Abiraterone in Metastatic Salivary Duct Carcinoma

Damien Urban, MBBS, BMedSc; Danny Rischin, MD, FRACP; Christopher Angel, FRCPA; Ieta D’Costa, FRANZCR; and Benjamin Solomon, PhD, FRACP

Abstract
Salivary duct carcinoma (SDC) is a rare, aggressive salivary gland malignancy with limited evidence guiding standard treatment. SDC is known to overexpress the androgen receptor, with only a handful of cases reporting responses to androgen blockade. This report presents a case of SDC responding to multiple lines of androgen blockade, including a rapid response to abiraterone, a CYP17 inhibitor effective in prostate cancer. This case represents the first published report of SDC responding to abiraterone and illustrates that androgen receptor expressing SDC may be treated with multiple lines of androgen blockade, including newer agents such as abiraterone. This case suggests that SDC may continue to be androgen-dependent after progression on androgen deprivation, which is analogous to prostate cancer. (J Natl Compr Canc Netw 2015;13:288–290)

Salivary duct carcinoma (SDC) is a rare cancer representing less than 10% of all salivary gland malignancies.1,2 It is an aggressive tumour, with many patients succumbing to disseminated disease.3 Given its rarity, no standard treatment exists for metastatic SDC.

Androgen receptors (ARs) are overexpressed in most SDCs, and reports have shown some activity with anti–androgen therapy using bicalutamide with or without goserelin.4 Abiraterone, by inhibiting adrenal and testicular androgen synthesis through CYP17, has recently shown significant efficacy in castration-resistant prostate cancer,5,6 but reports of its use in SDC have not been published.

This report describes what seems to be the first published clinical and radiologic response to abiraterone in a patient with metastatic SDC refractory to bicalutamide and goserelin.

Case Report
A previously healthy, 45-year-old man with no smoking history presented in October 2011 with a right-sided neck mass. Imaging studies, including a CT and fluorodeoxyglucose (FDG)-PET/CT, showed enlarged level II and V right neck nodes with a lesion in the right parotid gland. An open biopsy of a lymph node confirmed adenocarcinoma.

Subsequently, the patient underwent a right parotidectomy and modified neck dissection. Pathologic assessment showed an SDC within the parotid gland with extracapsular extension, positive margins, and 57 of 57 lymph nodes involved. Diagnosis was confirmed with immunohistochemical stains being positive for GCD-FP-15, CK7, and AR, and negative staining for c-kit, CK20, and HER2.

The patient received 60 Gy of postoperative radiotherapy in 30 fractions and then adjuvant chemotherapy with cyclophosphamide, doxorubicin, and cisplatin (CAP). During the third cycle of chemotherapy, a palpable contralateral lymph node appeared and fine-needle aspiration cytology confirmed recurrence. An FDG-PET/CT demonstrated that this left cervical lymph node and an additional sclerotic left iliac bone metastasis. Anti–androgen therapy was initiated with goserelin, and a short-term partial metabolic response of 4 months’ duration was shown by
FDG-PET/CT. At progression, combined androgen deprivation with the addition of bicalutamide provided a good metabolic response for a further 10 months. At this time, PET/CT scan revealed progressive disease in the neck and skeleton, and a repeat biopsy confirmed persistent strong AR expression (Figure 1).

Extrapolating from recent prostate cancer trials, abiraterone at a dosage of 1000 mg/d with prednisone, 5 mg twice daily (with ongoing goserelin) was commenced, and within 3 weeks a complete clinical response was seen within the cervical neck lymph node. A PET/CT scan at 3 months confirmed resolution of FDG uptake in the neck (Figure 2) and a significant favorable metabolic response in the skeletal metastases. At 6 months, PET/CT confirmed ongoing response. After 10 months on abiraterone and goserelin, increasing pain in the sacrum was described and a repeat PET/CT confirmed progressive osteoblastic bone disease with ongoing control of the neck disease. Until this point, no radiotherapy was delivered to bone metastases. Abiraterone was well tolerated with no unexpected side effects.

Discussion

Salivary gland malignancies are diagnosed in 1.3 per 100,000 persons, constituting 12.0% of oral cavity/pharyngeal malignancies and less than 0.5% of all cancers in the United States. Salivary gland carcinomas are divided into 24 different entities by the WHO, including mucoepidermoid, adenoid cystic carcinoma, adenocarcinoma, and SDC, with the last accounting for up to 9% of salivary gland malignancies. Nuclear reactivity for ARs has been reported to occur in more than 40% to 93% of SDCs. In fact, the WHO maintains that all SDCs show strong nuclear reactivity for ARs.

Given the rarity of SDC and the resultant lack of high-quality evidence, no standard treatment guidelines exist. Evidence suggests that SDC is associated with potentially targetable molecular abnormalities, including AR expression, HER2 overexpression, and, rarely, EGFR mutations, PIK3CA-activating, or BRAF-activating mutations. However, responses to specific molecular targeting is limited to single or few case reports.

It has been suggested that SDC may be similar to prostate cancer with respect to androgen dependence and to breast cancer with respect to histology and HER2 overexpression. Given the rarity of SDC, treatment options for SDC may be inferred from both these cancers. Responses to trastuzumab and androgen deprivation therapy in SDC have been described in case reports and a case series. The case series described 2 partial responses and 3 patients with stable disease among 10 patients (clinical benefit of 50%) with AR-positive SDC treated with androgen deprivation. Nine of 10 patients received single-agent bicalutamide as first-line therapy, with 3 patients receiving second-line androgen deprivation therapy with the addition of goserelin. However, no radiologic responses were reported in patients receiving second-line therapy. Because of the limited number of reports of androgen deprivation in AR-expressing SDC, the most effective strategy to inhibit the androgen pathway in SDC is unknown.

It has been established that castration-resistant prostate cancer remains dependent on androgen stimulation for survival and progression. Furthermore, enzymes involved in the synthesis of androgens, including CYP17, are overexpressed in prostate cancer. Abiraterone, an irreversible inhibitor of CYP17, thereby inhibits the synthesis of andro-
gens in the testes and adrenal glands, and in the
tumor itself. It has recently shown significant activ-
ity in castration-resistant prostate cancer, with an
improvement in overall survival in patients previ-
sely treated with chemotherapy, and an increase
in progression-free survival in chemotherapy-naïve
patients. The 10-month progression-free survival
seen in the present patient while on abiraterone is
remarkably similar to the median time to prostate-
specific antigen progression of 10.5 months in castra-
tion-resistant prostate cancer.

The common side effects of abiraterone include
mineralocorticoid effects caused by a compensatory
increase in adrenocorticotropic hormone (ACTH),
including hypertension, hypokalemia, and fluid re-
tention, and, uncommonly, hepatotoxicity with an
increase in bilirubin and/or hepatic transaminases.
Prednisone is prescribed together with abiraterone to
prevent the compensatory increase in ACTH, and
cautions should be taken in patients with cardiovas-
cular or hepatic disease.

Conclusions
Patient response in the present case to multiple
lines of androgen blockade, including abiraterone,
suggests that androgen dependence also occurs in
AR-expressing SDC, and that continued blockade of
this pathway despite progression may be benefi-
cial. Consequently, it may be reasonable to consider
other inhibitors of the androgen axis that have been
proven effective in prostate cancer, such as enzalu-
tamide, in the treatment of this disease entity. In the
absence of prospective clinical data, multiple lines
of androgen deprivation therapy should be consid-
ered in patients with AR-expressing SDC, but the
appropriate sequence of anti–androgen therapies is
unknown. If feasible and when recruitment be-
gins, preference should be given to enrollment on
a prospective clinical trial comparing chemotherapy
versus anti–androgen therapy (ClinicalTrials.gov
identifier: NCT01969578) in androgen-expressing
salivary gland carcinomas.

References
Organisation Classification of Tumours. Pathology and Genetics of Head
salivary gland tumors in a Chinese population: experience of one cancer
3. Guzzo M, Di Palma SD, Grandi C, Molinari R. Salivary duct carcinoma:
133.
salivary duct carcinoma: a disease entity with promising new treatment
5. de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased
data submission, posted to the SEER web site, April 2014. Accessed
February 6, 2015.
immunophenotyping of 139 salivary gland carcinomas (SGCs). Oral
specific markers in salivary duct carcinoma: an immunohistochemical
analysis of 13 cases and review of the literature. Am J Surg Pathol
10. Kapadia SB, Barnes L. Expression of androgen receptor, gross cystic
disease fluid protein, and CD44 in salivary duct carcinoma. Mod Pathol
carcinoma responding to trastuzumab-based therapy: case report and
12. Williams MD, Roberts DB, et al. Genetic and expression analysis of HER-
2 and EGFR genes in salivary duct carcinoma: empirical and therapeutic
changes in salivary duct carcinoma helps direct patient treatment. Clin
androgen-deprivation therapy in a recurrent androgen receptor-expressing
16. Soper MS, Iqanin S, Thompson LD. Deﬁnitive treatment of androgen
receptor-positive salivary duct carcinoma with androgen deprivation
intratumoral androgens in metastatic prostate cancer: a mechanism for