Gastrointestinal Stromal Tumors, Version 2.2014

Featured Updates to the NCCN Guidelines

Margaret von Mehren, MD1,*; R. Lor Randall, MD2,*; Robert S. Benjamin, MD3; Sarah Boles, MD4; Marilyn M. Bui, MD, PhD5; Ephraim S. Casper, MD6; Ernest U. Conrad III, MD7; Thomas F. DeLaney, MD8,*; Kristen N. Ganjoo, MD9; Suzanne George, MD10,*; Ricardo J. Gonzalez, MD11; Martin J. Heslin, MD11; John M. Kane III, MD12; Joel Mayerson, MD13; Sean V. McGarry, MD14; Christian Meyer, MD, PhD15; Richard J. O’Donnell, MD16; Alberto S. Pappo, MD17; I. Benjamin Paz, MD18,*; John D. Pfeifer, MD, PhD19; Richard F. Riedel, MD20,*; Scott Schuetze, MD, PhD21,*; Karen D. Schupak, MD22; Herbert S. Schwartz, MD23; Brian A. Van Tine, MD, PhD24,*; Jeffrey D. Wayne, MD25; Mary Anne Bergman26,*; and Hema Sundar, PhD24,*

Abstract

Gastrointestinal stromal tumors (GIST) are the most common soft tissue sarcoma of the gastrointestinal tract, resulting most commonly from KIT or platelet-derived growth factor receptor α (PDGFRα)–activating mutations. These NCCN Guideline Insights highlight the important updates to the NCCN Guidelines for Soft Tissue Sarcoma specific to the management of patients with GIST experiencing disease progression while on imatinib and/or sunitinib. (J Natl Compr Canc Netw 2014;12:853–862)

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. The NCCN Guidelines® Insights highlight important changes in the NCCN Guidelines® recommendations from previous versions. Colored markings in the algorithm show changes and the discussion aims to further understanding of these changes by summarizing salient portions of the panel’s discussion, including the literature reviewed.

The NCCN Guidelines Insights do not represent the full NCCN Guidelines; further, the National Comprehensive Cancer Network® (NCCN®) makes no representation or warranties of any kind regarding the content, use, or application of the NCCN Guidelines and NCCN Guidelines Insights and disclaims any responsibility for their applications or use in any way.

The full and most current version of these NCCN Guidelines are available at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2014, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

*Provided content development and/or authorship assistance.
NCCN: Continuing Education

Accreditation Statement

This activity has been designated to meet the educational needs of physicians, nurses, and pharmacists involved in the management of patients with cancer. There is no fee for this article. The National Comprehensive Cancer Network (NCCN) is accredited by the ACCME to provide continuing medical education for physicians. NCCN designates this journal-based CE activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

NCCN is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center’s Commission on Accreditation.

This activity is accredited for 1.0 contact hour. Accreditation as a provider refers to recognition of educational activities only; accredited status does not imply endorsement by NCCN or ANCC of any commercial products discussed/displayed in conjunction with the educational activity. Kristina M. Gregory, RN, MSN, OCN, is our nurse planner for this educational activity.

Disclosure of Relevant Financial Relationships

Editor:
Kerrin M. Green, MA, Assistant Managing Editor, JNCCN—Journal of the National Comprehensive Cancer Network, has disclosed that she has no relevant financial relationships.

CE Authors:
Deborah J. Moonan, RN, BSN, Director, Continuing Education & Grants, has disclosed that she has no relevant financial relationships.
Ann Gianola, MA, Manager, Continuing Education & Grants, has disclosed that she has no relevant financial relationships.
Kristina M. Gregory, RN, MSN, OCN, Vice President, Clinical Information Operations, has disclosed that she has no relevant financial relationships.

Individuals Who Provided Content Development and/or Authorship Assistance:
Margaret von Mehren, MD, panel chair, has disclosed the following relationships with commercial interests: advisor for and received honoraria from Novartis Pharmaceuticals Corporation. Data safety monitoring board member and consultant for Eisai Inc. On the physician executive committee for Janssen Pharmaceuticals, Inc. Consultant and advisor for GlaxoSmithKline. Clinical trial support from NCCN. Research funding from NCI. Advisor for and received research funding from AROG Pharmaceuticals LLC. Consultant for and received research funding from ARIAD Pharmaceuticals, Inc.
R. Lor Randall, MD, panel vice-chair, has disclosed the following relationships with commercial interests: consultant for Healthcare Improvement; Group H; Monitor Deloitte Consulting; and The Planning Shop. Royalty income from UpToDate and Wolters Kluwer Health. Equity interest in GlaxoSmithKline.
Suzanne George, MD, panel member, has disclosed the following relationships with commercial interests: consultant for and grant/research support from ARIAD Pharmaceuticals, Inc.; Novartis Pharmaceuticals Corporation; Bayer AG; and Pfizer Inc. Scientific advisory board for Pfizer Inc.
Richard F. Riedel, MD, panel member, has disclosed the following relationships with commercial interests: grant/research support from ARIAD Pharmaceuticals, Inc.; Astex Pharmaceuticals, Inc.; Cytrix Corporation; Eisai Inc.; GlaxoSmithKline; Infinity Pharmaceuticals; Novartis Pharmaceuticals Corporation; and Threshold Pharmaceuticals. Scientific advisor for Novartis Pharmaceuticals Corporation.
Scott Schuetze, MD, PhD, panel member, has disclosed the following relationships with commercial interests: advisor/speaker for Caris Life Sciences, Ltd.; GlaxoSmithKline; and DFINE, Inc. Advisor for EMD Serono, Inc. Grant funding from Polaris Pharmaceuticals, Inc.
Mary Anne Bergman, Guidelines Coordinator, has disclosed that she has no relevant financial relationships.
Hema Sundar, PhD, Oncology Scientist/Senior Medical Writer, has disclosed that she has no relevant financial relationships.

Learning Objectives:
Upon completion of this activity, participants will be able to:
• Integrate into professional practice the updates to NCCN Guidelines for Gastrointestinal Stromal Tumors
• Describe the rationale behind the decision-making process for developing the NCCN Guidelines for Gastrointestinal Stromal Tumors

Supported by an independent educational grant from Prometheus Laboratories, Inc., and by educational grants from Bayer HealthCare, Onyx Pharmaceuticals, Inc., and Algeta US; Exelixis, Inc.; Genentech; Genomic Health, Inc.; NOVOCURE; and Merck Sharp & Dohme Corp.
Overview

Soft tissue sarcomas (STS) are a heterogeneous group of rare solid tumors with distinct clinical and pathologic features. In 2014, an estimated 12,020 people will be diagnosed with STS in the United States, and approximately 4740 will die of the disease.\(^1\) Gastrointestinal stromal tumors (GIST) are the most common STS of the gastrointestinal tract, resulting most commonly from KIT or platelet-derived growth factor receptor \(\alpha\) (PDGFR\(\alpha\))–activating mutations.\(^2\) Loss-of-function mutations in the succinate dehydrogenase (SDH) gene subunits or loss of SDH subunit B (SDHB) protein expression by immunohistochemistry have been identified in wild-type GIST lacking KIT and PDGFR\(\alpha\) mutations; these findings have led to the use of the term SDH-deficient GIST, which is preferred over the older term, wild-type GIST, for this subset of GIST.\(^3\)–\(^7\) SDH gene mutational analysis for the identification of germline mutations in the SDH gene subunits should be considered for patients
The presence and type of GIST-7

Gastrointestinal Stromal Tumors, Version 2.2014

TREATMENT FOR PROGRESSIVE DISEASE

Continue with the same dose of imatinib and consider the following options for progressing lesions:

- **Resection**
- **Radiofrequency ablation (RFA) or embolization**
- **Palliative RT** for rare patients with bone metastases or dose escalation of imatinib, sunitinib, or regorafenib
- **Change to sunitinib**
- **Reassess therapeutic response with CT**

For performance status (PS) 0-2:

- **Dose escalation of imatinib, sunitinib, or regorafenib**
- **Change to sunitinib**
- **Reassess therapeutic response with CT**

If disease is progressing despite prior imatinib or sunitinib therapy, consider the following options:

- **Regorafenib**
- **Clinical trial**
- **Consider other options listed in SARC-E (based on limited data)**
- **Best supportive care**

with GIST lacking KIT or PDGFRα mutations (see GIST-I and GIST-B, pages 855 and 857).

The introduction of KIT and PDGFRα inhibitors such as imatinib and sunitinib has significantly improved the outcomes in patients with unresectable or metastatic GIST. Regorafenib, another multikinase inhibitor, was recently approved for the treatment of patients with locally advanced, unresectable, or metastatic GIST previously treated with imatinib and sunitinib.

These NCCN Guidelines Insights discuss the management of patients with GIST experiencing disease progression while on imatinib and/or sunitinib.

GIST: Management of Progressive Disease

Resistance to Imatinib and Sunitinib

Imatinib is the standard first-line therapy for patients with unresectable or metastatic GIST. In phase II and III studies, imatinib has resulted in high overall response rates and exceptionally good progression-free survival (PFS) in patients with unresectable and/or metastatic GIST, inducing objective responses in more than 50%.8-12 The presence and type of KIT or PDGFRα mutation status has been identified as the predictor of response to imatinib. In randomized clinical trials, the presence of a KIT exon 11 mutation was associated with better response rates, PFS, and overall survival (OS) than KIT exon 9 mutations or wild-type GISTs.13-16

The EORTC 62005 study group identified the presence of KIT exon 9 mutation as the strongest adverse prognostic factor for risk of progression and death.14 A meta-analysis of the EORTC 62005 and SWOG S0033/CALGB 150105 phase III trials that randomized 1640 patients with advanced GIST to standard-dose (400 mg/d) or high-dose imatinib (800 mg/d) showed a PFS benefit for patients with KIT exon 9 mutations treated with 800 mg of ima-
Approximately 80% of GISTs have a mutation in the gene encoding the KIT receptor tyrosine kinase; another 5%-10% of GISTs have a mutation in the gene encoding the related receptor tyrosine kinase. Since about 10%-15% of GISTs have no detectable KIT or PDGFRA mutation, the absence of a mutation does not exclude the diagnosis of GIST. The presence and type of KIT and PDGFRA mutations are not strongly correlated with prognosis.

The mutations in KIT and PDGFRA in GIST result in expression of mutant proteins with constitutive tyrosine kinase activity. If tyrosine kinase inhibitors are considered as part of the treatment plan, genetic analysis of the tumor should be considered since the presence of mutations (or absence of mutations) in specific regions of the KIT and PDGFRA genes are correlated with response (or lack of a response) to specific tyrosine kinase inhibitors. However, the type of mutation cannot be accurately predicted based on the anatomic site of origin or histopathologic features.

In patients with advanced GISTs, approximately 90% of patients benefit from imatinib when their tumors have a KIT exon 11 mutation; approximately 50% of patients benefit from imatinib when their tumors harbor a KIT exon 9 mutation, and the likelihood of response improves with the use of 800 mg imatinib rather than the standard 400 mg dose. Most mutations in the PDGFRA gene are associated with a response to imatinib, with the notable exception of D842V. In the absence of KIT and PDGFRA mutations, only a subset of patients with advanced GISTs benefit from imatinib. Metastatic disease with acquired drug resistance is usually the result of secondary, imatinib-resistant mutations in KIT or PDGFRA. Sunitinib treatment is indicated for patients with imatinib-resistant tumors, or imatinib intolerance. Regorafenib is indicated for patients with disease progression on imatinib and sunitinib.

Sunitinib is a multikinase inhibitor active against a variety of tyrosine kinases, including KIT, PDGF, and vascular endothelial growth factor receptor (VEGFR). In randomized clinical studies, sunitinib has resulted in a significant improvement in median time to progression and a significantly greater estimated OS in patients with imatinib-resistant GIST compared with placebo. Heinrich et al reported that sunitinib induced higher response rates in patients with primary KIT exon 9 mutations than those with KIT or PDGFRA, most of which are SDH-deficient GIST. Secondary resistance is seen in patients who have been on imatinib for more than 6 months with an initial response or disease stabilization followed by progression, most commonly because of the outgrowth of tumor clones with secondary mutations in KIT. Dose escalation to 800 mg/d or switching to sunitinib is a reasonable option for patients experiencing disease progression on imatinib at 400 mg/d.
Gastrointestinal Stromal Tumors, Version 2.2014

SYSTEMIC THERAPY AGENTS AND REGIMENS WITH ACTIVITY IN GASTROINTESTINAL STROMAL TUMORS (GIST)

<table>
<thead>
<tr>
<th>GIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imatinib</td>
</tr>
<tr>
<td>Sunitinib</td>
</tr>
<tr>
<td>Regorafenib</td>
</tr>
<tr>
<td>Sorafenib</td>
</tr>
<tr>
<td>Disease progression after imatinib, sunitinib, and regorafenib</td>
</tr>
<tr>
<td>Dasatinib (for patients with D842V mutation)</td>
</tr>
</tbody>
</table>

Prior to the initiation of therapy, all patients should be evaluated and managed by a multidisciplinary team with expertise and experience in sarcoma.

Imatinib, sunitinib, and regorafenib are the three agents that are FDA approved for the treatment of GIST.

Imatinib, sunitinib, and regorafenib are the three agents that are FDA approved for the treatment of GIST.

Management of Resistance to Imatinib and Sunitinib

Regorafenib, a multi-kinase inhibitor with activity against KIT, PDGFR, and VEGFR, was recently approved by the FDA for the treatment of patients with locally advanced, unresectable, or metastatic GIST previously treated with imatinib and sunitinib. A phase III study randomized 199 patients with metastatic and/or unresectable GIST experiencing disease progression on prior therapy with imatinib and sunitinib to either regorafenib (n=133) or placebo (n=66). The median PFS (4.8 vs 0.9 months; P<.0001) and disease control rate (53% vs 9%) were significantly higher for regorafenib compared with placebo. The PFS rates at 3 and 6 months were 60% and 38%, respectively, for regorafenib compared with 11% and 0%, respectively, for placebo. The
Based on the limited data, GIST that had progressed on imatinib and sunitinib, sorafenib resulted in a disease control rate of 68% (55% of patients had stable disease and 13% had a partial response). Median PFS and OS were 5.2 and 11.6 months, respectively; 1- and 2-year survival rates were 50% and 29%, respectively. In a retrospective analysis of 124 patients with metastatic GIST resistant to imatinib and sunitinib, sorafenib also demonstrated activity, resulting in a median PFS and OS of 6.4 and 13.5 months, respectively. Notably, patients included in this study had not been treated with regorafenib, and the efficacy of sorafenib following regorafenib therapy in patients with metastatic GIST resistant to imatinib and sunitinib has not been studied.

In a retrospective analysis of 52 patients with advanced GIST resistant to imatinib and sunitinib, nilotinib resulted in response and disease control rates of 10% and 37%, respectively. Median PFS and OS were 12 and 34 weeks, respectively. In a randomized phase III study of nilotinib as third-line therapy and best supportive care (with or without a TKI) in patients who were resistant or intolerant to imatinib and sunitinib (248 patients), the PFS associated with nilotinib was not found to be superior to best supportive care (109 vs 111 days; \(P = .56 \)). In a post hoc subset analysis, patients experiencing progression on both imatinib and sunitinib who had not received any other therapy had an improved OS (>4 months) with nilotinib compared with best supportive care (405 vs 280 days; \(P = .02 \)). The clinical benefit associated with nilotinib may be specific to subsets of patients with \(KIT \) exon 17 mutations, previously treated with imatinib and sunitinib.

Dasatinib has demonstrated activity against the \(PDGFR \alpha \) D842V mutation that confers the highest resistance to imatinib, and it could be an effective treatment option for this group of patients with imatinib-resistant GIST. In the phase II study of 50 patients with advanced GIST resistant to imatinib, dasatinib was associated with a median PFS and OS of 2 and 19 months, respectively, with response assessment based on Choi criteria. Median PFS for patients with wild-type GIST was 8.4 months.

Pazopanib has also shown marginal activity in heavily pretreated patients with advanced GIST. In a multicenter phase II study of 38 patients with unresectable \(KIT \)-GIST that had progressed on imatinib and sunitinib, pazopanib was well tolerated, resulting in stable disease in 48% of patients, with a 24-week nonprogression (complete response + partial response + stable disease) rate of 17%. The median PFS and OS were 1.9 and 10.7 months, respectively.

NCCN Recommendations

Dose escalation of imatinib up to 800 mg/d (given as 400 mg twice daily) as tolerated or switching to sunitinib (category 1) are included as options for patients experiencing progressive disease (limited disease or widespread systemic disease in patients with good performance status) on standard-dose imatinib (see GIST-7, page 856). All clinical and radiologic data, including lesion density on CT and patient compliance to treatment with standard-dose imatinib, should be assessed before dose escalation of imatinib or switching to sunitinib.

For patients with limited progressive disease on standard-dose imatinib, second-line therapy with sunitinib should be initiated only if most of the disease is no longer controlled by imatinib; consideration of other therapeutic interventions for progressing lesions is warranted. Surgical resection should be considered in carefully selected patients with limited progressive disease that is potentially easily resectable. However, incomplete resections are frequent, with high complication rates. The guidelines have included, only for patients with limited progressive disease, continuation of imatinib at the same initial dose and treatment of progressing lesions with resection or radiofrequency ablation or chemoembolization or palliative RT (for rare patients with bone metastases) as an option.

regorafenib (category 1) is recommended for patients experiencing disease progression on imatinib and sunitinib. Based on the limited data, sorafenib, pazopanib, and regorafenib are recommended in patients who have progressed on imatinib and sunitinib. NCCN Guidelines Insights
the NCCN Guidelines have also included sorafenib, dasatinib, and nilotinib as additional options for patients who are no longer receiving clinical benefit from imatinib, sunitinib, or regorafenib (see SARC-E, page 858), although all data regarding the potential benefit of these agents are from the pre-regorafenib era.

In patients with progressive disease no longer receiving benefit from current TKI therapy, reintroduction of previously tolerated and effective TKI therapy for palliation of symptoms can be considered (see GIST-7, page 856). The results of a recent randomized study showed that imatinib rechallenge significantly improved PFS and disease control rate in patients with advanced GIST after failure of at least imatinib and sunitinib. However, the duration of survival benefit was brief because of continued progression of TKI-resistant clones.

Any patient who experiences disease progression despite prior therapy or who has a recurrence, regardless of presentation, should be considered a candidate for enrollment in a clinical trial, if an appropriate trial is available.

Continuation of TKI Therapy
The optimal duration of TKI therapy in patients with responding or stable disease is not known. The results of a prospective, multicenter, randomized phase III study (BFR14) showed a significant increase in the rate of disease progression when imatinib was interrupted in patients with advanced disease who were stable or responding to imatinib. A recent report from this study confirmed that patients with rapid disease progression after interruption of imatinib had a poorer prognosis. More importantly, the quality of response on reintroduction of imatinib did not reach the tumor status observed at randomization.

The panel strongly recommends that TKI therapy at the prescribed daily dose should be continued as long as patients are experiencing clinical benefit (response or stable disease). The panel also feels that continuation of TKI therapy lifelong for palliation of disease progression after interruption of imatinib had no benefit (response or stable disease).

Summary
GIST is the most common STS of the gastrointestinal tract, resulting most commonly from KIT- or PDGFRα-activating mutations. TKI therapy with imatinib, sunitinib, and regorafenib has emerged as an effective treatment option for patients with unresectable or metastatic GIST. Dose escalation of imatinib up to 800 mg/d as tolerated or switching to sunitinib are included as options for patients with progressive disease on standard-dose imatinib. Regorafenib is recommended for patients experiencing disease progression while on imatinib and sunitinib. TKI therapy at the prescribed daily dose should be continued as long as patients are receiving clinical benefit (response or stable disease).

References
11. Blanke CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic...

Posttest Questions

1. Which of the following are included as treatment options in the NCCN Guidelines for patients with GIST progressing on standard-dose imatinib?
 a. Dose escalation of imatinib up to 800 mg/d as tolerated
 b. Switching to sunitinib
 c. Continuation of imatinib at the same initial dose and treatment of progressing lesions with other therapeutic interventions
 d. All of the above

2. Regorafenib is recommended for patients with GIST experiencing disease progression while on imatinib and sunitinib.
 a. True
 b. False

3. Which of the following mutations is associated with better clinical outcomes in patients with unresectable or metastatic GIST treated with standard-dose imatinib?
 a. KIT exon 9
 b. KIT exon 11
 c. PDGFRα D842V
 d. All of the above