS in each of the 3 treatment arms: standard radiation therapy (RT; n=160); combination therapy with procarbazine, lomustine, and vincristine (PCV RT upon progression; n=78); and temozolomide (TMZ; RT upon progression; n=80).10 Multiple independent studies have shown that subdividing grade II/III gliomas by \textit{IDH}- and 1p19q-based molecular subtype yields greater prognostic separation (for PFS and OS) than subdivision based on histology (as defined by WHO 2007).
These include very large studies covering multiple grades and histology-based subtypes of gliomas, as well as smaller studies limited to 1 to 2 grades or histologic subtypes. Multiple studies have also shown that among patients with grade II/III gliomas, the IDH-mut+1p19q-codel group has the best prognosis, with significantly better PFS and OS than the IDH-wt group, which has the worst prognosis of the 3; and outcomes for the group with IDH-mut and 1p19q intact or deletion of only 1p or 19q usually lie somewhere in between that of the IDH-mut+1p19q-codel and IDH-wt groups. Analyses within single treatment arms have confirmed this trend in prognosis across a variety of postoperative adjuvant treatment options.

Table 1 shows a few examples of prospective phase II/III trials reporting outcomes for the 3 molecular subtypes within the following (postoperative) treatment arms: RT, TMZ, PCV or TMZ, and PCV then RT.

Molecular Features Relevant to Treatment Selection for Anaplastic Glioma

Supplemental eTable 1 shows the histologic and molecular features used to determine the recommended treatment pathway for grade III gliomas in the NCCN Guidelines (version 1.2017). Each pathway for anaplastic gliomas (grade III) has several recommended adjuvant treatment options (see GLIO-2, page 1333, and GLIO-5, available in the complete version of these guidelines at NCCN.org), and the recommended treatment pathway is also determined by performance status. In addition, the “Principles of Brain Tumor Pathology” section was added to the NCCN Guidelines to provide guidance for the histologic and molecular characterization of gliomas (see BRAIN-F, pages 1334 and 1335). This section includes descriptions of how specific molecular markers (1p19-codel, IDH1 and IDH2 mutations,
and MGMT promoter methylation) may be used to facilitate subtyping and treatment selection.

In the 2017 version of the NCCN Guidelines, “anaplastic oligodendroglioma” is limited to patients with 1p19q-codel tumors, and “anaplastic astrocytoma” to those with 1p19q intact or deletion of only 1p or 19q tumors. “Anaplastic oligoastrocytoma” corresponds to the 2016 WHO category “anaplastic oligoastrocytoma, NOS [not otherwise specified]” and should include only (1) patients with mixed histology and no available molecular data (ie, no tissue available for analysis) for determining whether to classify as oligodendroglioma versus astrocytoma, or (2) rare instances in which the tumor has regions with histologic features of oligoastrocytoma with 1p19q-codel, and distinct regions with histologic features of astrocytoma and no 1p19q-codel.26

Recent changes to the WHO system for classifying gliomas along with emerging trial data have prompted changes in the recommendations for postoperative treatment of anaplastic (grade III) gliomas (see GLIO-2, page 1333). For postoperative adjuvant treatment of anaplastic gliomas in patients with good performance status (Karnofsky performance score [KPS] ≥60), combination therapy with fractionated external-beam RT combined with PCV or TMZ, are among the recommended options in the NCCN Guidelines, shown in the top 2 pathways on GLIO-2.

Combination Therapy: RT Plus PCV
Addition of PCV to RT for treatment of anaplastic gliomas is supported by 2 phase III randomized trials, one testing RT plus adjuvant PCV (EORTC 2695111,46,47) and the other testing neoadjuvant PCV plus RT (RTOG 940241,48,49). Both trials compared combination therapy with RT alone. Key data from these trials are summarized in Table 2.

RT With Neoadjuvant PCV: The RTOG 9402 trial showed that 4 cycles of a dose-intense PCV regimen followed by RT significantly improved OS compared with RT alone in a patient sample with histology-based anaplastic oligodendroglioma or anaplastic oligoastrocytoma (Table 2).41,48,49 Based on this result, one option in the NCCN Guidelines is treatment with neoadjuvant PCV plus fractionated external-beam RT for all subtypes of anaplastic gliomas (see top 2 pathways on GLIO-2, page 1333) in patients with good performance status (KPS ≥60). Results showed significantly higher rates of discontinuation and acute toxicities in the neoadjuvant PCV plus RT arm compared with RT alone, with 2 early deaths attributed to PCV-induced neutropenia (Table 2),48,49 supporting the notion that combination therapy with RT and chemotherapy is too toxic to be safely used in patients with poor performance status (KPS <60).

It is important to note that in RTOG 9402, the positive effect of neoadjuvant PCV on OS differed across molecular subgroups (Tables 2 and 3).41,49 A significant benefit from the addition of PCV to RT was seen in patients with 1p19q-codel but not in those whose tumors did not have this molecular marker, taken as a group. Adding neoadjuvant PCV to RT significantly improved OS for patients with IDH-mut but not IDH-wt. For patients categorized using both 1p19q and IDH status, the addition of neoadjuvant PCV to RT significantly improved OS among patients with the IDH-mut+1p19q-codel tumor subtype, had a lesser effect on patients with IDH-mut and 1p19q intact or deletion of only 1p or 19q, and had no significant effect on patients with IDH-wt (1p19q intact or deletion of only 1p or 19q) tumors (Table 3).41,49 Based on these results, neoadjuvant PCV plus RT is a category 1 recommendation for anaplastic oligodendroglioma (1p19q-codel; see top pathway on GLIO-2, page 1333), but a category 2A recommendation for anaplastic astrocytoma (1p19q intact or deletion of only 1p or 19q) and anaplastic oligoastrocytoma (NOS; see middle pathway on GLIO-2). In addition, these results support that external-beam RT alone is not listed as a recommended option for anaplastic oligodendroglioma (1p19q-codel) but is included as an option for anaplastic gliomas with 1p19q intact or deletion of only 1p or 19q, because the advantage of neoadjuvant PCV plus RT compared with RT alone is unclear or nonexistent in this group.

RT With Adjuvant PCV: The EORTC 26951 trial showed that RT followed by 6 cycles of PCV significantly improved PFS and OS compared with RT alone in a patient sample with histology-based anaplastic oligodendroglioma or anaplastic oligoastrocytoma (Table 2).11,46,47 As in RTOG 9402, PCV was associated with higher rates of toxicity compared with RT alone. In EORTC 26951, PCV-associated
Central Nervous System Cancers, Version 1.2017

Table 2. Key Randomized Trials Testing RT in Combination With PCV as Adjuvant Treatment for Anaplastic Glioma

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients Analyzed</th>
<th>Adjuvant Treatment</th>
<th>Efficacy Results</th>
<th>Safety Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG 9402¹,²,⁴⁶,⁴⁹</td>
<td>N=291</td>
<td>• PCV, then RT (n=148)</td>
<td>PCV + RT improved outcome vs RT alone:</td>
<td>Failed to complete treatment:</td>
</tr>
<tr>
<td>Phase III RCT permuted block</td>
<td>Age: median 43 y (range, 18–76 y)</td>
<td>• RT (n=143)</td>
<td>• PFS; HR, 0.68; 95% CI, 0.53–0.86; P=0.003</td>
<td>• PCV: 52%</td>
</tr>
<tr>
<td>(ClinicalTrials.gov identifier: NCT00002569)</td>
<td>KPS ≥60</td>
<td>Stratification: age, KPS, degree of anaplasia</td>
<td>• OS; HR, 0.67; 95% CI, 0.50–0.91; P=0.01</td>
<td>• RT: 10% vs 5%²</td>
</tr>
<tr>
<td></td>
<td>AA/AAO/AOA: 26%/51%/49%</td>
<td>Follow-up: 11.3 y (range, 0.5–16.8 y)</td>
<td>PCV improved OS in the following molecular subgroups: (see data in Table 3)</td>
<td>Acute toxicities:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1p19q-codel</td>
<td>• Grade 3/4 AEs during PCV vs during RT: 65% vs 7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IDH-mut</td>
<td>Most PCV AEs were related to myelosuppression:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1p19q-codel+IDH-mut</td>
<td>Grade 3/4 hematologic AEs during PCV vs during RT: 56% vs 2.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discontinuation due to toxicity, during PCV vs during RT: 20% vs 0%</td>
</tr>
<tr>
<td>EORTC 26951¹,⁴⁶,⁴⁷</td>
<td>N=368</td>
<td>• RT + adjuvant PCV (n=185)</td>
<td>RT + adjuvant PCV improved outcome vs RT alone:</td>
<td>Failed to complete treatment:</td>
</tr>
<tr>
<td>Phase III RCT</td>
<td>Age by arm: 49 vs 50 y (range, 19–69 y, for both)</td>
<td>• RT (n=183)</td>
<td>• Median PFS: 24.3 vs 13.2 mo; HR, 0.66 (95% CI, 0.52–0.83); P=0.0003</td>
<td>• PCV: 70%</td>
</tr>
<tr>
<td>(ClinicalTrials.gov identifier: NCT00002840)</td>
<td>WHO ECOG PS: 0–2</td>
<td>Stratification: age, EOR, WHO ECOG PS, prior surgery for LGG</td>
<td>• Median OS: 42.3 vs 30.6 mo; HR, 0.75 (95% CI, 0.60–0.95); P=0.018</td>
<td>• RT: 5%</td>
</tr>
<tr>
<td></td>
<td>AA/AAO/AOA: 0%/72%/27%</td>
<td>Follow-up: 11.7 y</td>
<td>Subgroups that tended to derive more benefit (OS, PFS) from PCV: (see data in Table 4)</td>
<td>PCV toxicities were primarily hematologic:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IDH-mut (vs IDH-wt)</td>
<td>• Grade 3 hematologic AEs: 32%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1p19q-codel (vs 1p19q intact or only 1 deleted)</td>
<td>• Grade 4 hematologic AEs: 14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MGMT promoter methylated (vs unmethylated)</td>
<td>PCV discontinuation due to toxicity: 38%</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>N=113</td>
<td>• RT</td>
<td>Nonsignificant trend toward PCV improving OS: HR, 0.86; 95% CI, 0.58–1.30</td>
<td>PCV toxicities were primarily hematologic:</td>
</tr>
<tr>
<td>Brain Tumor Working Party¹⁰</td>
<td>Grade III⁴</td>
<td>• RT then PCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>AA: all</td>
<td>Stratification: treatment center, age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age: median 53 y; 24% <45 y; 51% 45–59 y; 26% ≥60 to ≤70 y</td>
<td>Follow-up: 3 y (1–8 y)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: 1p19q-codel, 1p and 19q codeleted; AA, anaplastic astrocytoma; AEs, adverse events; AO, anaplastic oligodendroglioma; AOA, anaplastic oligoastrocytoma; EOR, extent of resection; HR, hazard ratio; GBM, glioblastoma; IDH-mut, mutation present in either IDH1 or IDH2; IDH-wt, IDH1 and IDH2 are wild-type; KPS, Karnofsky performance status; LGG, low-grade glioma; OS, overall survival; PCV, procarbazine, lomustine, and vincristine; PFS, progression-free survival; PS, performance status; RCT, randomized controlled trial; RT, radiation therapy.

¹Data are from patients with anaplastic glioma (grade III) unless otherwise noted. Subtype designation of AA, AO, and AOA are based on histology only (2007 WHO classification, not 2016 WHO). Percentage of patients with each of these subtypes is listed.

²Treatments listed were tested as postoperative adjuvant therapy. Separate treatment arms are listed as bullets. Stratification factors used for randomization are listed. Follow-up duration is reported as median (range).

³Unless otherwise noted, data are given for treatment arms in same order as bullets listed in the “Adjuvant Treatment” column.

⁴Percent of patients who started RT but failed to complete RT course, for PCV+RT arm vs RT arm.

⁵Histologic subtype missing in 1% of patients.

This trial also included 449 patients with GBM and 32 patients with other grade III/IV tumors. Age and duration of follow-up are based on the total population (including patients with GBM). Efficacy data are from the 113 patients with AA.
toxicities led to discontinuation in 38% of all treated patients. 46 Based on the primary analysis of EORTC 26951, the NCCN Guidelines therefore recommend RT followed by PCV as a postoperative therapy option for any type of anaplastic glioma, provided that the patient has good performance status (KPS ≥60; see top 2 pathways on GLIO-2, page 1333). When selecting between neoadjuvant versus adjuvant PCV, many NCCN panel members prefer the latter because it appears to be better tolerated (there were 2 toxicity-related deaths among patients receiving the dose-intense schedule used for neoadjuvant PCV in RTOG 9402).

Analysis of outcomes for different molecularly defined subgroups in EORTC 26951 resulted in somewhat similar findings as for RTOG 9402, namely that benefit from adding PCV to RT was more pronounced in patients with 1p19q-codel (vs those with 1p19q intact or deletion of only 1p or 19q) and more common in cases with IDH-mut (vs wt) (Table 4). 11,47 In EORTC 26951, molecular subtype was responsible for statistically significant PCV-associated improvements in PFS, but the data for OS were less robust, particularly in the patient population with 1p19q intact or deletion of only 1p or 19q.

Both EORTC 26951 and RTOG 9402 only included patients with oligodendroglioma or oligoastrocytoma histology (≥25% oligodendroglioma component by histology). 46,48 Therefore, these trials did not include the bulk of grade III gliomas—those with pure astrocytoma histology. An older study conducted by the Medical Research Council Brain Tumour Working Party (MRC trial) is the only large randomized trial testing RT plus PCV (vs RT alone) in patients with anaplastic tumors that histologically appeared to be pure astrocytoma—tumors with mixed oligoastrocytoma histology were excluded from this trial (Table 2). 50 Analysis of the 113 patients with anaplastic astrocytoma showed a nonsignificant trend toward improved OS with RT plus PCV versus RT. Although analyses of molecular markers were not part of this trial, more recent data from studies of large populations suggest that anaplastic astrocytomas (so designated based on histology) nearly always have 1p19q intact or deletion of only 1p or 19q. 5,7,34,37 Therefore the mar-

Table 3. RTOG 9402: Benefit From Neoadjuvant PCV by Molecular Subtype

<table>
<thead>
<tr>
<th>Molecular Markers</th>
<th>Molecular Subtype</th>
<th>RT + Neoadjuvant PCV vs RT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median OS</td>
</tr>
<tr>
<td>1p and 19q deletion</td>
<td>1p19q-codel</td>
<td>14.7 vs 7.3 y</td>
</tr>
<tr>
<td></td>
<td>1p19q intact or only 1p or 19q deleted</td>
<td>2.6 vs 2.7 y</td>
</tr>
<tr>
<td>IDH mutation</td>
<td>IDH-mut</td>
<td>9.4 vs 5.7 y</td>
</tr>
<tr>
<td></td>
<td>IDH-wt</td>
<td>1.3 vs 1.8 y</td>
</tr>
<tr>
<td>1p and 19q deletion and IDH mutation</td>
<td>1p19q-codel+IDH-mut</td>
<td>14.7 vs 6.8 y</td>
</tr>
<tr>
<td></td>
<td>1p19q intact or only 1p or 19q deleted + IDH-mut</td>
<td>5.5 vs 3.3 y</td>
</tr>
<tr>
<td></td>
<td>1p19q intact or only 1p or 19q deleted + IDH-wt</td>
<td>1.0 vs 1.3 y</td>
</tr>
</tbody>
</table>

Abbreviations: 1p19q-codel, 1p and 19q codeleted; HR, hazard ratio; IDH-mut, mutation present in either IDH1 or IDH2; IDH-wt, IDH1 and IDH2 are wild-type; OS, overall survival; PFS, progression-free survival; RT, radiation therapy.

Table 4. EORTC 26951: Benefit From Adjuvant PCV by Molecular Subtype

<table>
<thead>
<tr>
<th>Molecular Markers</th>
<th>Molecular Subtype</th>
<th>RT + Adjuvant PCV vs RT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median OS</td>
</tr>
<tr>
<td>1p and 19q deletion</td>
<td>1p19q-codel</td>
<td>NR vs 111.8 mo</td>
</tr>
<tr>
<td></td>
<td>1p19q intact or only 1p or 19q deleted</td>
<td>25.0 vs 21.1 mo</td>
</tr>
<tr>
<td>IDH mutation</td>
<td>IDH-mut</td>
<td>NR vs 64.8 mo</td>
</tr>
<tr>
<td></td>
<td>IDH-wt</td>
<td>19.0 vs 14.7 mo</td>
</tr>
</tbody>
</table>

Abbreviations: 1p19q-codel, 1p and 19q codeleted; HR, hazard ratio; IDH-mut, mutation in either IDH1 or IDH2; IDH-wt, IDH1 and IDH2 are wild-type; NR, not reached; OS, overall survival; PFS, progression-free survival; RT, radiation therapy. *Magnitude of improvement in OS from adding adjuvant PCV to RT was not significantly different for the group with 1p19q-codel vs the group with 1p19q intact or only 1p or 19q deleted.
As expected, the toxicity of nitrosourea is a major concern. Further follow-up is needed to determine whether TMZ concurrent with RT provides any clinical benefit in patients with anaplastic glioma. The Nordic Clinical Brain Tumor Study Group (NCBTG) trial showed that for patients treated with RT with or without concurrent TMZ, the addition of neoadjuvant TMZ improved outcomes for anaplastic astrocytomas. Although the sample size was small (N=41), the NCCN Panel considers these results supportive of the idea that adding TMZ to RT potentially provides clinical benefit for patients with anaplastic astrocytomas. Prospective trial data from a larger sample size of patients with anaplastic gliomas would be needed to support neoadjuvant TMZ plus RT as a recommended option in the NCCN Guidelines. RTOG 9813 showed that for patients with anaplastic astrocytomas, RT with concurrent TMZ results in similar outcomes as RT with concurrent nitrosourea, with perhaps slightly better PFS with TMZ. As expected, the toxicity of nitrosourea was far worse than for TMZ, and resulted in higher rates of discontinuation due to toxicity. Because of increased toxicity and no improvement in outcomes (relative to RT plus TMZ), the RT plus nitrosourea regimen used in RTOG 9813 is not recommended in the NCCN Guidelines for treatment of anaplastic astrocytomas. The ongoing CATNON phase III randomized trial is testing RT alone and 3 different RT plus TMZ combination regimens (Table 5) in patients with anaplastic astrocytoma. A recently published interim analysis showed that adjuvant TMZ significantly improved PFS and OS. Further follow-up is needed to determine whether TMZ concurrent with RT provides any clinical benefit, and which of the 3 RT plus TMZ combination regimens provides the best outcomes.

Combination Therapy: RT Plus TMZ

For treatment of anaplastic glioma in patients with good performance status (KPS ≥60), updates to the NCCN Guidelines have clarified the recommended regimen for combination therapy with RT plus TMZ as “fractionated external-beam RT with concurrent and adjuvant TMZ” (see top 2 pathways on GLIO-2, page 1333). This recommendation was largely based on extrapolation from results of the EORTC 26981-22981/NCIC CE3 multicenter international phase III randomized controlled trial in glioblastoma showing that RT with concurrent and adjuvant TMZ improved OS and PFS compared with RT alone, because until very recently there were no data from randomized controlled trials evaluating whether addition of TMZ to RT provides any clinical benefit in anaplastic gliomas.

Table 5 summarizes the study design and recently reported results from phase III trials testing TMZ as part of postoperative adjuvant treatment for anaplastic gliomas. Three of these trials tested RT in combination with TMZ in patients with anaplastic glioma. The Nordic Clinical Brain Tumor Study Group (NCBTG) trial showed that for patients treated with RT with or without concurrent TMZ, the addition of neoadjuvant TMZ improved outcomes for anaplastic astrocytomas. Although the sample size was small (N=41), the NCCN Panel considers these results supportive of the idea that adding TMZ to RT potentially provides clinical benefit for patients with anaplastic astrocytomas. Prospective trial data from a larger sample size of patients with anaplastic gliomas would be needed to support neoadjuvant TMZ plus RT as a recommended option in the NCCN Guidelines. RTOG 9813 showed that for patients with anaplastic astrocytomas, RT with concurrent TMZ results in similar outcomes as RT with concurrent nitrosourea, with perhaps slightly better PFS with TMZ. As expected, the toxicity of nitrosourea was far worse than for TMZ, and resulted in higher rates of discontinuation due to toxicity. Because of increased toxicity and no improvement in outcomes (relative to RT plus TMZ), the RT plus nitrosourea regimen used in RTOG 9813 is not recommended in the NCCN Guidelines for treatment of anaplastic astrocytomas. The ongoing CATNON phase III randomized trial is testing RT alone and 3 different RT plus TMZ combination regimens (Table 5) in patients with anaplastic astrocytoma. A recently published interim analysis showed that adjuvant TMZ significantly improved PFS and OS. Further follow-up is needed to determine whether TMZ concurrent with RT provides any clinical benefit, and which of the 3 RT plus TMZ combination regimens provides the best outcomes.

Monotherapy: RT, PCV, TMZ

For patients with anaplastic gliomas and poor performance status, treatment options recommended in the NCCN Guidelines are limited to single-modality therapies due to concerns about the ability of these patients to tolerate the toxicity associated with combination regimens. Table 5 summarizes the design and results from the NOA-04 phase III randomized trial comparing single-modality treatment options in patients with anaplastic glioma. Results from this trial showed no significant differences in outcomes for patients with anaplastic gliomas treated with...
Table 5. Key Randomized Trials Testing TMZ in Adjuvant Treatment for Anaplastic Glioma

<table>
<thead>
<tr>
<th>Trial</th>
<th>Patients Analyzed</th>
<th>Adj Treatment</th>
<th>Efficacy Results</th>
<th>Safety/HRQoL Results</th>
</tr>
</thead>
</table>
| **NOA-04**^{35,54}
(ClinicalTrials.gov identifier: NCT00717210)
Phase III RCT, OL
Age: 18–80 y
KPS ≥60
AA/AA/AOA: 53%/33%/14%
N=318; 274 in ITT
RT: 20 mo
Adj TMZ: 106 (31%) of 343; 5-y: 56% vs 44%
Follow-up: 20 mo
| Standard RT (n=160); chemotherapy on progression
PCV (n=78); RT on progression
TMZ (n=80); RT on progression
Follow-up: 9.5 y
RT vs PCV/TMZ: no effect on outcome (PFS, OS)
Median PFS: 2.5 vs 2.6 y
Median OS: 8 vs 6.5 y
No treatment-related differences in PFS or OS for any histologic or molecular subgroup (based on 1p19q deletion, IDH mutation, or MGMT promoter methylation)
PCV vs TMZ: no effect on PFS except in IDH-mut+1p19q-codel subgroup
Median PFS: 2.52 vs 2.71 y (NS)
IDH-mut+1p19q-codel: 9.4 vs 4.5 y (P=0.0254)
IDH-mut+1p19q intact or only 1p or 19q deleted, IDH-wt: difference NS between PCV and TMZ
| • More toxicity with PCV/TMZ than RT:
 > 39% vs 12% during first-line treatment
 > 75% vs 45% during treatment for progression
 > More toxicity with PCV than TMZ
| **Nordic Clinical Brain Tumor Study Group**⁵²
Phase III RCT
ISRCTN54209900
Age: 18–60 y
KPS ≥70
AA/AA/AOA: 100%/0%/0%
N=61
| Neoadjuvant TMZ followed by RT (n=21; 16 with concurrent TMZ)
RT only (n=20; 13 with concurrent TMZ)
Stratification: center
Follow-up: 20 mo
| Neoadjuvant TMZ improves survival:
Median OS: 95.1 vs 35.2 mo; HR, 0.41 (95% CI, 0.19–0.90); P=.022
Failed to complete treatment:
• Neoadjuvant TMZ: 2 (10%) of 21
• RT: 0/21 vs 1/19⁵⁴
| **NRG oncology/ RTOG 9813**⁴⁶
Phase III RCT
Multicenter
(Age: 18–80 y
WHO PS 0–2
AA/AA/AOA: 97%/0%/3%
AOA had ≤25% oligodendroglial component
Aging had ≤25% oligodendroglial component
N=201; 196 ITT
Follow-up: 36 mo
| RT + concurrent TMZ (n=97)
RT + concurrent nitrosourea (carmustine or lomustine; n=99)
Stratification: Age, KPS, extent surgery
Follow-up: 10.1 y
| Similar outcomes for TMZ vs nitrosourea:
Median OS: 3.9 vs 3.8 y (NS by UV or MV)
Median PFS: NS by UV but borderline significance by MV favoring TMZ; HR, 0.70 (95% CI, 0.5–0.98); P=.039
Failed to complete treatment:
• TMZ vs nitrosourea: 40% vs 79% (P<.001)
 > Due to toxicity: 0% vs 28% (P<.001)
 Grade ≥3 toxicity: 48% vs 76% (P<.001); mostly related to myelosuppression
 Nonhematologic: 32% vs 34%
| **CATNON Intergroup trial**¹³
(EORTC 26053-22054)
Phase III RCT, OL
2x2 factorial
(Age: 18–83 y
WHO PS 0–2
AA/AA/AOA: 77%/0%/23%
N=745
Follow-up: 43 mo
| RT alone (n=187)
RT + adj TMZ (n=185)
RT + concurrent TMZ (n=185)
RT + concurrent and adj TMZ (n=188)
Stratification: institution, PS, age, 1p loss of heterozygosity, ODG elements on microscopy, MGMT methylation
Follow-up: 27 mo
| Adj TMZ (n=373) improved outcomes vs with no adj TMZ (n=372):
OS:
• Median: NR vs 41 mo
 > 5-y: 56% vs 44%
 > UV: HR, 0.67 (95% CI, 0.51–0.88)
 > MV: HR, 0.65 (95% CI, 0.45–0.93); P=.0014
 > PFS:
 • Median: 43 vs 19 mo
 > 5-y: 43% vs 24%
 > UV: HR, 0.62 (95% CI, 0.5–0.76)
Failed to complete treatment:
• RT (any arm): 16% (2%) of 733
 Adj TMZ: 106 (31%) of 343; reasons:
 > PD/death: 56 (16%)
 > Toxicity: 30 (9%)
 Grade 3/4 AEs with TMZ: 8%–12% of 549, mainly hematologic and reversible; thrombocytopenia the most frequent (7%–9%)

Abbreviations: 1p19q-codel, 1p and 19q codeleted; AA, anaplastic astrocytoma; adj, adjuvant; AEs, adverse events; AO, anaplastic oligodendroglialoma; AOA, anaplastic oligoastrocytoma; HR, hazard ratio; HRQoL, health-related quality of life; IDH-mut, IDH1 or IDH2 mutated; IDH-wt, IDH1 and IDH2 wildtype; ITT, intent-to-treat; KPS, Karnofsky performance status; MV, multivariate analysis (results); NR, not reached; NS, not statistically significant; OL, open-label; OS, overall survival; PCV, procarbazine, lomustine, and vincristine; PD, progressive disease; PFS, progression-free survival; PS, performance status; RCT, randomized controlled trial; RT, radiation therapy; TMZ, temozolomide; UV, univariate analysis (results).
¹Data are from patients with anaplastic glioma (grade III) unless otherwise noted. Subtype designation of AA, AO, and AOA are based on histology only (ie, 2007 WHO, not 2016 WHO classification). Percentage of patients with each of these subtypes is listed.
²Treatments listed were tested as postoperative adj therapy. Separate treatment arms are listed as bullets. Stratification factors used for randomization are listed. Duration follow-up is reported as median.
³Unless otherwise noted, data is given for treatment arms in same order as bullets listed in the “Adj Treatment” column.
⁴This trial also enrolled 103 patients with glioblastoma. Data shown here are from the subanalysis of 41 patients with AA.
⁵Of patients who started RT, the number who did not finish the RT course, for the neoadjuvant TMZ+RT arm vs the RT only arm.
⁶All patients in the CATNON trial did not have 1p19q-codel, and therefore meet the 2016 WHO criteria for designation as astrocytoma.
PCV or TMZ or RT alone, both for the whole population and within various histologic and molecular subgroups. The one exception was that PCV provided better PFS than TMZ in patients with IDH-mut+1p19q-codel. The application of this result to the recommendation for patients with poor performance status is limited by the fact that NOA-04 included KPS ≥70 as eligibility criteria. Nonetheless, these results support that RT alone or TMZ or PCV are all reasonable options in terms of efficacy for patients opting for single-modality treatment. As expected, toxicity associated with chemotherapy was worse than that for RT, and adverse event rates were higher for PCV compared with TMZ. Because of the increased toxicity of chemotherapy compared with RT, chemotherapy alone (PCV or TMZ) is a category 2B option for patients with anaplastic gliomas and poor performance status (see bottom pathway on GLIO-2, page 1333), and this option was removed as a recommendation for patients with anaplastic astrocytoma/oligodastrocytoma and good performance status (middle pathway on GLIO-2).

Summary and Conclusions

Data emerging in the past few years have led to significant changes in the diagnosis, categorization, and treatment of anaplastic glioma brain tumors. Molecular markers have now been identified that provide diagnostic information as well as information about overall prognosis and responses to specific treatments. Data from randomized controlled trials have shown that the addition of PCV to RT improves outcomes in patients with anaplastic glioma and good performance status, particularly those whose tumors are 1p19q-codel. For tumors without 1p19q-codel (ie, anaplastic astrocytomas), data from an ongoing randomized controlled trial suggest that the addition of TMZ to RT improves outcomes, and longer follow-up may help discern the optimal protocol for this combination therapy. Data from randomized studies are needed to determine whether RT plus TMZ, which is generally better tolerated than PCV, will result in equivalent or improved outcomes compared with RT plus PCV in the treatment of grade II/III gliomas.

References

Instructions for Completion
To participate in this journal CE activity: 1) review the learning objectives and author disclosures; 2) study the education content; 3) take the posttest with a 66% minimum passing score and complete the evaluation at http://education.nccn.org/node/81831; and 4) view/print certificate. After reading the article, you should be able to answer the following multiple-choice questions. Credit cannot be obtained for tests completed on paper. You must be a registered user on NCCN.org. If you are not registered on NCCN.org, click on “New Member? Sign up here” link on the left hand side of the Web site to register. Only one answer is correct for each question. Once you successfully answer all posttest questions you will be able to view and/or print your certificate. Software requirements: Internet

Posttest Questions
1. A 60-year-old woman is diagnosed with an anaplastic glioma based on pathology after gross total resection. If she has good PS, what molecular tests are needed to determine her adjuvant treatment options (per the NCCN Guidelines)?
 a. 1p deletion status
 b. 1p and 19q deletion status
 c. 1p and 19q deletion status and IDH1 and IDH2 mutation status
 d. 1p and 19q deletion status, IDH1 and IDH2 mutation status, and MGMT promoter methylation status

2. True or False: Per the NCCN Guidelines recommendations, combination therapy with RT and chemotherapy is recommended for anaplastic gliomas, regardless of molecular phenotype, histologic phenotype, or patient PS.

3. For patients with anaplastic astrocytomas (per 2017 WHO classification) and good PS, which of the following postoperative adjuvant treatments are recommended?
 1. PCV alone
 2. TMZ alone
 3. Standard fractionated RT alone
 4. Standard fractionated RT + PCV
 5. Standard fractionated RT + neoadjuvant TMZ
 6. Standard Fractionated RT + concurrent and adjuvant TMZ

 There is only one correct answer:
 a. 1, 2, and 3
 b. 3, 5, and 6
 c. 3, 4, and 6
 d. 3, 4, 5, and 6