Breast Cancer
Version 3.2014

Clinical Practice Guidelines in Oncology

Overview

Breast cancer is the most common malignancy in women in the United States. The American Cancer Society estimates that 235,030 Americans will be diagnosed with invasive breast cancer and 40,430 will die of the disease in the United States in 2014.\(^1\) The incidence of breast cancer has increased steadily in the United States in the past few decades, but breast cancer–related mortality seems to be declining,\(^2,3\) suggesting a benefit from the combination of early detection and more effective treatment.\(^4\)

Abstract

Breast cancer is the most common malignancy in women in the United States and is second only to lung cancer as a cause of cancer death. The overall management of breast cancer includes the treatment of local disease with surgery, radiation therapy, or both, and the treatment of systemic disease with cytotoxic chemotherapy, endocrine therapy, biologic therapy, or combinations of these. The NCCN Guidelines specific to management of large clinical stage II and III tumors are discussed in this article. These guidelines are the work of the members of the NCCN Breast Cancer Panel. Expert medical clinical judgment is required to apply these guidelines in the context of an individual patient to provide optimal care. Although not stated at every decision point of the guidelines, patient participation in prospective clinical trials is the preferred option of treatment for all stages of breast cancer.\(^5\)

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Clinical trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines\(^6\)) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines\(^6\) is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network\(^6\) (NCCN\(^6\)) makes no representation or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their applications or use in any way. The full NCCN Guidelines for Breast Cancer are not printed in this issue of JNCCN but can be accessed online at NCCN.org.

© National Comprehensive Cancer Network, Inc. 2014. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

Disclosures for the NCCN Breast Cancer Panel

At the beginning of each NCCN Guidelines panel meeting, panel members review all potential conflicts of interest. NCCN, in keeping with its commitment to public transparency, publishes these disclosures for panel members, staff, and NCCN itself.

Individual disclosures for the NCCN Breast Cancer Panel members can be found on page 590. (The most recent version of these guidelines and accompanying disclosures are available on the NCCN Web site at NCCN.org.)

These guidelines are also available on the Internet. For the latest update, visit NCCN.org.
Pathology Assessment

A central component of breast cancer treatment is full knowledge of disease extent and biologic features. These factors contribute to the determination of disease stage, assist in estimating the risk of cancer recurrence, and provide information that predicts response to therapy (e.g., estrogen receptor [ER], progesterone receptor [PR], and HER2). These factors are determined through examination of excised tissue and provided in a written pathology report. Accurate pathology reporting requires communication between the clinician and the pathologist regarding relevant patient history, prior breast biopsies, prior irradiation to the chest, pregnancy status, characteristics of the abnormality biopsied (e.g., palpable, mammographically detected microcalcifications), clinical state of lymph nodes, presence of inflammatory change or other skin abnormality, and any prior treatment administered (e.g., chemotherapy, radiation therapy). The specimens should be oriented for the pathologist, and specific requests for determination of biomarkers should be stated (e.g., ER, PR, and HER2 status). Data from both national and local surveys show that as many as 50% of pathology reports for breast cancer are missing some elements critical to patient management.\(^5,6\) Significant omissions include failure to orient and report surgical margins and failure to report tumor grade consistently. The College of American Pathologists (CAP) has developed pathology reporting protocols to promote complete and standardized reporting of malignant specimens (www.cap.org). The NCCN Breast

NCCN Breast Cancer Panel Members

William J. Gradishar, MD/Chair\(^\dagger\)
 Robert H. Lurie Comprehensive Cancer Center of Northwestern University
Benjamin O. Anderson, MD/Vice-Chair\(^\dagger\)
 University of Washington/Seattle Cancer Care Alliance
Sarah L. Blair, MD\(^\dagger\)
 UC San Diego Moores Cancer Center
Harold J. Burstein, MD, PhD\(^\dagger\)
 Dana-Farber/Brigham and Women’s Cancer Center
Amy Cyr, MD\(^\dagger\)
 Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
Anthony D. Elias, MD\(^\dagger\)
 University of Colorado Cancer Center
William B. Farrar, MD\(^\dagger\)
 The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute
Andres Forero, MD\(^\dagger\)
 University of Alabama at Birmingham Comprehensive Cancer Center
Sharon Hermes Giordano, MD, MPH\(^\dagger\)
 The University of Texas MD Anderson Cancer Center
Lori J. Goldstein, MD\(^\dagger\)
 Fox Chase Cancer Center
Daniel F. Hayes, MD\(^\dagger\)
 University of Michigan Comprehensive Cancer Center
Clifford A. Hudis, MD\(^\dagger\)
 Memorial Sloan-Kettering Cancer Center
Steven J. Isakoff, MD, PhD\(^\dagger\)
 Massachusetts General Hospital Cancer Center
Britt-Marie E. Ljung, MD\(^\dagger\)
 UCSF Helen Diller Family Comprehensive Cancer Center
P. Kelly Marcom, MD\(^\dagger\)
 Duke Cancer Institute
Ingrid A. Mayer, MD\(^\dagger\)
 Vanderbilt-Ingram Cancer Center

Beryl McCormick, MD\(^\dagger\)
 Memorial Sloan-Kettering Cancer Center
Robert S. Miller, MD\(^\dagger\)
 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Mark Pegram, MD\(^\dagger\)
 Stanford Cancer Institute
Lori J. Pierce, MD\(^\dagger\)
 University of Michigan Comprehensive Cancer Center
Elizabeth C. Reed, MD\(^\dagger\)
 Fred & Pamela Buffet Cancer Center at The Nebraska Medical Center
Kilian E. Salerno, MD\(^\dagger\)
 Roswell Park Cancer Institute
Lee S. Schwartzberg, MD, FACP\(^\dagger\)
 St. Jude Children’s Research Hospital/ The University of Tennessee Health Science Center
Mary Lou Smith, JD, MBA\(^\dagger\)
 Research Advocacy Network
Hatem Soliman, MD\(^\dagger\)
 Moffitt Cancer Center
George Somlo, MD\(^\dagger\)
 City of Hope Comprehensive Cancer Center
John H. Ward, MD\(^\dagger\)
 Huntsman Cancer Institute at the University of Utah
Antonio C. Wolff, MD\(^\dagger\)
 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Richard Zellars, MD\(^\dagger\)
 The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
NCCN Staff: Dorothy A. Shead, MS, and Rashmi Kumar, PhD

KEY:
Specialties: \(^\dagger\)Medical Oncology; \(^\dagger\)Hematology/Oncology; \(^\dagger\)Surgical Oncology; \(^\dagger\)Pathology; \(^\dagger\)Radiation Oncology; \(^\dagger\)Bone Marrow Transplantation; \(^\dagger\)Patient Advocacy
PREOPERATIVE SYSTEMIC THERAPY GUIDELINE

CLINICAL STAGE WORKUP

<table>
<thead>
<tr>
<th>Stage IIA</th>
<th>Stage IIB</th>
<th>Stage IIIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2, N0, M0</td>
<td>T2, N1, M0</td>
<td>T3, N0, M0</td>
</tr>
<tr>
<td>and</td>
<td>T3, N1, M0</td>
<td>and</td>
</tr>
<tr>
<td>Fulfills criteria for breast-conserving surgery except for tumor size</td>
<td>Breast MRI (optional), with special consideration for mammographically occult tumors</td>
<td>Fulfills criteria for breast-conserving surgery except for tumor size</td>
</tr>
</tbody>
</table>

- History and physical exam
- CBC, platelets
- Liver function tests and alkaline phosphatase
- Diagnostic bilateral mammogram; ultrasound as necessary
- Pathology review
- Determination of tumor ER/PR status and HER2 status
- Genetic counseling if patient is high risk for hereditary breast cancer
- Breast MRI (optional), with special consideration for mammographically occult tumors
- Fertility counseling if premenopausal
- Consider systemic staging (particularly if signs and symptoms are present)
- Chest diagnostic CT
- Abdominal ± pelvic diagnostic CT or MRI
- Bone scan or sodium fluoride PET/CT (category 2B)
- FDG-PET/CT (optional, category 2B)

Does not desire breast preservation
- See Locoregional Treatment of Clinical Stage I, IIA, or IIB Disease or T3, N1, M0 (BINV-3*)

Desires breast preservation

Available online, in these guidelines, at NCCN.org.

a The panel endorses the College of American Pathologists Protocol for pathology reporting for all invasive and noninvasive carcinomas of the breast (http://www.cap.org).

b See Principles of HER2 Testing (BINV-A).

c See NCCN Guidelines for Genetics/Familial High-Risk Assessment: Breast and Ovarian (to view the most recent version of these guidelines, visit NCCN.org).

d See Principles of Dedicated Breast MRI Testing (BINV-B).

e See Fertility and Birth Control (BINV-C*).

f Routine systemic staging is not indicated for early breast cancer in the absence of symptoms.

g If FDG-PET/CT is performed and clearly indicates bone metastasis, on both the PET and CT component, bone scan or sodium fluoride PET/CT may not be needed.

h FDG-PET/CT can be performed at the same time as diagnostic CT. The use of PET or PET/CT scanning is not indicated in the staging of clinical stage I, II, or operable III breast cancer. FDG-PET/CT is most helpful in situations where standard staging studies are equivocal or suspicious, especially in the setting of locally advanced or metastatic disease.

i FDG-PET/CT may also be helpful in identifying unsuspected regional nodal disease and/or distant metastases in locally advanced breast cancer when used in addition to standard staging studies.

BINV-10, -11
PREOPERATIVE SYSTEMIC THERAPY BREAST AND AXILLARY EVALUATION

Core biopsy with placement of image-detectable marker(s), if not previously performed, must be done to demarcate the tumor bed for postchemotherapy surgical management.

Clinically negative axillary lymph node(s) should have axillary ultrasound; suspicious nodes should be sampled by FNA or core biopsy and clipped with image-detectable marker; positive clipped lymph nodes must be removed if FNA or core biopsy was positive before neoadjuvant therapy.

Clinically positive axillary lymph node(s) should be sampled by FNA or core biopsy and clipped with image-detectable marker; positive clipped lymph nodes must be removed if FNA or core biopsy was positive before neoadjuvant therapy.

See Preoperative Systemic Therapy - Primary Treatment (BINV-12)

BINV-11
Preoperative Systemic Therapy Guideline

<table>
<thead>
<tr>
<th>PRIMARY TREATMENT</th>
<th>RESPONSE**f</th>
<th>LOCAL TREATMENT</th>
<th>ADJUVANT TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed progressive disease at any time</td>
<td>Mastectomy and surgical axillary staging**g,h</td>
<td>Complete planned chemotherapy regimen course if not completed preoperatively plus endocrine treatment if ER-positive and/or PR-positive (sequential chemotherapy followed by endocrine therapy).</td>
<td></td>
</tr>
<tr>
<td>Partial response, lumpectomy not possible</td>
<td>Lumpectomy with surgical axillary staging**g,i</td>
<td>Adjuvant radiation therapy postmastectomy based on prechemotherapy tumor characteristics as per BINV-3* and Endocrine therapy if ER-positive and/or PR-positive**w (category 1)</td>
<td></td>
</tr>
<tr>
<td>Partial response, lumpectomy possible or Complete response</td>
<td>(See BINV-11)</td>
<td>Complete to 1 y of trastuzumab therapy if HER2-positive (category 1). May be administered concurrently with radiation therapy**p and with endocrine therapy if indicated.</td>
<td></td>
</tr>
</tbody>
</table>

*Available online, in these guidelines, at NCCN.org.

Notes:
- **See Surgical Axillary Staging (BINV-D).**
- **See Principles of Radiation Therapy (BINV-I).**
- **Chemotherapy and endocrine therapy used as adjuvant therapy should be given sequentially with endocrine therapy following chemotherapy.** Available data suggest that sequential or concurrent endocrine therapy with radiation therapy is acceptable.
- **Several chemotherapy regimens have activity in the preoperative setting.** In general, those chemotherapy regimens recommended in the adjuvant setting may be considered in the preoperative setting. See Neoadjuvant/Adjuvant Chemotherapy (BINV-K).
- **Patients with HER2-positive tumors should be treated with preoperative systemic therapy incorporating trastuzumab for at least 9 weeks of preoperative therapy.** See Neoadjuvant/Adjuvant Chemotherapy (BINV-K).
- **Administration of all chemotherapy prior to surgery is preferred.**
- **A pertuzumab-containing regimen may be administered preoperatively to patients with >T2 or >N1, HER2-positive, early-stage breast cancer.** See Neoadjuvant/Adjuvant Chemotherapy (BINV-K).

Further Reading:
Preoperative systemic therapy is acceptable for patients with T2 or N1, HER2-positive, early-stage breast cancer. See Principles of Radiation Therapy (BINV-I). Chemotherapy and endocrine therapy used as adjuvant therapy should be given sequentially with endocrine therapy following chemotherapy. Available patients with HER2-positive tumors should be treated with preoperative therapy. Apertuzumab-containing regimen may be administered preoperatively to patients. Several chemotherapy regimens have activity in the preoperative setting. In postmenopausal disease, endocrine therapy is preferred for postmenopausal women. FDG-PET/CT can be performed at the same time as diagnostic CT. The use of PET or PET/CT scanning is not indicated in the staging of clinical stage I, II, or operable III breast cancer. FDG-PET/CT is most helpful in situations where standard staging studies are equivocal or suspicious, especially in the setting of locally advanced or metastatic disease. FDG-PET/CT may also be helpful in identifying unsuspected regional nodal disease and/or distant metastases in locally advanced breast cancer when used in addition to standard staging studies.

BINV-14
PREOPERATIVE SYSTEMIC THERAPY FOR LOCALLY ADVANCED INVASIVE BREAST CANCER (NONINFLAMMATORY)

LOCOREGIONAL TREATMENT

<table>
<thead>
<tr>
<th>Response</th>
<th>Consider additional systemic chemotherapy and/or preoperative radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response</td>
<td>Consider additional systemic chemotherapy and/or preoperative radiation</td>
</tr>
</tbody>
</table>

ADJUVANT TREATMENT

<table>
<thead>
<tr>
<th>Response</th>
<th>Complete planned chemotherapy regimen course if not completed preoperatively plus endocrine treatment if ER-positive and/or PR-positive (sequential chemotherapy followed by endocrine therapy).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete up to one year of trastuzumab therapy if HER2-positive (category 1). May be administered concurrently with radiation therapy® and with endocrine therapy if indicated.</td>
</tr>
</tbody>
</table>

SURVEILLANCE/FOLLOW-UP

<table>
<thead>
<tr>
<th>Response</th>
<th>Individualized treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>History and physical exam every 4-6 mo for 5 y, then every 12 mo</td>
</tr>
<tr>
<td></td>
<td>Mammography every 12 mo</td>
</tr>
<tr>
<td></td>
<td>Women on tamoxifen: annual gynecologic assessment every 12 mo if uterus present</td>
</tr>
<tr>
<td></td>
<td>Women on an aromatase inhibitor or who experience ovarian failure secondary to treatment should have monitoring of bone health with a bone mineral density determination at baseline and periodically thereafterii</td>
</tr>
<tr>
<td></td>
<td>Assess and encourage adherence to adjuvant endocrine therapy</td>
</tr>
<tr>
<td></td>
<td>Evidence suggests that active lifestyle and achieving and maintaining an ideal body weight (20-25 BMI) may lead to optimal breast cancer outcomes</td>
</tr>
</tbody>
</table>

*Available online, in these guidelines, at NCCN.org.

i/See Principles of Breast Reconstruction Following Surgery (BINV-H).

P/See Principles of Radiation Therapy (BINV-I).

ii/Several chemotherapy regimens have activity in the preoperative setting. In general, those chemotherapy regimens recommended in the adjuvant setting may be considered in the preoperative setting. See Neoadjuvant/Adjuvant Chemotherapy (BINV-K). If treated with endocrine therapy, an aromatase inhibitor is preferred for postmenopausal women.

bh/Patients with HER2-positive tumors should be treated with preoperative systemic incorporating trastuzumab for at least 9 weeks of preoperative therapy. See Neoadjuvant/Adjuvant Chemotherapy (BINV-K).

bh/A pertuzumab-containing regimen may be administered preoperatively to patients with ≥T2 or ≥N1, HER2-positive, early-stage breast cancer. See Neoadjuvant/Adjuvant Chemotherapy (BINV-K).

bh/For patients with skin and/or chest wall involvement (T4 non-inflammatory) before neoadjuvant therapy, breast conservation may be performed in carefully selected patients based upon a multidisciplinary assessment of local recurrence risk. In addition to standard contraindications to breast conservation (see BINV-G), exclusion criteria for breast conservation include inflammatory (T4d) disease before neoadjuvant therapy and incomplete resolution of skin involvement after neoadjuvant therapy.

bh/The use of estrogen, progestrone, or selective estrogen receptor modulators to treat osteoporosis or osteopenia in women with breast cancer is discouraged. The use of a bisphosphonate is generally the preferred intervention to improve bone mineral density. Optimal duration of bisphosphonate therapy has not been established. Factors to consider for duration of antosteoporosis therapy include bone mineral density, response to therapy, and risk factors for continued bone loss or fracture. Women treated with a bisphosphonate should undergo a dental examination with preventive dentistry before the initiation of therapy, and should take supplemental calcium and vitamin D.

BINV-15, -16
The use of estrogen, progesterone, or selective estrogen receptor modulators to treat osteoporosis or osteopenia in women with breast cancer is carefully selected patients based upon a multidisciplinary assessment of local recurrence risk. In addition to standard contraindications to breast conservation, patients with HER2-positive tumors should be treated with preoperative systemic incorporating trastuzumab for at least 9 weeks of preoperative therapy. Apertuzumab-containing regimen may be administered preoperatively to patients with T2 or N1, HER2-positive, early-stage breast cancer. Neoadjuvant/Adjuvant Chemotherapy (BIN V- K). If treated with endocrine therapy, an aromatase inhibitor must reflect therapy with ISH (if same specimen), or order new test with IHC or ISH (if new specimen available).

Patients with HER2-positive tumors should be treated with preoperative systemic incorporating trastuzumab for at least 9 weeks of preoperative therapy. Neoadjuvant/Adjuvant Chemotherapy (BIN V- K). For patients with skin and/or chest wall involvement (T4 non-inflammatory) before neoadjuvant therapy, breast conservation may be performed in the preoperative setting. See Neoadjuvant/Adjuvant Chemotherapy (BIN V- K). If treated with endocrine therapy, an aromatase inhibitor must reflect therapy with ISH (if same specimen), or order new test with IHC or ISH (if new specimen available).

Several chemotherapy regimens have activity in the preoperative setting. In general, those chemotherapy regimens recommended in the adjuvant setting the initiation of therapy, and should take supplemental calcium and vitamin D. For patients with skin and/or chest wall involvement (T4 non-inflammatory) before neoadjuvant therapy, breast conservation may be performed in the preoperative setting. See Neoadjuvant/Adjuvant Chemotherapy (BIN V- K). If treated with endocrine therapy, an aromatase inhibitor must reflect therapy with ISH (if same specimen), or order new test with IHC or ISH (if new specimen available).

PRINCIPLES OF HER2 TESTING

HER2 testing by validated IHC assay

- IHC 0.1+
 - HER2 (-)
- IHC 2+
 - Equivocal result
- IHC 3+
 - HER2 (+)

HER2 testing by validated single-probe ISH assay

- Average HER2 copy number <4.0 signals/cell
 - ISH (-)
- Average HER2 copy number ≥4.0 and <6.0 signals/cell
 - Equivocal result
- Average HER2 copy number ≥6.0 signals/cell
 - ISH (+)

HER2 testing by validated dual-probe ISH assay

- HER2/CEP17 ratio ≥2.0
 - ISH (+)
- HER2/CEP17 ratio <2.0
 - ISH (-)

1. NCCN endorses the ASCO/CAP HER2 testing guideline. For additional information, see http://bit.ly/ASCO-HER2GuidelineResources.
2. Laboratory must participate in a quality assurance accreditation program for HER2 testing. Otherwise, tissue specimen should be sent to an accredited laboratory for testing. Health care systems and providers must cooperate to ensure the highest quality testing.
3. Evidence from trastuzumab adjuvant trials show that HER2 testing by ISH or IHC have similar utility to predict clinical benefit from HER2-targeted therapy.
PRINCIPLES OF DEDICATED BREAST MRI TESTING

See NCCN Guidelines for Breast Cancer Screening and Diagnosis for indications for screening MRI in women at increased breast cancer risk (to view the most recent version of these guidelines, visit NCCN.org).

Personnel, Facility, and Equipment
- Breast MRI examinations should be performed and interpreted by an expert breast imaging team working in concert with the multidisciplinary treatment team.
- Breast MRI examinations require a dedicated breast coil and breast imaging radiologists familiar with the optimal timing sequences and other technical details for image interpretation. The imaging center should have the ability to perform MRI-guided needle sampling and/or wire localization of MRI-detected findings.

Clinical Indications and Applications
- May be used for staging evaluation to define extent of cancer or presence of multifocal or multicentric cancer in the ipsilateral breast, or as screening of the contralateral breast cancer at time of initial diagnosis (category 2B). No high-level data demonstrate that the use of MRI to facilitate local therapy decision-making improves local recurrence or survival.¹
- May be helpful for breast cancer evaluation before and after neoadjuvant therapy to define extent of disease, response to treatment, and potential for breast-conserving therapy.
- May be useful to detect additional disease in women with mammographically dense breast, but available data do not show differential detection rates by any subset by breast pattern (breast density) or disease type (eg, DCIS, invasive ductal cancer, invasive lobular cancer).
- May be useful for identifying primary cancer in women with axillary nodal adenocarcinoma or with Paget disease of the nipple with breast primary not identified on mammography, ultrasound, or physical examination.
- False-positive findings on breast MRI are common. Surgical decisions should not be based solely on the MRI findings. Additional tissue sampling of areas of concern identified by breast MRI is recommended.
- The utility of MRI in follow-up screening of women with prior breast cancer is undefined. It should generally be considered only in those whose lifetime risk of a second primary breast cancer is >20% based on models largely dependent on family history, such as in those with the risk associated with inherited susceptibility to breast cancer.

INVASIVE BREAST CANCER

SURGICAL AXILLARY STAGING - STAGE I, IIA, IIB and IIIA T3, N1, M0

Clinical Stage I, IIA, IIB and IIIA T3, N1, M0

Clinical indication and applications

See NCCN Guidelines for Breast Cancer Screening and Diagnosis for indications for screening MRI in women at increased breast cancer risk (to view the most recent version of these guidelines, visit NCCN.org).

*Available online, in these guidelines, at NCCN.org.

1 Consider pathologic confirmation of malignancy in clinically positive nodes using ultrasound-guided FNA or core biopsy in determining if a patient needs axillary lymph node dissection.

2 Sentinel lymph node mapping injections may be peritumoral, subareolar, or subdermal. However, only peritumoral injections map to the internal mammary lymph node(s).

3 Sentinel node involvement is defined by multilevel node sectioning with hematoxylin and eosin (H&E) staining. Cytokeratin immunohistochemistry (IHC) may be used for equivocal cases on H&E. Routine cytokeratin IHC to define node involvement is not recommended in clinical decision making.
Breast reconstruction may be an option for any woman receiving surgical treatment for breast cancer. All women undergoing breast cancer treatment should be educated about breast reconstructive options as adapted to their individual clinical situation. However, breast reconstruction should not interfere with the appropriate surgical management of the cancer. The process of breast reconstruction should not govern the timing or the scope of appropriate surgical treatment for this disease. The availability of or the practicality of breast reconstruction should not result in the delay or refusal of appropriate surgical intervention.

An evaluation of the likely cosmetic outcome of lumpectomy should be performed prior to surgery. Oncoplastic techniques for breast conservation can extend breast-conserving surgical options in situations where the resection itself would likely yield an unacceptable cosmetic outcome. Application of these procedures may reduce the need for mastectomy and reduce the chances of secondary surgery for re-excision while minimizing breast deformity. Patients should be informed of the possibility of positive margins and potential need for secondary surgery, which could include re-excision segmental resection, or could require mastectomy with or without loss of the nipple. Oncoplastic procedures can be combined with surgery on the contralateral unaffected breast to minimize long-term asymmetry.

For mastectomy, the possibility of reconstruction should be discussed and a preoperative evaluation of reconstructive options should be considered. Surgical options for breast reconstruction following mastectomy include:
- Procedures that incorporate breast implants (ie, tissue expander placement followed by implant placement, immediate implant placement)
- Procedures that incorporate autologous tissue transplantation (ie, pedicled TRAM flap, fat grafting, various microsurgical flaps from the abdomen, back, buttocks, and thigh)
- Procedures that incorporate both breast implants and autologous tissue transplantation (eg, latissimus dorsi flaps)

Breast reconstruction following mastectomy can commence at the same time as mastectomy (“immediate”) or at some time after the completion of cancer treatment (“delayed”). In many cases, breast reconstruction involves a staged approach requiring more than one procedure, such as:
- Surgery on the contralateral breast to improve symmetry
- Revision surgery involving the breast and/or donor site
- Nipple and areola reconstruction and tattoo pigmentation

As with any mastectomy, there is a risk of local and regional cancer recurrence, and evidence suggests skin-sparing mastectomy is probably equivalent to standard mastectomy in this regard. Skin-sparing mastectomy should be performed by an experienced breast surgery team that works in a coordinated, multidisciplinary fashion to guide proper patient selection for skin-sparing mastectomy, determine optimal sequencing of the reconstructive procedure(s) in relation to adjuvant therapies, and perform a resection that achieves appropriate surgical margins. Post-mastectomy radiation should still be applied regardless of the reconstruction approach:

- Procedures that incorporate autologous tissue transplantation
- Procedures that incorporate breast implants

Oncoplastic procedures can be combined with surgery on the contralateral unaffected breast to minimize long-term asymmetry. Smoking and obesity increase the risk of complications for all types of breast reconstruction, whether with implant or autologous tissue, because of reported loss in reconstruction cosmesis (category 2B).

Procedures that incorporate breast implants (ie, tissue expander placement followed by implant placement, immediate implant placement)
- Procedures that incorporate autologous tissue transplantation (ie, pedicled TRAM flap, fat grafting, various microsurgical flaps from the abdomen, back, buttocks, and thigh)
- Procedures that incorporate both breast implants and autologous tissue transplantation (eg, latissimus dorsi flaps)

Breast reconstruction following mastectomy can commence at the same time as mastectomy (“immediate”) or at some time after the completion of cancer treatment (“delayed”). In many cases, breast reconstruction involves a staged approach requiring more than one procedure, such as:
- Surgery on the contralateral breast to improve symmetry
- Revision surgery involving the breast and/or donor site
- Nipple and areola reconstruction and tattoo pigmentation

Immediate reconstruction is contraindicated in the setting of mastectomy for inflammatory breast cancer (IBC) because of the high risk of recurrence, aggressive nature of the disease, and consequent need to proceed expeditiously to postoperative radiotherapy for local control without any potential delay. Because skin-sparing mastectomy has not yet been shown to be safe for IBC, there is also a need to resect currently or previously involved skin at the time of mastectomy, and thus no advantage to immediate reconstruction in this setting.

In general, the nipple-areolar complex (NAC) is sacrificed with skin-sparing mastectomy for cancer therapy. However, NAC-sparing procedures may be an option in cancer patients who are carefully selected by experienced multidisciplinary teams. Retrospective data support the use of NAC-sparing procedures for breast cancer therapy with low nipple-involvement rates and low local-recurrence rates for early-stage, biologically favorable (eg, Nottingham grade 1 or 2, node-negative, HER2/neu negative, no lymphovascular invasion), invasive cancers and/or DCIS that are peripherally located in the breast (>2 cm from nipple). Nipple margin assessment is mandatory. Evidence of nipple involvement such as Paget disease or bloody nipple discharge contraindicates nipple preservation.
PRINCIPLES OF BREAST RECONSTRUCTION FOLLOWING SURGERY

- Although noninflammatory, locally advanced breast cancer is not an absolute contraindication to immediate reconstruction, postmastectomy radiation should still be applied regardless of the reconstruction approach:
 - When postmastectomy radiation is required and autologous tissue reconstruction is planned, reconstruction is either delayed until after the completion of radiation therapy, or can be initiated at the time of mastectomy with tissue expander placement followed by autologous tissue reconstruction. Although some experienced breast cancer teams have used protocols in which immediate tissue reconstructions are followed by radiation therapy, it is generally preferred that the radiation therapy precede the placement of the autologous tissue, because of reported loss in reconstruction cosmesis (category 2B).
 - When implant reconstruction is planned in a patient requiring radiation therapy, a staged approach with immediate tissue expander placement followed by implant placement is preferred. Surgery to exchange the tissue expanders with permanent implants can be performed before radiation or after completion of radiation therapy. Tissue expansion of irradiated skin can result in a significantly increased risk of capsular contracture, malposition, poor cosmesis, and implant exposure. In the previously radiated patient the use of tissue expanders/implants is relatively contraindicated. Immediate placement of an implant in patients requiring postoperative radiation has an increased rate of capsular contracture, malposition, poor cosmesis, and implant exposure.

- Reconstruction selection is based on an assessment of cancer treatment, patient body habitus, obesity, smoking history, comorbidities, and patient concerns. Smoking and obesity increase the risk of complications for all types of breast reconstruction, whether with implant or flap. Smoking and obesity are therefore considered a relative contraindication to breast reconstruction and patients should be made aware of increased rates of wound healing complications and partial or complete flap failure among smokers and obese patients.

- Women who are not satisfied with the cosmetic outcome after completion of breast cancer treatment should be offered a plastic surgery consultation.
PRINCIPLES OF RADIATION THERAPY

Whole-Breast Radiation:
Target definition includes most of the breast tissue, and is best performed through both clinical assessment and CT-based treatment planning. A uniform dose distribution and minimal normal tissue toxicity are the goals, and can be accomplished using compensators such as wedges, forward planning using segments, intensity-modulated radiation therapy (IMRT), respiratory gating, or prone positioning. The breast should receive a dose of 45 to 50 Gy in 1.8 to 2.0 Gy per fraction, or 42.50 Gy at 2.66 Gy per fraction. A boost to the tumor bed is recommended in patients at higher risk (those aged <50 y and high-grade disease). This can be achieved with brachytherapy or electron beam or photon fields. Typical doses are 10 to 16 Gy at 2 Gy per fraction. All dose schedules are given 5 days per week.

Chest Wall Radiation (including breast reconstruction):
The target includes the ipsilateral chest wall, mastectomy scar, and drain sites where possible. Depending on whether the patient has been reconstructed, several techniques using photons and/or electrons are appropriate. CT-based treatment planning is encouraged to identify lung and heart volumes, and minimize exposure of these organs. Special consideration should be given to the use of bolus material when photon fields are used to ensure the skin dose is adequate.

Regional Nodal Radiation:
Target delineation is best achieved through CT-based treatment planning. For the paraclavicular and axillary nodes, prescription depth varies based on the size of the patient. For internal mammary node identification, the internal mammary artery and vein location can be used as a surrogate for the nodal locations, which usually are not visible on imaging. Dose is 50.0 to 50.4 Gy, given in 1.8 to 2.0 Gy fraction (± scar boost at 2 Gy per fraction to a total dose of approximately 60 Gy); all dose schedules are given 5 days per week. If internal mammary lymph nodes are clinically or pathologically positive, radiation therapy should be given to the internal mammary nodes. Otherwise, the treatment to the internal mammary nodes is at the discretion of the treating radiation oncologist. CT treatment planning should be used in all cases where radiation therapy is delivered to the internal mammary lymph node field.

Accelerated Partial Breast Irradiation (APBI):
Preliminary studies of APBI suggest that rates of local control in selected patients with early-stage breast cancer may be comparable to those treated with standard whole-breast RT. However, compared with standard whole-breast radiation, several recent studies document an inferior cosmetic outcome with APBI. Follow-up is limited and studies are ongoing. Patients are encouraged to participate in clinical trials. If not trial eligible, per the consensus statement from the American Society for Radiation Oncology (ASTRO), patients who may be suitable for APBI are women aged 60 y and older who are not carriers of the BRCA1/2 mutation and are treated with primary surgery for a unifocal T1N0 ER-positive cancer. Histology should be infiltrating ductal or a favorable ductal subtype and not associated with EIC or LCIS, and margins should be negative. Thirty-four Gy in 10 fractions delivered twice per day with brachytherapy or 38.5 Gy in 10 fractions delivered twice per day with external-beam photon therapy is prescribed to the tumor bed. Other fractionation schemes are currently under investigation.

Optimizing Delivery of Individual Therapy:
It is important to individualize delivery of radiation therapy and considerations such as patient positioning (ie, prone vs supine) during administration of radiation therapy.

Neoadjuvant Chemotherapy:
Indications for radiation therapy and fields of treatment should be based on the worst stage pretreatment or posttreatment tumor characteristics in patients treated with neoadjuvant chemotherapy.
The target includes the ipsilateral chest wall, mastectomy scar, and drain sites where possible. Depending on whether the patient has been treated with beam or photon fields. Typical doses are 10 to 16 Gy at 2 Gy per fraction. All dose schedules are given 5 days per week. Photons are used to ensure the skin dose is adequate.

In breast cancer patients with unifocal T1N0 ER-positive cancer, the breast should receive a dose of 45 to 50 Gy in 1.8 to 2.0 Gy per fraction, or 42.50 Gy at 2.66 Gy per fraction. A boost to the tumor bed is administered using wedges, forward planning using segments, intensity-modulated radiation therapy (IMRT), respiratory gating, or prone positioning. The target definition includes most of the breast tissue, and is best performed through both clinical assessment and CT-based treatment planning.

Whole-Breast Radiation:

Suitable for APBI are women aged 60 y and older who are not carriers of the BRCA1/2 mutation and are treated with primary surgery for a T1N0 disease. Clinical trials have shown improved cosmetic results with APBI compared to standard whole-breast radiation, particularly for T1 tumors, but most data are from early-stage breast cancer. If not trial eligible, per the consensus statement from the American Society for Radiation Oncology (ASTRO), patients who may be eligible for APBI may include those treated with standard whole-breast RT. However, compared with standard whole-breast radiation, several recent studies document improved cosmetic outcomes with APBI. Preliminary studies of APBI suggest that rates of local control in selected patients with early-stage breast cancer may be comparable to those treated with standard care. A boost to the tumor bed is often administered using wedges, forward planning using segments, IMRT, respiratory gating, or prone positioning. The target definition includes most of the breast tissue, and is best performed through both clinical assessment and CT-based treatment planning.

Accelerated Partial Breast Irradiation (APBI):

Other regimens:

- Dose-dense AC (doxorubicin/cyclophosphamide)
- FAC/CAF (fluorouracil/doxorubicin/cyclophosphamide)
- FEC/CEF (cyclophosphamide/epirubicin/fluorouracil)
- CMF (cyclophosphamide/methotrexate/fluorouracil)
- AC followed by docetaxel every 3 weeks
- AC followed by weekly paclitaxel
- EC (epirubicin/cyclophosphamide)
- FEC/CEF followed by T
- FAC followed by T
- TAC (docetaxel/doxorubicin/cyclophosphamide)

Regimens for HER2-positive disease:

Preferred regimens:

- AC followed by T + trastuzumab ± pertuzumab
- FEC followed by docetaxel + trastuzumab + pertuzumab
- FEC followed by paclitaxel + trastuzumab + pertuzumab
- Paclitaxel + trastuzumab
- Pertuzumab + trastuzumab + docetaxel followed by FEC
- Pertuzumab + trastuzumab + paclitaxel followed by FEC

Other regimens:

- AC followed by docetaxel + trastuzumab ± pertuzumab
- FEC followed by docetaxel + trastuzumab + pertuzumab
- FEC followed by paclitaxel + trastuzumab + pertuzumab
- Paclitaxel + trastuzumab
- Pertuzumab + trastuzumab + docetaxel followed by FEC
- Pertuzumab + trastuzumab + paclitaxel followed by FEC

NEOADJUVANT/ADJUVANT CHEMOTHERAPY

Regimens for HER2-negative disease (all category 1):

Preferred regimens:

- Dose-dense AC (doxorubicin/cyclophosphamide) followed by paclitaxel every 2 weeks
- Dose-dense AC (doxorubicin/cyclophosphamide) followed by weekly paclitaxel
- TC (docetaxel and cyclophosphamide)

Other regimens:

- Dose-dense AC (doxorubicin/cyclophosphamide)
- FAC/CAF (fluorouracil/doxorubicin/cyclophosphamide)
- FEC/CEF (cyclophosphamide/epirubicin/fluorouracil)
- CMF (cyclophosphamide/methotrexate/fluorouracil)
- AC followed by docetaxel every 3 weeks
- AC followed by weekly paclitaxel
- EC (epirubicin/cyclophosphamide)
- FEC/CEF followed by T
- FAC followed by T
- TAC (docetaxel/doxorubicin/cyclophosphamide)

Regimens for HER2-positive disease:

Preferred regimens:

- AC followed by T + trastuzumab ± pertuzumab
- FEC followed by docetaxel + trastuzumab + pertuzumab
- FEC followed by paclitaxel + trastuzumab + pertuzumab
- Paclitaxel + trastuzumab
- Pertuzumab + trastuzumab + docetaxel followed by FEC
- Pertuzumab + trastuzumab + paclitaxel followed by FEC

Other regimens:

- AC followed by docetaxel + trastuzumab ± pertuzumab
- FEC followed by docetaxel + trastuzumab + pertuzumab
- FEC followed by paclitaxel + trastuzumab + pertuzumab
- Paclitaxel + trastuzumab
- Pertuzumab + trastuzumab + docetaxel followed by FEC
- Pertuzumab + trastuzumab + paclitaxel followed by FEC

1 Retrospective evidence suggests that anthracycline-based chemotherapy regimens may be superior to non-anthracycline-based regimens in patients with HER2-positive tumors.
2 Randomized clinical trials demonstrate that the addition of a taxane to anthracycline-based chemotherapy provides an improved outcome.
3 CMF and radiation therapy may be given concurrently, or the CMF may be given first. All other chemotherapy regimens should be given before radiotherapy.
4 Chemotherapy and endocrine therapy used as adjuvant therapy should be given sequentially with endocrine therapy after chemotherapy.
5 The regimens listed for HER2-negative disease are all category 1 when used in the adjuvant setting.
6 In patients with HER2-positive and axillary node-positive breast cancer, trastuzumab should be incorporated into the adjuvant therapy (category 1).
7 Trastuzumab should also be considered for patients with HER2-positive node-negative tumors >1 cm (category 1).
8 Trastuzumab should optimally be given concurrently with paclitaxel as part of the AC followed by paclitaxel regimen, and should be given for 1 y total duration.
9 A pertuzumab-containing regimen can be administered to patients with ≥T2 or ≥N1, HER2-positive, early-stage breast cancer. Patients who have not received a neoadjuvant pertuzumab-containing regimen can receive adjuvant pertuzumab.
10 Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.

Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxicity. Concurrent use of trastuzumab and pertuzumab with an anthracycline should be avoided.
Cancer Panel endorses the use of the CAP protocols for reporting the pathologic analysis of all breast cancer specimens.

ER/PR Testing

ER and PR tumor status is normally determined through immunohistochemistry (IHC) testing. Although this method is considered reliable when performed by experienced pathology personnel, several reports have indicated that the reliability of ER and PR determinations can vary widely among laboratories. These interlaboratory differences may be attributable to the diverse methodologies and interpretation schema used to evaluate tumor hormonal status. An NCCN Task Force and a panel of ASCO and CAP members have reviewed this topic and issued recommendations on ER and PR testing in breast cancer.

Breast cancers that have at least 1% of cells staining positive for ER should be considered ER-positive.

HER2 Testing

The determination of HER2 tumor status is also recommended for all newly diagnosed invasive breast cancers and for first recurrences of breast cancer whenever possible. The NCCN Breast Cancer Panel endorses CAP accreditation for anatomic pathology laboratories performing HER2 testing.

HER2 status can be assessed through measuring the number of HER2 gene copies using in situ hybridization (ISH) techniques or a complementary method in which the quantity of HER2 cell surface receptors is assessed with IHC. Assignment of HER2 status based on mRNA assays or multigene arrays is not recommended. The accuracy of HER2 assays used in clinical practice is a major concern, and results from several studies have shown that false-positive as well as false-negative HER2 test results are common. A joint panel from ASCO and CAP issued updated HER2 testing guidelines to avoid these false-positive or false-negative results. These updated guidelines have been published in the *Archives of Pathology & Laboratory Medicine* and the *Journal of Clinical Oncology*. The NCCN Panel endorses these updated ASCO/CAP recommendations for quality HER2 testing, and has outlined them in the algorithm.

Treatment Approach

Conceptually, the treatment of breast cancer includes the treatment of local disease with surgery, radiation therapy, or both, and the treatment of systemic disease with cytotoxic chemotherapy, endocrine therapy, biologic therapy, or combinations of these. The need for and selection of various local or systemic therapies are based on several prognostic and predictive factors. These factors include tumor histology, clinical and pathologic characteristics of the primary tumor, axillary lymph node (ALN) status, tumor hormone receptor content, tumor HER2 status, multigene testing, presence or absence of detectable metastatic disease, patient comorbid conditions, patient age, and menopausal status. Breast cancer does occur in men, and men with breast cancer should be treated similarly to postmenopausal women, except that the use of aromatase inhibitors is ineffective without concomitant suppression of testicular steroidogenesis. Patient preference is a major component of the decision-making process, especially when survival rates are equivalent among the available treatment options. Although not explicitly stated at every decision point of the guidelines, patient participation in prospective clinical trials is the preferred treatment option for all stages of breast cancer.

The management specific to large clinical stage II tumors and stage III tumors is discussed herein.

Invasive Breast Cancer Stages II and III

Staging and Workup

The recommended workup and staging of invasive breast cancer includes a history and physical examination; a CBC count; liver function tests; bilateral diagnostic mammography; breast ultrasonography, if necessary; determination of tumor ER and PR status; determination of tumor HER2 status; and pathology review. Genetic counseling is recommended if the patient is considered to be at high risk for hereditary breast cancer, as defined by the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Genetic/Familial High-Risk Assessment: Breast and Ovarian (to view the most recent version of these guidelines, visit NCCN.org).

Use of MRI during initial workup is optional and may be specially considered for mammographically
occult tumors. MRI may be used to define the extent of cancer or presence of multifocal or multicentric cancer in the ipsilateral breast, or for screening of the contralateral breast (category 2B). It may be helpful for breast cancer evaluation before and after neoadjuvant therapy to define extent of disease, response to treatment, and potential for breast-conserving therapy. MRI of the breast should be performed using a dedicated breast coil, with consultation with the multidisciplinary treatment team, and by a breast imaging team capable of performing MRI-guided biopsy. The limitations of breast MRI include a high percentage of false-positive findings. Therefore, MRI should generally be considered for staging breast cancer in patients whose breasts cannot be imaged adequately with mammography and ultrasound (eg, women with very dense breast tissue; women with positive axillary nodal status and occult primary tumor presumed to originate in the breast; to evaluate the chest wall). No randomized, prospective assessment of the utility of MRI in staging or treatment decision-making in breast cancer is available. One retrospective study suggested an outcome benefit, whereas another did not. One systematic review reported that breast MRI staging altered surgical treatment in 7.8% to 33.3% of women. However, no differences in outcome, if any, can be demonstrated in that analysis. Patients should not be denied the option of breast-conservation therapy based on MRI findings alone without tissue sampling.

Optional Studies as Directed by Signs and Symptoms for All Stages: Additional tests may be considered based on the signs and symptoms. A bone scan is indicated for patients presenting with localized bone pain or elevated alkaline phosphatase. If pulmonary symptoms are present, chest diagnostic CT is indicated. Abdominal imaging using diagnostic CT or MRI is indicated if the patient has elevated alkaline phosphatase, abnormal results on liver function tests, abdominal symptoms, or abnormal physical examination of the abdomen or pelvis. These studies are not indicated in patients with stage I disease without signs/symptoms of metastatic disease, nor are they needed in many other patients with early-stage breast cancer. These recommendations are supported by a study evaluating patients with newly diagnosed breast cancer by bone scan, liver ultrasonography, and chest radiography. Metastases were identified by bone scan in 5.1%, 5.6%, and 14.0% of patients with stage I, II, and III disease, respectively, and no evidence of metastasis was detected by liver ultrasonography or chest radiography in patients with stage I or II disease.

Additional Workup for Patients With Locally Advanced Disease: Locally advanced breast cancer describes a subset of invasive breast cancer for which the initial clinical and radiographic evaluation documents advanced disease confined to the breast and regional lymph nodes. The AJCC clinical staging system used in these guidelines and for the determination of operability is recommended, and locally advanced disease is represented by the stage III category. Patients with stage III disease may be further divided into those for whom the initial surgical approach is unlikely to successfully remove all disease or to provide long-term local control, and those for whom a reasonable initial surgical approach is likely to achieve pathologically negative margins and provide long-term local control. Thus, patients with stage IIIA disease are divided into those who have clinical T3N1M0 disease versus those who have clinical TanyN2M0 disease, based on evaluation by a multidisciplinary team. For patients diagnosed with clinical stage III disease, systemic staging should be considered with tests such as a bone scan or sodium fluoride PET/CT (category 2B), and abdominal imaging with diagnostic CT (with or without pelvic CT) or MRI.

Fluorodeoxyglucose (FDG)/PET scan is optional (category 2B). FDG-PET scan can be considered at the same time as diagnostic CT. If FDG-PET and diagnostic CT are performed and both clearly indicate bone metastases, bone scan or sodium fluoride PET/CT may not be needed. The consensus of the panel is that FDG-PET/CT is most helpful when standard imaging results are equivocal or suspicious. However, limited studies support a potential role for FDG-PET/CT to detect regional node involvement and distant metastases in locally advanced breast cancer, including T3N1M0 disease. A retrospective study comparing bone scan with integrated FDG-PET/CT in women with stages I–III breast cancer with suspected metastasis observed a high concordance (81%) between the studies for reporting osseous metastases. The panel suggests that bone scan may be omitted if FDG-PET/CT results are positive for bone metastases. Equivocal or suspicious sites identified by PET/CT scanning should be biopsied for confirmation when-
ever possible and if the disease site would impact the course of treatment. In the past decade, the advent of PET/CT scanners has significantly changed the approach to PET imaging. However, the terminology has also created confusion regarding the nature of the scans obtained from a PET/CT device. PET/CT scanners have both a PET and CT scanner in the same gantry that allows precise coregistration of molecular (PET) and anatomic (CT) imaging. Almost all current clinical PET imaging is performed using combined PET/CT devices.

In PET/CT tomographs, the CT scanner has a second important role beyond diagnostic CT scanning. For PET applications, the CT scan is also used for photon attenuation correction and for anatomic localization of the PET imaging findings. For these tasks, the CT scan is usually taken without breathholding, to match PET image acquisition, and typically uses low-dose (nondiagnostic) CT. Radiation exposure for these nondiagnostic CT scans is lower than for diagnostic CT. Intravenous contrast is not needed for this task.

PET/CT scanners typically include a high-quality CT device that can also be used for stand-alone, optimized, and fully diagnostic CT. Diagnostic CT scans are acquired using breathholding for optimal chest imaging and are often performed with intravenous contrast. For fully diagnostic CT, the CT beam current, and therefore patient radiation exposure, is considerably higher than for the low-dose CT needed for PET requirements. Radiation exposures associated with fully diagnostic CT scans are often greater than for the emission (PET) component of the study.

Currently, the approach to clinical PET/CT imaging varies widely across centers. Many centers perform low-dose CT as part of a PET/CT scan, and perform optimized, fully diagnostic CT only when diagnostic CT has also been requested in addition to PET/CT. Other centers combine diagnostic CT scans with PET on all of their PET/CT images. The CT scans described in the workup section of the guidelines refer to fully optimized diagnostic CT scans, whereas the PET or PET/CT scans refer to scans primarily directed toward the PET component, not necessarily using diagnostic-quality CT. Referring physicians must understand the differences between PET/CT performed primarily for PET imaging and fully optimized CT performed as a stand-alone diagnostic CT examination. It may be convenient to perform PET/CT and diagnostic CT at the same time.

Fertility Counselling

Numerous epidemiologic studies have shown that childbearing after treatment of invasive breast cancer does not increase rates of recurrence or death from breast cancer. The offspring of pregnancies after treatment of breast cancer do not have an increased rate of birth defects or other serious childhood illness. However, treatment of breast cancer, especially with cytotoxic agents, may impair fertility. Therefore, it is reasonable and appropriate to consider fertility preservation before breast cancer treatment in young women who desire to bear children. No high-level evidence shows that ovarian suppression or other interventions decrease the toxicity of cytotoxic chemotherapy on the premenopausal ovary. However, many women, especially those younger than 35 years, regain menstrual function within 2 years of completing chemotherapy. Resumption of menses does not necessarily correlate with fertility, and fertility may be preserved without menses.

All premenopausal patients should be informed about the potential impact of chemotherapy on fertility and asked about their desire for potential future pregnancies. Premenopausal women with newly diagnosed breast cancer who desire to bear children after breast cancer treatment should undergo consultation with a physician with expertise in fertility before initiation of chemotherapy. Multiple factors must be considered when making a decision about fertility preservation, including patient preference, patient age, risk of premature ovarian failure based on anticipated chemotherapy, and length of optimal endocrine therapy. It is important for fetal safety that women do not become pregnant during breast cancer treatment. Also see NCCN Guidelines for Adolescent and Young Adult Oncology (to view the most recent version of these guidelines, visit NCCN.org).

Preoperative Systemic Therapy

Preoperative chemotherapy should be considered for women with locally advanced invasive breast cancer (stage III) and those with large clinical stage IIA, stage IIB, and T3N1M0 tumors who meet the criteria for breast-conserving therapy except for tumor size and wish to undergo breast-conserving therapy. In the available data from clinical trials of preoperative systemic therapy, pretreatment biopsies have
been limited to core needle biopsy or fine-needle aspiration (FNA) cytology. Therefore, according to the NCCN panel, in patients anticipated to receive preoperative systemic therapy, core biopsy of the breast tumor and placement of image-detectable markers should be considered to demarcate the tumor bed for any future (postchemotherapy) surgical management. Clinically positive ALNs should be sampled through FNA or core biopsy, and the positive nodes must be removed after preoperative systemic therapy at the time of definitive surgery. Patients with clinically negative ALNs should undergo axillary ultrasound before neoadjuvant treatment. For those with clinically suspicious ALNs, the panel recommends consideration of either a core biopsy or FNA of these nodes. If FNA or core biopsy indicates any positive nodes, these should be removed after neoadjuvant therapy at the time of definitive surgery.

According to the panel, axillary staging after preoperative systemic therapy may include sentinel node biopsy or level I/II dissection. Level I/II dissection should be performed when patients are proven node-positive before neoadjuvant therapy (category 2B). The false-negative rate of sentinel lymph node (SLN) biopsy in either the pre- or postchemotherapy setting is low. Nevertheless, the possibility remains that a pathologic complete response after chemotherapy may occur in lymph node metastases previously undetected in the clinical examination. SLN excision can be considered before preoperative systemic therapy is administered, because it provides additional information to guide local and systemic treatment decisions. If SLN resection is performed after administration of preoperative systemic therapy, both the prechemotherapy clinical and the postchemotherapy pathologic nodal stages must be used to determine the risk of local recurrence. Close communication between members of the multidisciplinary team, including the pathologist, is particularly important when any treatment strategy involving preoperative systemic therapy is planned.

In some patients, preoperative systemic therapy results in sufficient tumor response to make breast-conserving therapy possible. Because complete or near-complete clinical responses are common, the use of percutaneously placed clips into the breast under mammographic or ultrasound guidance or other method of localizing prechemotherapy tumor volume aids in the postchemotherapy resection of the original area of tumor and is encouraged. The results of the NSABP B-18 trial show that breast conservation rates are higher after preoperative systemic therapy. However, preoperative systemic therapy has no demonstrated disease-specific survival advantage over postoperative adjuvant chemotherapy in patients with stage II tumors. NSABP B-27 was a 3-arm, randomized, phase III trial of women with invasive breast cancer treated with preoperative systemic therapy with AC (doxorubicin/cyclophosphamide) for 4 cycles followed by local therapy alone, preoperative AC followed by preoperative docetaxel for 4 cycles followed by local therapy, or AC followed by local therapy followed by 4 cycles of postoperative docetaxel. Results from this study, which involved 2411 women, documented a higher rate of complete pathologic response at the time of local therapy in patients treated preoperatively with 4 cycles of AC followed by 4 cycles of docetaxel versus 4 cycles of preoperative AC. This trial did not show disease-free and overall survivals to be superior with the addition of docetaxel treatment. A disease-free survival advantage was observed (hazard ratio [HR], 0.71; 95% CI, 0.55–0.91; P = .007) favoring preoperative versus postoperative docetaxel in the subset of patients experiencing a clinical partial response to AC. For patients with inoperable, noninflammatory, locally advanced disease at presentation (clinical stages IIIA [except for T3N1M0], IIIB, or IIC), the initial use of anthracycline-based preoperative systemic therapy with or without a taxane is standard therapy.

Several chemotherapy regimens have been studied as preoperative systemic therapy. The panel believes that the regimens recommended in the adjuvant setting are appropriate to consider in the preoperative systemic therapy setting. The benefits of “tailoring” preoperative systemic therapy (ie, switching following limited response) or using preoperative systemic therapy to evaluate disease responsiveness have not been well studied.

Preoperative Systemic Therapy in Patients With HER2+ Tumors: In women with HER2+ tumors treated with neoadjuvant chemotherapy, the addition of neoadjuvant trastuzumab to paclitaxel followed by chemotherapy with FEC (fluorouracil/epirubicin/cyclophosphamide) was associated with
an increase in the pathologic complete response rate from 26.0% to 65.2% (P=.016). Thus, the incorporation of trastuzumab into neoadjuvant chemotherapy regimens seems to be important in HER2+ tumors.

The GeparQuinto phase III trial led by the German Breast Group studied 620 women with untreated, HER2+, primary invasive breast cancer. Patients were randomized to receive 4 cycles of epirubicin/cyclophosphamide followed by docetaxel administered concurrently with either trastuzumab or lapatinib. The primary end point, pathologic complete response, was achieved in 30.3% of patients who received trastuzumab plus chemotherapy, compared with 22.7% of patients who received lapatinib plus chemotherapy (odds ratio, 0.68; 95% CI, 0.47–0.97; P<.04). Edema and dyspnea occurred more frequently in the trastuzumab group, whereas diarrhea and skin rash occurred more frequently in the lapatinib group.

The NeoALTTO trial randomized 455 patients with HER2+ primary breast cancer to receive lapatinib plus paclitaxel or trastuzumab plus paclitaxel or a combination of lapatinib and trastuzumab plus paclitaxel. The results showed that the pathologic complete response rate was 51.3% (95% CI, 43.1–59.5) in the lapatinib plus trastuzumab combination arm, compared with a rate of 24.7% (95% CI, 18.1–32.3) for the lapatinib arm and 29.5% (95% CI, 22.4–37.5) for the trastuzumab arm. The difference in pathologic complete response rate between the lapatinib plus trastuzumab arm and the trastuzumab arm was statistically significant (difference, 21.1%; range, 9.1–34.2; P=.0001). The pathologic complete response rate difference between the lapatinib and trastuzumab arms was not statistically significant (difference, −4.8%; range, −17.6–8.2; P=.34). Grade 3/4 liver enzyme abnormalities occurred more frequently with trastuzumab plus lapatinib or lapatinib alone compared to trastuzumab alone. Updated preliminary data presented at the 2013 San Antonio Breast Cancer Symposium showed that patients who experienced a pathologic complete response had a better outcome than those who did not. These studies thus confirm that the use of HER2-targeted therapy is important in the preoperative treatment of HER2+ primary breast cancer. Significant uncertainty remains regarding the optimal regimen of HER2 targeting. The NeoALTTO study results confirm the potential of dual HER2-targeted therapy in the neoadjuvant setting.

Pertuzumab is a recombinant humanized monoclonal antibody that inhibits the ligand-dependent dimerization of HER2 and its downstream signaling. Pertuzumab and trastuzumab bind to different epitopes of HER2 receptor and have complementary mechanisms of action. When administered together in HER2+ tumor models and in humans, they provide a greater overall antitumor effect than either alone. Because the combination of pertuzumab and trastuzumab showed significant overall survival benefit in the metastatic setting, it was also examined in the neoadjuvant setting.

The FDA recently granted accelerated approval for pertuzumab in combination with trastuzumab and docetaxel as neoadjuvant treatment for patients with HER2+ early-stage breast cancer, including those with either tumors greater than 2 cm in diameter (≥T2) or positive nodes (≥N1). The accelerated approval was based on the results of 2 phase II trials, the NeoSphere trial and the TRYPHAENA study, which showed significant improvement in pathologic complete response in patients receiving pertuzumab, trastuzumab, and docetaxel. Pathologic complete response is defined by the FDA as “the absence of invasive cancer in the breast and lymph nodes.”

In the NeoSphere trial, 417 patients were randomized 1:1:1:1 to receive trastuzumab plus docetaxel; pertuzumab and trastuzumab plus docetaxel; pertuzumab and trastuzumab; or pertuzumab plus docetaxel. A total of 45.8% (95% CI, 36.1–55.7) of patients who received pertuzumab plus trastuzumab and docetaxel experienced a pathologic complete response, compared with only 29% (CI, 20.6–38.5) who experienced a pathologic complete response on the trastuzumab plus docetaxel regimen (P=.0063). The TRYPHAENA was a phase II randomized multicenter trial designed to evaluate the safety and tolerability of trastuzumab and pertuzumab in combination with anthracycline- or carboplatin-based neoadjuvant chemotherapy. A total of 225 patients with HER2+, locally advanced (T2–3, N2–3, M0; T4a–cNanyM0), inflammatory (T4dNanyM0) or early-stage breast cancer (tumors >2 cm) were enrolled and randomized 1:1:1 to receive 6 cycles of neoadjuvant therapy with FEC plus trastuzumab and pertuzumab followed by docetaxel, trastuzumab,
and pertuzumab; FEC followed docetaxel, trastuzumab, and pertuzumab; or docetaxel, carboplatin, trastuzumab along with pertuzumab. Based on the assessment of pathologic complete response, all 3 regimens seem active. The reported pathologic complete response ranged from 57.3% to 66.2%, with the highest seen in patients who received pertuzumab, trastuzumab, docetaxel, and carboplatin chemotherapy. The adverse events reported in the trial were consistent with those seen with each of the 3 agents, and low rates of symptomatic left ventricular systolic dysfunction were reported.

The panel has included pertuzumab-based regimens as neoadjuvant therapy options for patients with early-stage (≥T2 or ≥N1) HER2+ tumors.

Preoperative Systemic Endocrine Therapy: Several randomized trials have assessed the value of neoadjuvant endocrine therapy in postmenopausal women with ER+ breast cancer. These studies have generally compared the rates of objective response and breast-conserving surgery among treatment with tamoxifen, anastrozole, anastrozole plus tamoxifen, and letrozole. These studies consistently show that the use of either anastrozole or letrozole alone provides superior rates of breast-conserving surgery and usually objective response when compared with tamoxifen. Based on these trials, the panel recommends that if preoperative endocrine therapy is to be used, an aromatase inhibitor is preferred in the treatment of postmenopausal women with hormone receptor-positive disease.

Locoregional Treatment After Preoperative Systemic Therapy

For large stage II tumors and IIIA (T3N1M0), local therapy after a complete or partial response to preoperative systemic therapy is usually lumpectomy, if possible, along with surgical axillary staging. If lumpectomy is not possible or progressive disease is confirmed, mastectomy is performed along with surgical axillary staging with or without breast reconstruction. Surgical axillary staging may include SLN biopsy or level I/II dissection. If SLN biopsy was performed before administering preoperative systemic therapy and the findings were negative, then further ALN staging is not necessary. If an SLN procedure was performed before administering preoperative systemic therapy and the findings were positive, then a level I/II ALN dissection should be performed.

Local therapy for clinical stages IIIA (except for T3N1M0), IIIB, or IIIC after a clinical response to preoperative systemic therapy usually consists of total mastectomy with level I/II ALN dissection, with or without delayed breast reconstruction or lumpectomy and level I/II axillary dissection.

If an inoperable tumor fails to respond, or the response is minimal, after several cycles of preoperative systemic therapy, or the disease progresses at any point, an alternative chemotherapy agent and/or preoperative radiation therapy could be considered followed by local therapy, usually a mastectomy plus axillary dissection, with or without breast reconstruction. Post-surgical adjuvant treatment for these patients consists of completion of planned chemotherapy if not completed preoperatively, followed by endocrine therapy (category 1) in women with ER+ and/or PR+ tumors. Up to 1 year of trastuzumab therapy should be completed if the tumor is HER2+ (category 1).

Radiation therapy is recommended based on prechemotherapy characteristics to the chest wall and supraclavicular lymph nodes (see “Principles of Radiation Therapy” [available online, in these guidelines, at NCCN.org] and “Radiation After Mastectomy” on page 562). The panel recommends strong consideration of including the internal mammary lymph nodes in the radiation therapy field (category 2B). Endocrine therapy and trastuzumab can be administered concurrently with radiation therapy if indicated.

Surgical Axillary Staging

Pathologic confirmation of malignancy using ultrasound-guided FNA or core biopsy must be considered in patients with clinically positive nodes to determine whether axillary lymph node dissection is needed.

Performance of SLN mapping and resection in the surgical staging of the clinically negative axilla is recommended by the panel for assessment of the pathologic status of the ALNs in patients with clinical stage I or II breast cancer. This recommendation is supported by results of randomized clinical trials showing decreased arm and shoulder morbidity (eg, pain, lymphedema, sensory loss) in patients with breast cancer undergoing SLN biopsy compared with patients undergoing standard ALN dissection. No significant differences in the effectiveness of the SLN procedure or level I and II dissection in deter-
mining the presence or absence of metastases in axillary nodes were seen in these studies. However, not all women are candidates for SLN resection. An experienced SLN team is mandatory for the use of SLN mapping and excision.83,84 Women who have clinical stage I or II disease and do not have immediate access to an experienced SLN team should be referred to an experienced SLN team for the definitive surgical treatment of the breast and surgical ALN staging. In addition, potential candidates for SLN mapping and excision should have clinically negative ALNs at the time of diagnosis, or a negative core or FNA biopsy of any clinically suspicious ALNs.

In many institutions, SLNs are assessed for the presence of metastases using both hematoxylin-eosin (H&E) staining and cytokeratin IHC. The clinical significance of a lymph node that is negative on H&E staining but positive on cytokeratin IHC is not clear. Because the historical and clinical trial data on which treatment decisions are based have relied on H&E staining, the panel does not recommend routine cytokeratin IHC to define node involvement and believes that current treatment decisions should be made based solely on H&E staining. This recommendation is further supported by a randomized clinical trial (ACOSOG Z0010) of patients with H&E-negative nodes, in which further examination by cytokeratin IHC was not associated with improved overall survival over a median of 6.3 years.85 In the uncommon situation in which H&E staining is equivocal, reliance on the results of cytokeratin IHC is appropriate.

Multiple attempts have been made to identify cohorts of women with involved SLNs who have a low enough risk for non-SLN involvement that complete axillary dissection might be avoided if the SLN is positive. None of the early studies identified a low risk group of patients with positive SLN biopsies but consistently negative nonsentinel nodes.86–92 Nonetheless, a randomized trial (ACOSOG Z0011) compared SLN resection alone with ALN dissection in women aged 18 years or older with T1/T2 tumors, fewer than 3 positive SLNs, and undergoing breast-conserving surgery and whole-breast irradiation, and found no difference in local recurrence, disease-free survival, or overall survival between the treatment groups. Only ER+ status, age younger than 50 years, and lack of adjuvant systemic therapy were associated with decreased overall survival.93 At a median follow-up of 6.3 years, locoregional recurrences were noted in 4.1% of the ALN dissection patients (n=420) and 2.8% of the SLN dissection patients (n=436; P=.11). Median overall survival was approximately 92% in each group.94 Therefore, based on these results after SLN mapping and excision, if a patient has a T1 or T2 tumor with 1 to 2 positive SLNs, did not receive neoadjuvant therapy, and is treated with lumpectomy and whole breast radiation, the panel recommends considering either level I and II axillary dissection or no further axillary surgery.

The panel recommends level I or II axillary dissection when patients have clinically positive nodes at the time of diagnosis, which is confirmed by FNA or core biopsy, and when sentinel nodes are not identified. Traditional level I and II evaluation of ALN requires that at least 10 lymph nodes should be provided for pathologic evaluation to accurately stage the axilla.95,96 ALN should be extended to include level III nodes only if gross disease is apparent in the level II nodes. In the absence of gross disease in level II nodes, lymph node dissection should include tissue inferior to the axillary vein from the latissimus dorsi muscle laterally to the medial border of the pectoralis minor muscle (level I/II). Furthermore, according to the panel, without definitive data demonstrating superior survival with ALN dissection or SLN resection, these procedures may be considered optional in patients who have particularly favorable tumors, those for whom the selection of adjuvant systemic therapy will not be affected by the results of the procedure, those who are elderly, and those with serious comorbid conditions. Women who do not undergo ALN dissection or ALN irradiation are at increased risk for ipsilateral lymph node recurrence.97 Women who undergo mastectomy are appropriate candidates for breast reconstruction (see next section).

Radiation Therapy After Mastectomy

Node-Positive Disease: Three randomized clinical trials have shown that a disease-free and overall survival advantage is conferred by irradiation of the chest wall and regional lymph nodes in women with positive ALNs after mastectomy and ALN dissection.98–102 In these trials, the ipsilateral chest wall and ipsilateral locoregional lymph nodes were irradiated. Based on these studies, the current guidelines recommend postmastectomy irradiation in women with 4 or more positive ALNs, and strong consideration of postmastectomy irradiation in women with 1 to 3
positive ALNs. Two retrospective analyses have provided evidence for the benefit of radiation therapy in only selected patients receiving preoperative systemic therapy before mastectomy.103,104

However, the panel recommends that decisions related to administration of radiation therapy for patients receiving neoadjuvant chemotherapy should be made based on prechemotherapy tumor characteristics, irrespective of tumor response to preoperative systemic therapy (ie, radiation therapy is recommended in patients with clinical stage III disease and a pathologic complete response to neoadjuvant chemotherapy).

Women with 4 or more positive ALNs are at substantially increased risk for locoregional recurrence of disease. The use of prophylactic chest wall irradiation in this setting substantially reduces the risk of local recurrence.105 The use of postmastectomy, postchemotherapy chest wall irradiation, and regional lymph node irradiation is recommended (category 1).

The recommendation for strong consideration of chest wall and supraclavicular irradiation in women with 1 to 3 involved ALNs generated substantial controversy among panel members. The use of regional nodal irradiation is supported by a subgroup analysis of studies from the Danish Breast Cancer Cooperative Group.106 In this analysis, a substantial survival benefit was associated with postmastectomy radiation therapy for women with 1 to 3 positive ALNs. Some panel members believe chest wall and supraclavicular irradiation should be used routinely after mastectomy and chemotherapy in this subgroup of patients. However, other panel members believe radiation should be considered in this setting but should not be mandatory, because studies do not show an advantage. This is an unusual situation in which high-level evidence exists but is contradictory.107,108,109 Women with 1 to 3 involved ALNs and tumors larger than 5 cm or tumors with pathologic margins postmastectomy should receive radiation therapy to the chest wall and supraclavicular area.

The panel also recommends strong consideration of ipsilateral internal mammary field radiation therapy in women with positive ALNs (category 2B).

Results from the randomized NCIC-CTG MA.20 trial show that additional regional node irradiation reduces the risk of locoregional and distant recurrence and improves disease-free survival.107 The study enrolled 1832 women; most (85%) had 1 to 3 positive lymph nodes, and a smaller proportion (10%) had high-risk, node-negative breast cancer. All women had been treated with breast-conserving surgery and adjuvant chemotherapy or endocrine therapy. The participants were randomized to receive either whole-breast radiation therapy alone or whole-breast radiation plus regional node radiation therapy. The interim data found that after a median follow-up of 62 months, statistically significant benefits were seen in the group receiving the added regional node radiation therapy, including improved disease-free survival (HR, 0.68; P=.003; 5-year risk, 89.7% and 84.0%) and overall survival (HR, 0.76; P=.07; 5-year risk, 92.3% and 90.7%).107 The consensus of the panel is that radiation therapy should be given to clinically or pathologically positive ipsilateral internal mammary lymph nodes, with a strong consideration of treatment of the internal mammary lymph nodes.

Postmastectomy irradiation should be performed using CT-based treatment planning to assure reduced radiation dose to the heart and lungs. The recommended radiation dose for whole-breast radiation is 45 to 50 Gy in fractions of 1.8 to 2.0 Gy, or 42.5 Gy in fractions of 2.55 Gy to the ipsilateral chest wall, mastectomy scar, and drain sites. An additional boost dose of 10 to 16 Gy radiation in 2-Gy single doses is recommended patients who are at high risk for disease recurrence (eg, age <50 years with high-grade tumors).108-110

Node-Negative Disease: Features in node-negative tumors that predict a high rate of local recurrence include primary tumors greater than 5 cm and close (<1 mm) or positive pathologic margins. Chest wall irradiation is recommended for these patients.111 Consideration should be given to radiation to the ipsilateral supraclavicular area and to the ipsilateral internal mammary lymph nodes (category 2B), especially in patients with inadequate axillary evaluation or extensive lymphovascular invasion. Postmastectomy radiation therapy is not recommended for patients with tumors 5 cm or smaller, margins greater than or equal to 1 mm, and no positive ALNs.

The panel recommends that decisions related to administration of radiation therapy for patients receiving preoperative systemic therapy should be made based on preoperative systemic therapy tumor characteristics irrespective of response to neoadju-
vant chemotherapy. Endocrine therapy and trastuzumab can be administered concurrently with radiation therapy if indicated.

Breast Reconstruction

Breast reconstruction may be an option for any woman receiving surgical treatment for breast cancer. Therefore, all women undergoing breast cancer treatment should be educated about breast reconstructive options appropriate for their individual clinical situation. However, breast reconstruction should not interfere with the appropriate surgical management of the cancer.

Factors to be considered when deciding the type of reconstruction include patient preference, body habitus, smoking history, comorbidities, plans for irradiation, and expertise and experience of the reconstruction team. Reconstruction is an optional procedure that does not impact the probability of recurrence or death, but it is associated with an improved quality of life for many patients. It is sometimes necessary to perform surgery on the contralateral breast (eg, breast reduction, implantation) to achieve optimal symmetry between the ipsilateral reconstructed breast and the contralateral breast.

Breast Reconstruction After Mastectomy: Mastectomy results in loss of the breast for breastfeeding, loss of sensation in the skin of the breast and nipple areolar complex (NAC), and loss of the breast for cosmetic, body image, and psychosocial purposes. The loss of the breast for cosmetic, body image, and psychosocial issues may be partially overcome through the performance of breast reconstruction with or without reconstruction of the NAC. Reconstruction can be performed either immediately after mastectomy and under the same anesthetic or in a delayed fashion after mastectomy. In many cases, breast reconstruction involves a staged approach requiring more than one procedure, such as surgery on the contralateral breast to improve symmetry, revision surgery involving the breast and/or donor site, and/or nipple and areola reconstruction and tattoo pigmentation.

Many factors must be considered in the decision-making about breast reconstruction after mastectomy. Several different types of breast reconstruction include the use of implants, autogenous tissues, or both. Reconstruction with implants can be performed either through immediate placement of a permanent subpectoral implant or initial placement of a subpectoral expander implant followed by gradual expansion of the implant envelope with stretching of the pectoralis major muscle and overlying skin, followed by replacement of the expander with a permanent implant. A wide variety of implants are available that contain saline, silicone gel, or a combination of saline and silicone gel inside a solid silicone envelope. Autogenous tissue methods of reconstruction use various combinations of fat, muscle, skin, and vasculature from donor sites (eg, abdomen, buttock, back) that may be brought to the chest wall with their original blood supply (pedicle flap) or as free flaps with microvascular anastomoses to blood supply from the chest wall/thorax. Several procedures using autologous tissue are available, including transverse rectus abdominis myocutaneous flap, latissimus dorsi flap, and gluteus maximus myocutaneous flap reconstruction. Composite reconstruction techniques use implants in combination with autogenous tissue reconstruction to provide volume and symmetry. Patients with underlying diabetes or who smoke tobacco have increased rates of complications after autogenous tissue breast cancer reconstruction, presumably because of underlying microvascular disease.

Skin-Sparing Mastectomy: Skin-sparing mastectomy procedures are appropriate for some patients and involve removal of the breast parenchyma, including the NAC, while preserving most of the original skin envelope and are followed by immediate reconstruction with autogenous tissue, a prosthetic implant, or a composite of autogenous tissue and an implant. Skin-sparing mastectomy involving preservation of the skin of the NAC has become the subject of increased attention. Possible advantages of this procedure include improvements in breast cosmesis, body image, and nipple sensation after mastectomy, although the impact of this procedure on these quality-of-life issues has not been well studied. Limited data from surgical series, with short follow-up, suggest that performance of NAC-sparing mastectomy in selected patients is associated with low rates of both occult involvement of the NAC with breast cancer and local recurrence of disease. NAC-sparing procedures may be an option in patients who are carefully selected by experienced multidisciplinary teams. According to the panel, assessment of nipple margins is mandatory when considering NAC-sparing procedures. Retro-
Some studies, however, have not found a negative impact on breast cosmesis when autologous tissue is used in immediate breast reconstruction. Furthermore, postmastectomy irradiation may have a significant impact on the risk of capsular contracture after irradiation. The preferred approach to breast reconstruction for these patients was a subject of controversy among the panel. Although some experienced breast cancer teams have used protocols in which immediate tissue reconstructions are followed by radiation therapy, it is generally preferred that the radiation therapy precede the placement of the autologous tissue, because of reported loss in reconstruction cosmesis (category 2B).

When implant reconstruction is planned in a patient requiring radiation therapy, the panel prefers a staged approach with immediate tissue expander placement, followed by implant placement. Surgery to exchange the tissue expanders with permanent implants can be performed before radiation or after completion of radiation therapy. Tissue expansion of irradiated skin can result in a significantly increased risk of capsular contracture, malposition, poor cosmesis, and implant exposure. The use of tissue expanders/implants is relatively contraindicated in patients who have been previously irradiated. Immediate placement of an implant in patients requiring postoperative radiation has an increased rate of capsular contracture, malposition, poor cosmesis, and implant exposure.

Several reconstructive approaches are summarized for these patients in “Principles of Breast Reconstruction Following Surgery,” available online, in these guidelines, at NCCN.org.

Breast Reconstruction After Lumpectomy: Issues related to breast reconstruction also pertain to women who undergo or have undergone a lumpectomy, particularly when the surgical defect is large and/or expected to be cosmetically unsatisfactory. An evaluation of the likely cosmetic outcome of lumpectomy should be performed before surgery. Oncoplastic techniques for breast conservation can extend breast-conserving surgical options in situations in which the resection, itself, would likely yield an unacceptable cosmetic outcome. The evolving field of oncoplastic surgery includes the use of “volume displacement” techniques performed in conjunction with a large partial mastectomy. Oncoplastic volume displacement procedures combine the removal...
of generous regions of breast tissue (typically designed to conform to the segmentally distributed cancer in the breast) with “mastopexy” techniques in which remaining breast tissues are shifted together within the breast envelope to fill the resulting surgical defect and thereby avoid the creation of significant breast deformity. Volume displacement techniques are generally performed during the same operative setting as the breast-conserving lumpectomy by the same surgeon who is performing the cancer resection.133,134

Advantages of oncoplastic volume displacement techniques are that they permit the removal of larger regions of breast tissue, thereby achieving wider surgical margins around the cancer, and at the same time better preserve the natural shape and appearance of the breast than standard breast resections.135

Limitations of oncoplastic volume displacement techniques include lack of standardization among centers, performance at only a limited number of sites in the United States, and the possible need for subsequent mastectomy if pathologic margins are positive when further breast-conserving attempts are deemed impractical or unrealistic. Nevertheless, panel consensus is that these issues should be considered before surgery for women who are likely to have a surgical defect that is cosmetically unsatisfactory, and that women who undergo lumpectomy and are dissatisfied with the cosmetic outcome after treatment should be offered a consultation with a plastic surgeon to address the repair of resulting breast defects. Patients should be informed of the possibility of positive margins and the potential need for secondary surgery, which could include reexcision segmental resection or could require mastectomy with or without loss of the nipple. Oncoplastic procedures can be combined with surgery on the contralateral unaffected breast to minimize long-term asymmetry.

Finally, it is important to note that the primary focus should be on treatment of the tumor, and such treatment should not be compromised when decisions regarding breast reconstruction are made.

Systemic Adjuvant Therapy

After surgical treatment, adjuvant systemic therapy should be considered. The decision is often based on individual risk of relapse and predicted sensitivity to a particular treatment (eg, ER/PR and HER2 status).

The published results of the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) overview analyses of adjuvant polychemotherapy and tamoxifen show convincing reductions in the odds of recurrence and death in all age groups for chemotherapy and for endocrine therapy.2,116 Thus, the current guidelines recommend adjuvant therapy without regard to patient age (category 1). The decision to use systemic adjuvant therapy requires considering and balancing the risk for disease recurrence with local therapy alone, the magnitude of benefit from applying adjuvant therapy, the toxicity of the therapy, and comorbidity.137,138 The decision-making process requires a collaboration involving the health care team and the patient. Panel consensus is that data are insufficient to make definitive chemotherapy recommendations for patients older than 70 years. Although AC or CMF (cyclophosphamide/methotrexate/fluorouracil) was superior to capcetabine in a randomized trial of women aged 65 years or older with early-stage breast cancer, enrollment in that study was discontinued early.139 A possibility also exists that AC/CMF is not superior to any chemotherapy in this cohort. Therefore, treatment should be individualized for women in this age group, with consideration given to comorbid conditions.

Estimating Risk of Relapse or Death and Benefits of Systemic Treatment

Several prognostic factors predict for future recurrence or death from breast cancer. The strongest prognostic factors are patient age, comorbidity, tumor size, tumor grade, number of involved ALNs, and possibly HER2 tumor status. Algorithms have been published estimating rates of recurrence,137 and a validated computer-based model to estimate 10-year disease-free and overall survivals is available (Adjuvant! Online; www.adjuvantonline.com) that incorporates all of the above prognostic factors except for HER2 tumor status.138,140 These tools help clinicians objectively estimate outcome with local treatment only, and also help estimate the absolute benefits expected from systemic adjuvant endocrine therapy and chemotherapy. These estimates may be used by the clinician and patient in their shared decision-making regarding the toxicities, costs, and benefits of systemic adjuvant therapy.141

A determination of the HER2 status of the tumor is recommended for prognostic purposes for patients with node-negative breast cancer.142 More
importantly, HER2 tumor status also provides predictive information used in selecting optimal adjuvant/neoadjuvant therapy and in the selection of therapy for recurrent or metastatic disease (category 1). For example, retrospective analyses have shown that anthracycline-based adjuvant therapy is superior to non-anthracycline-based adjuvant chemotherapy in patients with HER2+ tumors, and that the dose of doxorubicin may be important in the treatment of tumors that are HER2+. Prospective evidence of the predictive utility of HER2 status in early-stage and metastatic breast cancer is available for trastuzumab-containing therapies.

Use of DNA microarray technologies to characterize breast cancer has allowed for the development of classification systems based on gene expression profiles. Five major subtypes of breast cancer have been identified by DNA microarray gene expression profiling: ER+/HER2- (luminal A and B subtypes); ER-/HER2- (basal subtype); HER2+; and tumors that have characteristics similar to normal breast tissue. In retrospective analyses, these gene expression subtypes are associated with differing relapse-free survival and overall survival.

Another gene-based approach is the 21-gene assay using reverse transcription polymerase chain reaction (RT-PCR) on RNA isolated from paraffin-embedded breast cancer tissue (Oncotype Dx). On retrospective analysis of 2 trials (NSABP B-14 and B-20) performed in women with hormone receptor–positive, ALN-negative invasive breast cancer, this assay system was able to quantify risk of recurrence as a continuous variable (eg, Oncotype Dx recurrence score) and to predict responsiveness to both tamoxifen and CMF or methotrexate/5-fluorouracil/leucovorin chemotherapy. A comparison of simultaneous analyses of breast cancer tumors using 5 different gene expression models indicated that 4 of these methods (including MammaPrint and Oncotype Dx) provided similar predictions of clinical outcome.

A similar approach has been used to define more limited sets of genes for prognostic and predictive purposes. For example, the MammaPrint assay uses microarray technology to analyze a 70-gene expression profile from breast tumor tissue as a means of selecting patients with early-stage breast cancer who are more likely to develop distant metastases. MammaPrint is approved by the FDA for helping to assign women with ER+ or ER- breast cancer into a high versus low risk for recurrence, but not for predicting benefit from adjuvant systemic therapy. Studies using MammaPrint as a prognostic and predictive tool are small and/or retrospective in nature.

Multiple other multigene or multigene expression assay systems have been developed. These systems are generally based on small, retrospective studies, and the panel believes that none are currently sufficiently validated to warrant inclusion in the guidelines.

Although many of the DNA microarray technologies are able to stratify patients into prognostic and/or predictive subsets on retrospective analysis, the gene subsets differ from study to study, and prospective clinical trials testing the utility of these techniques have yet to be reported. Currently, prospective randomized clinical trials are addressing the use of Oncotype DX and MammaPrint as predictive and/or prognostic tools in populations of women with early-stage, lymph node–negative breast cancer. Pending the results of the prospective trials, the panel considers the 21-gene RT-PCR assay to be an option when evaluating patients with primary tumors characterized as 0.6 to 1.0 cm with unfavorable features or greater than 1.0 cm, and node-negative, hormone receptor–positive, and HER2- (category 2A). In this circumstance, the recurrence score may be determined to help estimate the likelihood of recurrence and benefit from chemotherapy. The panel emphasizes that the recurrence score should be used for decision-making only in the context of other elements of risk stratification for an individual patient. Unplanned, retrospective subset analysis from a single randomized clinical trial in postmenopausal, ALN-positive, ER+ breast cancer found that the 21-gene RT-PCR assay may provide predictive information for chemotherapy benefit in addition to tamoxifen. Patients with a high score in the study benefited from chemotherapy, whereas patients with a low score did not seem to benefit from the addition of chemotherapy, regardless of the number of positive lymph nodes. Patient selection for assay use remains controversial.

The additional benefit from adjuvant chemotherapy in addition to endocrine therapy is currently unclear for intermediate-risk patients (as assessed by the gene-based assays). The TAILORx and RxPONDER trials are being conducted to help answer
this question. In the TAILORx trial, patients with node-negative, hormone receptor–positive breast cancer classified as being at low risk based on the gene signature or Adjuvant! Online estimates receive endocrine therapy alone, whereas patients deemed to be at high risk based on gene signature profiles or other characteristics receive chemotherapy in addition to endocrine therapy. Those classified as intermediate risk are randomized to receive chemotherapy or no chemotherapy.176 The RxPONDER trial will confirm the SWOG-8814 trial data for women with ER+, node-positive disease treated with endocrine therapy with or without chemotherapy based on risk scores.171 The findings from these trials will help determine the benefit of treating patients at intermediate risk with adjuvant chemotherapy. The MINDACT trial is underway in Europe to compare the 70-gene signature with the commonly used clinicopathologic criteria in selecting patients with breast cancer with 0 to 3 positive nodes for adjuvant chemotherapy.174 The findings from this trial will help determine the prognostic value of MammaPrint and the benefit of treating intermediate-risk patients with adjuvant chemotherapy.

Stratification for Systemic Adjuvant Therapy

The guidelines recognize subsets of patients who have early breast cancer with the usual histologies based on responsiveness to endocrine therapy and trastuzumab (ie, hormone receptor status, HER2 status). Patients are then further stratified according to risk of disease recurrence based on anatomic and pathologic characteristics (ie, tumor grade, tumor size, ALN status, angiolymphatic invasion).

Endocrine therapy may be considered to reduce the risk for a second contralateral breast cancer, especially in those with ER+ disease. The NSABP database demonstrated a correlation between the ER status of a new contralateral breast tumor and the original primary tumor, which reinforced the notion that endocrine therapy is not an effective strategy to reduce the risk for contralateral breast cancer in patients diagnosed with ER+ tumors.177 Unfavorable prognostic features include intramammary angiolymphatic invasion, high nuclear grade, high histologic grade, HER2+ status, or hormone receptor–negative status (category 2B).

ALN-Negative Tumors

For women with lymph node-negative, hormone receptor-negative tumors greater than 1 cm in diameter, systemic adjuvant chemotherapy is recommended (category 1). For those with lymph node-negative, hormone receptor–positive breast cancer tumors greater than 1 cm, endocrine therapy with chemotherapy is recommended (category 1). Incremental benefit of combination chemotherapy in patients with lymph node–negative, hormone receptor–positive breast cancer may be relatively small.178 Therefore, the panel recommends that tumor hormone receptor status be included as one of the factors considered when making chemotherapy-related treatment decisions for patients with node-negative, hormone receptor–positive breast cancer. Patients for whom this evaluation may be especially important are those with tumors characterized as 0.6 to 1.0 cm and hormone receptor–positive that are grade 2 or 3 or have unfavorable features, or greater than 1 cm and hormone receptor–positive and HER2+. However, chemotherapy should not be withheld from these patients solely based on ER+ tumor status.2,178,179

The use of genomic/gene expression array data that also incorporate additional prognostic/predictive biomarkers (eg, Oncotype Dx recurrence score) may provide additional prognostic and predictive information beyond anatomic staging and determination of ER/PR and HER2 status. Assessment of the role of the genomic/gene expression array technology is difficult because of the retrospective nature of the studies, the evolution of chemotherapy and hormone therapy regimens, and the overall more favorable prognosis of the patients with lymph node–negative disease compared with those enrolled in the historically controlled clinical trials. Some NCCN Member Institutions consider performing RT-PCR analysis (eg, Oncotype DX assay) to further refine risk stratification for adjuvant chemotherapy in patients with node-negative, ER+, HER2+ breast cancers greater than 0.5 cm, whereas others do not.

ALN-Positive Tumors

Patients with lymph node–positive disease are candidates for chemotherapy and, if the tumor is hormone receptor–positive, for the addition of endocrine therapy (category 1). In postmenopausal women with hormone receptor–positive disease, an aromatase inhibitor should be used either as initial adjuvant therapy, sequentially with tamoxifen, or as extended therapy after tamoxifen, unless a contraindication exists or the woman declines this therapy. In premenopausal women, adjuvant tamoxifen is
recommended. If both chemotherapy and tamoxifen are administered, data from the Intergroup trial 0100 suggest that delaying initiation of tamoxifen until after completion of chemotherapy improves disease-free survival compared with concomitant administration. Consequently, chemotherapy followed by endocrine therapy should be the preferred therapy sequence.

Adjuvant Endocrine Therapy

The guidelines call for the determination of ER and PR content in all primary invasive breast cancers. Patients with invasive breast cancers that are ER+ or PR+ should be considered for adjuvant endocrine therapy regardless of patient age, lymph node status, or whether adjuvant chemotherapy is to be administered. Selected studies suggest that HER2+ breast cancers may be less sensitive to some endocrine therapies, although other studies have failed to confirm this finding. A retrospective analysis of tumor blocks collected in the ATAC trial indicated that HER2 amplification is a marker of relative endocrine resistance independent of type of endocrine therapy. However, given the favorable toxicity profile of the available endocrine therapies, the panel recommends the use of adjuvant endocrine therapy in most women with hormone receptor–positive breast cancer regardless of menopausal status, age, or HER2 status of the tumor. Possible exceptions to this recommendation are patients with lymph node–negative cancers 0.5 cm or less or 0.6 to 1.0 cm in diameter with favorable prognostic features for whom the prognosis is so favorable that the benefits of adjuvant endocrine therapy are very small.

The most firmly established adjuvant endocrine therapy is tamoxifen for both premenopausal and postmenopausal women. In women with ER+ breast cancer, adjuvant tamoxifen decreases the annual odds of recurrence by 39% and the annual odds of death by 31% irrespective of the use of chemotherapy, patient age, menopausal status, or ALN status. In patients receiving both tamoxifen and chemotherapy, chemotherapy should be given first, followed by sequential tamoxifen. Prospective, randomized trials have shown that 5 years of tamoxifen is more effective than 1 to 2 years. The outcome analyses of 6846 women with ER+ disease showed that extending adjuvant treatment up to 10 years reduced the risk of relapse and breast cancer–related mortality. The risk of recurrence during years 5 to 14 was 21.4% for women receiving tamoxifen versus 25.1% for controls (absolute recurrence reduction, 3.7%). Patients receiving tamoxifen beyond 10 years of treatment had a greater reduction in risk of progression, possibly because of a carryover effect. The reduction in risk of recurrence was 0.90 (95% CI, 0.79–1.02) during 5 to 9 years of tamoxifen treatment and 0.75 (0.62–0.90) after 10 years. Furthermore, reduced mortality was apparent after completion of 10 years of treatment with tamoxifen. With regard to toxicity, the most important adverse effects noted in all women in ATLAS were an increased risk of endometrial cancer after treatment with 10 years of tamoxifen and pulmonary embolism. The recurrence rate ratios for incidence of adverse events (hospitalization or death) were: pulmonary embolus, 1.87 (95% CI, 1.13–3.07; P = .01 [including 0.2% mortality in both treatment groups]); stroke, 1.06 (0.83–1.36); ischemic heart disease, 0.76 (0.60–0.95; P = .02); and endometrial cancer, 1.74 (1.30–2.34; P = .0002). The cumulative risk for endometrial cancers during 5 to 14 years was 3.1%, with a mortality of 0.4% associated with endometrial cancer, higher than what was noted in the control group of patients receiving only 5 years of therapy (cumulative risk, 1.6%; mortality, 0.2%).

Results are expected in the near future of other ongoing trials of extended tamoxifen, such as the aTTom trial of 5 versus 10 years tamoxifen among approximately 7000 women. Preliminary results of this trial have shown that continuation of tamoxifen beyond 5 years resulted in a nonsignificant reduction in recurrences.

The role of adjuvant ovarian ablation or suppression in premenopausal women with hormone receptor–positive breast cancer is incompletely defined. Ovarian ablation may be accomplished through surgical oophorectomy or ovarian irradiation. Ovarian suppression uses luteinizing hormone–releasing hormone (LH-RH) agonists that cause suppression of luteinizing hormone (LH) and release of follicle stimulating hormone (FSH) from the pituitary and reduction in ovarian estrogen production. Available LH-RH agonists in the United States include goserelin and leuprolide. When used...
for ovarian suppression, both agents should be given as monthly injections.

The EBCTCG performed a meta-analysis of randomized studies of ovarian ablation or suppression alone versus no adjuvant treatment in women older than 50 years, with many of the subjects in the trials unselected based on hormone receptor status. Reductions in the annual odds of recurrence and death favored ovarian ablation/suppression over no adjuvant treatment (age <40 years: 25% reduction in recurrence rate and 29% reduction in death rate; age 40–49 years: 29% reduction in recurrence rate and 29% reduction in death rate). Analysis of ovarian suppression versus no adjuvant therapy did not show a significant reduction in recurrence (HR reduction, 28.4; 95% CI, 50.5–3.5; P= .08) or death (HR reduction, 22; 95% CI, 4.1–6.4; P=.11).

Studies in premenopausal women of ovarian ablation or suppression alone versus CMF chemotherapy alone generally demonstrate similar antitumor efficacy in patients with hormone receptor–positive tumors, and superior outcomes with CMF in patients with hormone receptor–negative tumors. Findings also suggest that the benefits of ovarian suppression/ablation may be greater in the younger premenopausal group. Studies of ovarian ablation/suppression plus tamoxifen versus chemotherapy alone in premenopausal women generally demonstrate no difference in rates of recurrence or survival between the treatments.

A large Intergroup study in premenopausal women with hormone receptor–positive, node-negative breast cancer studied adjuvant CAF chemotherapy versus CAF plus ovarian suppression with goserelin (CAF-Z) versus CAF-Z plus tamoxifen (CAF-ZT). The results showed no improvement in time to recurrence or overall survival between CAF with CAF-Z. There was improvement in time to recurrence (HR 0.73, 95% CI 0.59–0.90; P < .01) but not overall survival with CAF-Z compared with CAF-ZT (HR, 0.91, 95% CI, 0.71–1.15; P=.21). This study did not include a CAF plus tamoxifen arm, so the contribution of the goserelin to the improved time to recurrence in the CAF-ZT arm cannot be assessed reliably because of treatment-induced amenorrhea. The results from 2 prospective randomized clinical trials have provided evidence of an overall survival benefit for patients with early-stage breast cancer receiving initial endocrine therapy with tamoxifen followed sequentially by anastrozole (HR, 0.53; 95% CI, 0.28–0.99; P=.045) or exemestane (HR, 0.83; 95% CI, 0.69–1.00; P=.05 [excluding patients with ER– disease]) when compared with tamoxifen as the only endocrine therapy.

In addition, the NCIC-CTG MA-17 trial showed a survival advantage for extended therapy with letrozole compared with placebo in women with ALN-positive (but not lymph node–negative), ER+ breast cancer. However, no survival differences have been reported for patients receiving initial adjuvant therapy with an aromatase inhibitor versus first-line tamoxifen.

Tamoxifen and aromatase inhibitors have different side effect profiles. Both contribute to hot flashes and night sweats and may cause vaginal dryness. Aromatase inhibitors are more commonly associated with musculoskeletal symptoms, osteoporosis, and increased rate of bone fracture, whereas tamoxifen is associated with an increased risk for uterine cancer and deep venous thrombosis.

Two studies have examined initial adjuvant endocrine treatment with either tamoxifen or an aromatase inhibitor. The ATAC trial showed that anastrozole is superior to tamoxifen or the combination of
tamoxifen and anastrozole in the adjuvant endocrine therapy of postmenopausal women with hormone receptor–positive breast cancer. With a median of 100 months follow-up, results in 5216 postmenopausal women with hormone receptor–positive, early-stage breast cancer enrolled in the ATAC trial demonstrated fewer recurrences (HR for disease-free survival, 0.85; 95% CI, 0.76–0.94; P=.003) with anastrozole compared with tamoxifen. No difference in survival has been observed (HR, 0.90; 95% CI, 0.75–1.07; P=.2). Patients in the combined tamoxifen and anastrozole group gained no benefit over those in the tamoxifen group, suggesting a possible deleterious effect from the weak estrogenic effect of tamoxifen in patients with near-complete elimination of endogenous estrogen levels. ATAC trial subprotocols show that anastrozole has a lesser effect on endometrial tissue than tamoxifen; anastrozole and tamoxifen have similar effects on quality of life, with most patients reporting no significant impairment of overall quality of life; anastrozole is associated with a greater loss of bone mineral density; anastrozole shows a small pharmacokinetic interference of unclear significance in the presence of tamoxifen; and no evidence supports an interaction between prior chemotherapy and anastrozole.

BIG 1-98 is a randomized trial testing the use of tamoxifen alone for 5 years, letrozole alone for 5 years, tamoxifen for 2 years followed sequentially by letrozole for 3 years, or letrozole for 2 years followed sequentially by tamoxifen for 3 years. An early analysis compared tamoxifen alone versus letrozole alone, including in patients in the sequential arms during their first 2 years of treatment only. With 8010 women included in the analysis, disease-free survival was superior in the women treated with letrozole (HR, 0.81; 95% CI, 0.70–0.93; log rank P=.003). No interaction between PR expression and benefit was observed. No difference in overall survival has been observed. A comparison of the cardiovascular side effects in the tamoxifen and letrozole arms of the BIG 1-98 trial showed that the overall incidence of cardiac adverse events was similar (letrozole, 4.8%; tamoxifen, 4.7%). However, the incidence of grade 3 to 5 cardiac adverse events was significantly higher in the letrozole arm, and both the overall incidence and incidence of grade 3 to 5 thromboembolic events was significantly higher in the tamoxifen arm. In addition, a higher incidence of bone fracture was observed for women in the letrozole arm compared with those in the tamoxifen arm (9.5% vs 6.5%).

After a longer follow-up (median, 71 months), no significant improvement in disease-free survival was noted with either tamoxifen followed by letrozole or the reverse sequence compared with letrozole alone (HR for tamoxifen followed by letrozole, 1.05; 99% CI, 0.84–1.32; HR for letrozole followed by tamoxifen, 0.96; 99% CI, 0.76–1.21).

Five trials have studied the use of tamoxifen for 2 to 3 years followed sequentially by a third-generation aromatase inhibitor versus continued tamoxifen. The Italian Tamoxifen Anastrozole (ITA) trial randomized 426 postmenopausal women with breast cancer who had completed 2 to 3 years of tamoxifen to either continue tamoxifen or to switch to anastrozole to complete a total of 5 years of endocrine therapy. The HR for relapse strongly favored sequential treatment with anastrozole (HR, 0.35; 95% CI, 0.18–0.68; P=.001), with a trend toward fewer deaths (P=.10). Updated results from this study show the HR for relapse-free survival as 0.56 (95% CI, 0.35–0.89; P=.01); the P value for overall survival analysis remained at 0.1. The IES trial randomized 4742 postmenopausal women with breast cancer who had completed a total of 2 to 3 years of tamoxifen to either continue tamoxifen or switch to exemestane to complete a total of 5 years of endocrine therapy. The results at a median of 55.7 months of follow-up demonstrated the superiority of sequential exemestane in terms of disease-free survival (HR, 0.76; 95% CI, 0.66–0.88; P=.0001), with a significant difference in overall survival in only patients with ER+ tumors (HR, 0.83; 95% CI 0.69–1.00; log rank P=.05). A prospectively planned, combined analysis of 3224 patients enrolled in the ABCSG trial 8 and the Arimidex Novadex (ARNO 95) trial has also been reported. Patients in this combined analysis had been randomized after 2 years of tamoxifen to complete 5 years of adjuvant tamoxifen or 3 years of anastrozole. With 28 months of median follow-up available, event-free survival was superior with crossover to anastrozole (HR, 0.60; 95% CI, 0.44–0.81; P=.0009). No statistically significant difference in survival has been observed. An analysis of the ARNO 95 trial alone after 58 months of median follow-up showed that switching from tamoxifen to anastrozole was associated with significant increases in both disease-free survival (HR, 0.66; 95% CI,
At a median follow-up of 2.5 years, the re-

232,233 A meta-analysis of

228 234

-Whether initial, sequential, or extended

209

At

222

anastrozole.227

The TEAM trial compared sequential treatment

of exemestane alone versus sequential therapy of
tamoxifen for 2.5 to 3.0 years followed by exemes-
tane to complete 5 years of hormone therapy.228 At
the end of 5 years, 85% of patients in the sequen-
tial group versus 86% in the exemestane group were
disease-free (HR, 0.97; 95% CI, 0.88–1.08; P=.60). This
finding is consistent with the data from the BIG
1-98 trial,222 in which tamoxifen followed by letro-
zole or the reverse sequence of letrozole followed by
tamoxifen was not associated with significant differ-
ences in efficacy versus letrozole monotherapy after a
median follow-up of 71 months.

Results of the MA-17 trial in 5187 women who
had completed 4.5 to 6.0 years of adjuvant tamoxi-
fen showed that extended therapy with letrozole
provides benefit in postmenopausal women with
hormone receptor–positive, early-stage breast can-
cer.210,229 At a median follow-up of 2.5 years, the
results showed fewer recurrences or new contralateral
breast cancers with extended letrozole (HR, 0.58;
95% CI, 0.45–0.76; P<.001). No difference in over-
all survival was observed (HR, 0.82; 95% CI, 0.57–
1.19; P=.3), although a survival advantage was seen
in the subset of patients with ALN-positive disease
(HR 0.61; 95% CI, 0.38–0.98; P=.04). In a separate
cohort analysis of the MA-17 trial, the efficacy of
letrozole versus placebo was evaluated after unblinding
of the study in the 1579 women who had been
randomly assigned to placebo after 4.5 to 6.0 years of
tamoxifen.230,231 The median time since completion
of tamoxifen was 2.8 years. Both disease-free survival
and distant disease-free survival were significantly
improved in the group receiving letrozole, thereby
providing some evidence for the efficacy of letro-
zole in patients who had received 4.5 to 6.0 years of
tamoxifen therapy followed by no endocrine thera-
py for an extended period. A formal quality-of-life
analysis showed reasonable preservation of quality
of life during extended endocrine therapy, although
women may experience ongoing menopausal symp-
toms and loss of bone mineral density.232,233 No data
are available regarding use of aromatase inhibitors
for more than 5 years or long-term toxic effects from
extended treatment. In addition, the ATLAS trial
data do not provide a clear direction regarding treat-
ment of postmenopausal women.192 No available
data suggest that an aromatase inhibitor for 5 years
provides a better long-term benefit than 10 years of
tamoxifen.

In the extension study of ABCSG trial 6, postmenopausal patients with hormone receptor–
positive breast cancer received 5 years of adjuvant
tamoxifen and were randomized to 3 years of anas-
trazole or no further therapy.234 At a median follow-
up of 62.3 months, women who received anastrozole
(n=387) were reported to have a statistically sig-
ificantly reduced risk of recurrence compared with
women who received no further treatment (n=469;
HR, 0.62; 95% CI, 0.40–0.96; P=.031).234

The differences in design and patient popula-
tions among the studies of aromatase inhibitors do
not allow for the direct comparison of the results of
these studies. A meta-analysis of adjuvant trials of
aromatase inhibitors versus tamoxifen alone versus
after 2 or 3 years of tamoxifen documented lower
recurrence rates with the aromatase inhibitor–con-
taining regimen, with no clear impact on overall
survival.235 Whether initial, sequential, or extended
use of adjuvant aromatase inhibitors is the optimal
strategy is unknown.

The optimal duration of aromatase inhibitor
treatment is also not known, nor is the optimal use
vis-à-vis chemotherapy established. Furthermore,
the long-term (>5-year) safety and efficacy of these
agents are still under investigation. The various
studies are consistent in demonstrating that the use
of a third-generation aromatase inhibitor in post-
menopausal women with hormone receptor–positive
breast cancer lowers the risk of recurrence, includ-
ing ipsilateral breast tumor recurrence, contralateral
breast cancer, and distant metastatic disease, when
used as initial adjuvant therapy, sequential therapy,
or extended therapy. The panel finds no compelling
evidence of meaningful efficacy or toxicity differ-
ences between the aromatase inhibitors anastrozole,
letrozole, and exemestane. All 3 have shown similar
antitumor efficacy and toxicity profiles in random-
ized studies in the adjuvant settings. These guide-
lines recommend the following adjuvant endocrine
therapy options for women with early-stage breast
cancer who are postmenopausal at diagnosis: an
One small study

...require larger analytic and clinical validation. In addition, standardization of tissue handling and processing is required to improve the reliability and value of Ki67 testing. No conclusive evidence currently shows that Ki67 alone, especially baseline Ki67 as an individual biomarker, helps in selecting the type of endocrine therapy for an individual patient. Therefore, the panel does not currently recommend assessment of Ki67.

...involves in the conversion of tamoxifen to endoxifen. More than 100 allelic variants of CYP2D6 have been reported in the literature. Individuals with wild-type CYP2D6 alleles are classified as extensive metabolizers of tamoxifen. Those with 1 or 2 variant alleles with either reduced or no activity are designated as intermediate metabolizers and poor metabolizers, respectively. A large retrospective study of 1325 patients found that time to disease recurrence was significantly shortened in poor metabolizers of tamoxifen. However, the BIG 1-98 trial reported on the outcome based on CYP2D6 genotype in a subset of postmenopausal patients with endocrine-responsive early-stage invasive breast cancer. The study found no correlation between CYP2D6 allelic status and disease outcome or between CYP2D6 allelic status and tamoxifen-related adverse effects. A genetic analysis of the ATAC trial found no association between CYP2D6 genotype and clinical outcomes. Given the limited and conflicting evidence at this time, the panel does not recommend CYP2D6 testing as a tool to determine the optimal adjuvant endocrine strategy. This recommendation is consistent with the ASCO guidelines. When prescribing a selective serotonin reuptake inhibitor (SSRI), it is reasonable to avoid potent and intermediate CYP2D6 inhibiting agents, particularly paroxetine and fluoxetine, if an appropriate alternative exists.

Adjuvant Cytotoxic Chemotherapy

Several combination chemotherapy regimens are appropriate to consider when adjuvant cytotoxic chemotherapy is used. All adjuvant chemotherapy regimens listed in these guidelines have been evaluated in phase III clinical trials, and the current version of the adjuvant chemotherapy guideline does not distinguish between options for chemotherapy regimens by ALN status.

...adjuvant chemotherapy guidelines also include specific representative doses and schedules for the recommended adjuvant chemotherapy regimens. The regimens have been categorized as “preferred” or “other.”
The purpose of distinguishing the adjuvant chemotherapy regimens as preferred and other adjuvant chemotherapy regimens is to convey the sense of the panel regarding the relative efficacy and toxicity of the regimens. Factors considered by the panel include the efficacy, toxicity, and treatment schedules of the regimens. The following sections summarize clinical trial results focusing on treatment efficacy.

Preferred Regimens

Regimens listed as preferred include dose-dense AC with dose-dense sequential paclitaxel; dose-dense AC followed by sequential weekly paclitaxel; and docetaxel plus cyclophosphamide (TC).

The results of 2 randomized trials comparing AC chemotherapy with or without sequential paclitaxel chemotherapy in women with axillary node-positive breast cancer suggest improved disease-free survival rates, and 1 showed improved overall survival, with the addition of paclitaxel. On retrospective analysis, the apparent advantage of the paclitaxel-containing regimen seems to be greater in women with ER- breast cancers.

A randomized trial evaluated the use of concurrent versus sequential chemotherapy (doxorubicin followed by paclitaxel followed by cyclophosphamide versus doxorubicin plus cyclophosphamide followed by paclitaxel) given either every 2 weeks with filgrastim support or every 3 weeks. The results show no significant difference between the 2 chemotherapy regimens, but demonstrate a 26% reduction in hazard of recurrence (P = .01) and a 31% reduction in the hazard of death (P = .013) for the dose-dense regimens.

The ECOG E1199 study was a 4-arm trial that randomized 4950 women to receive AC chemotherapy followed by either paclitaxel or docetaxel on an every-3-week schedule or a weekly schedule. At a median 63.8 months of follow-up, no statistically significant differences in disease-free or overall survivals were observed when comparing paclitaxel with docetaxel or weekly versus every-3-week administration. In a secondary series of comparisons, weekly paclitaxel was superior to every-3-week paclitaxel in disease-free survival (HR, 1.27; 95% CI, 1.03–1.57; P = .006) and overall survival (HR, 1.32; 95% CI, 1.02–1.72; P = .01), and every-3-week docetaxel was superior to every-3-week paclitaxel in disease-free survival (HR, 1.23; 95% CI, 1.00–1.52; P = .02) but not overall survival. Based on these results and the findings from the CALGB 9741 trial that showed that dose-dense AC followed by paclitaxel every 2 weeks had a survival benefit compared with AC followed by paclitaxel every 3 weeks, the every-3-week paclitaxel regimen was removed from the guidelines.

Combination TC was compared with AC chemotherapy in a trial that randomized 1016 women with stage I–III breast cancer. At a median follow-up of 7 years, overall disease-free survival (81% vs 75%; HR, 0.74; 95% CI, 0.56–0.98; P = .033) and overall survival (87% vs 82%; HR, 0.69; 95% CI, 0.50–0.97; P = .032) were significantly improved with TC compared with AC.

Other Regimens

Other regimens included in the guidelines are AC; fluorouracil, doxorubicin, and cyclophosphamide (FAC/CAF); cyclophosphamide, epirubicin, and fluorouracil (FEC/CEF); epirubicin and cyclophosphamide (EC); cyclophosphamide, methotrexate, and fluorouracil (CMF); AC with sequential docetaxel administered every 3 weeks; AC with sequential weekly paclitaxel; FEC/CEF followed by docetaxel or weekly paclitaxel; FAC followed by weekly paclitaxel; and docetaxel, doxorubicin, and cyclophosphamide (TAC).

The AC regimen for 4 cycles has been studied in randomized trials, resulting in relapse-free and overall survivals equivalent to those seen with CMF chemotherapy. No benefit from dose escalation of either doxorubicin or cyclophosphamide was shown. Studies of CMF chemotherapy versus no chemotherapy have shown disease-free and overall survival advantages with CMF chemotherapy.

Studies using FAC/CAF chemotherapy have shown that the use of full-dose chemotherapy regimens is important. In the EBCTCG overview of polychemotherapy, comparison of anthracycline-containing regimens with CMF showed a 12% further reduction in the annual odds of recurrence (P = .006) and an 11% further reduction in the annual odds of death (P = .02) with anthracycline-containing regimens. Based on these data, the panel qualified the appropriate chemotherapy regimens by the statement that anthracycline-containing regimens are preferred for node-positive patients.

The EBCTCG analysis, however, did not consider the potential interaction between HER2 tu-
mor status and efficacy of anthracycline-containing versus CMF chemotherapy regimens. Retrospective analysis has suggested that the superiority of anthracycline-containing chemotherapy may be limited to the treatment of breast cancers that are HER2+.

The retrospective finding across several clinical trials that anthracycline-based chemotherapy may be more efficacious in patients whose tumors are HER2+ has led to a footnote stating that anthracycline-based chemotherapy may be superior to non–anthracycline-containing regimens in the adjuvant treatment of these patients.

Two randomized prospective trials of CEF chemotherapy in ALN-positive breast cancer are available. In one trial, premenopausal women with node-negative breast cancer were randomized to receive classic CMF therapy versus CEF chemotherapy using high-dose epirubicin. Both 10-year relapse-free survival (52% vs 45%; P=.007) and overall survival (62% vs 58%; P=.085) favored the CEF arm.

The second trial compared CEF given intravenously every 3 weeks at 2 dose levels of epirubicin (50 vs 100 mg/m2) in premenopausal and postmenopausal women with node-positive breast cancer. Five-year disease-free survival (55% vs 66%; P=.03) and overall survival (65% vs 76%; P=.007) both favored the epirubicin 100 mg/m2 arm.

Another trial compared 2 dose levels of EC chemotherapy with CMF chemotherapy in women with node-positive breast cancer. This study showed that higher-dose EC chemotherapy was equivalent to CMF chemotherapy and superior to moderate-dose EC in event-free survival and overall survival. Another randomized trial in women with ALN-positive breast cancer compared 6 cycles of FEC with 3 cycles of FEC followed by 3 cycles of docetaxel.

Five-year disease-free survival (78.4% vs 73.2%; adjusted P=.012) and overall survival (90.7% vs 86.7%; P=.017) were superior with sequential FEC followed by docetaxel. However, no significant disease-free survival differences were seen in a large randomized study comparing adjuvant chemotherapy with 4 cycles of every-3-week FEC followed by 4 cycles of every-3-week docetaxel with standard anthracycline chemotherapy regimens (eg, FEC or epirubicin followed by CMF) in women with node-positive or high-risk node-negative operable breast cancer.

The addition of weekly paclitaxel following FEC was shown to be superior to FEC alone in a randomized study of 1246 women with early-stage breast cancer. The former regimen was associated with a 23% reduction in the risk of relapse compared with FEC (HR, 0.77; 95% CI, 0.62–0.95; P=.022), although no significant difference in overall survival was seen when the 2 arms were compared at a median follow-up of 66 months.

Final results from a randomized trial of TAC versus FAC chemotherapy in ALN-positive breast cancer demonstrated that TAC is superior to FAC. Estimated 5-year disease-free survival rates were 75% with TAC and 68% with FAC (HR, 0.72; 95% CI, 0.59–0.88; P=.001), and overall survival rates were 87% and 81%, respectively (HR, 0.70; 95% CI, 0.53–0.91; P=.008). Disease-free survival favored TAC in both ER+ and ER- tumors. At a median follow-up of 73 months, results from the 3-arm randomized NSABP B-30 trial comparing TAC versus AT versus AC followed by docetaxel (AC followed by T) showed that AC followed by T had a significant advantage in disease-free survival (HR, 0.83; P=.006) but not in overall survival (HR, 0.86; P=.086) compared with TAC. In addition, both disease-free survival (HR, 0.80; P=.001) and overall survival (HR, 0.83; P=.034) were significantly increased when AC followed by T was compared with AT, with AT showing noninferiority compared with TAC.

Several retrospective studies have evaluated the potential interaction of chemotherapy benefit and ER status. These studies assessed the effect of chemotherapy on the risk of breast cancer recurrence in patients with ER+ tumors receiving adjuvant endocrine therapy when compared with patients with ER- tumor status not undergoing adjuvant endocrine therapy. These analyses suggest that the benefits of chemotherapy are significantly greater in patients with ER+ disease. For example, the results of Berry et al showed that 22.8% more patients with ER+ tumors survived without disease for 5 years if they received chemotherapy; this benefit was only 7% for patients with ER- tumors receiving chemotherapy. The guidelines therefore include a recommendation for endocrine therapy and consideration of chemotherapy for patients with node-negative disease and either ER+ tumors that are greater than 1 cm and HER2- or tumors 0.6 to 1.0 cm that are grade 2 or 3 or with unfavorable features.

Adjuvant HER2-Targeted Therapy

The panel recommends HER2-targeted therapy in
patients with HER+ tumors. Trastuzumab is a humanized monoclonal antibody with specificity for the extracellular domain of HER2.270 Results of several randomized trials testing trastuzumab as adjuvant therapy have been reported.149–154,271–273

NSABP B-31 patients with HER2+, node-positive breast cancer were randomly assigned to 4 cycles of AC every 3 weeks followed by paclitaxel for 4 cycles every 3 weeks or the same regimen with 52 weeks of trastuzumab commencing with paclitaxel. In the NCCTG N9831 trial, patients with HER2+ breast cancer that was node-positive, or, if node-negative, with primary tumors greater than 1 cm if ER− and PR− or greater than 2 cm if ER+ or PR+, were similarly randomized except that paclitaxel was given on a low-dose weekly schedule for 12 weeks and a third arm delayed trastuzumab until the completion of paclitaxel.

The NSABP B-31 and NCCTG N9831 trials have been jointly analyzed with the merged control arms for both trials compared with the merged arms using trastuzumab begun concurrently with paclitaxel. A total of 4045 patients were included in the joint analysis performed at 3.9 years median follow-up. A 48\% reduction in the risk of recurrence (HR, 0.52; 95\% CI, 0.45–0.60; \textit{P}<.001) and a 39\% reduction in the risk of death (HR, 0.61; 95\% CI, 0.50–0.75; log-rank \textit{P}=.001) were documented.272

Similar significant effects on disease-free survival were observed when results of the NSABP B-31 and NCCTG N9831 trials were analyzed separately. Cardiac toxicity was increased in patients treated with trastuzumab.152,274,275 In the adjuvant trastuzumab trials, the rates of grade III/IV congestive heart failure (CHF) or cardiac-related death in patients receiving treatment regimens containing trastuzumab ranged from 0\% (FinHer trial) to 4.1\% (NSABP B-31 trial).149,150,152,154,274,275

The frequency of cardiac dysfunction seems to be related to both age and baseline left ventricular ejection fraction. An analysis of data from N9831 showed the 3-year cumulative incidence of CHF or cardiac death to be 0.3\%, 2.8\%, and 3.3\% in the trial arms without trastuzumab, with trastuzumab following chemotherapy, and with trastuzumab initially combined with paclitaxel, respectively.274 The acceptable rate of significant cardiac toxicity observed in the trastuzumab adjuvant trials partly reflects rigorous monitoring for cardiac dysfunction. Furthermore, concerns have been raised regarding the long-term cardiac risks associated with trastuzumab therapy based on follow-up evaluations of cardiac function in patients enrolled in some of these trials.276,277

A third trial (HERA) (N=5081) tested trastuzumab for 1 or 2 years compared with none in patients with HER2+ and either node-positive disease or node-negative disease with tumors 1 cm or greater who had completed all local therapy and a variety of standard chemotherapy regimens.150 At a median follow-up of 1 year, a 46\% reduction in the risk of recurrence in those who received trastuzumab compared with those who did not (HR 0.54; 95\%, CI 0.43–0.67; \textit{P}<.0001), no difference in overall survival, and acceptable cardiac toxicity were reported. The 2-year data indicate that 1 year of trastuzumab therapy is associated with an overall survival benefit when compared with observation (HR for risk of death, 0.66; 95\% CI, 0.47–0.91; \textit{P}=0.0115).278 After this initial analysis, patients randomized to chemotherapy alone were allowed to crossover to trastuzumab. Intention-to-treat analysis including crossover patients was reported at 4-year median follow-up.273 The primary end point of disease-free survival continued to be significantly higher in the trastuzumab-treated group (78.6\%) versus the observation group (72.2\%; HR, 0.76; 95\%, CI 0.66–0.87; \textit{P}<.0001). At a median follow-up of 8 years, the study reported no significant difference in the secondary end point of disease-free survival continued to be significantly higher in the trastuzumab-treated group (78.6\%) versus the observation group (72.2; HR, 0.76; 95\%, CI 0.66–0.87; \textit{P}<.0001). At a median follow-up of 8 years, the study reported no significant difference in the secondary end point of disease-free survival continued to be significantly higher in the trastuzumab-treated group (78.6\%) versus the observation group (72.2; HR, 0.76; 95\%, CI 0.66–0.87; \textit{P}<.0001). At a median follow-up of 1 year.151 Therefore, 1 year of adjuvant trastuzumab remains the current standard of treatment.

The BCIRG 006 study randomized 3222 women with HER2+, node-positive, or high-risk node-negative breast cancer to AC followed by docetaxel, AC followed by docetaxel plus trastuzumab for 1 year, or carboplatin and docetaxel plus trastuzumab for 1 year.154 At 65-month follow-up, patients receiving AC followed by docetaxel with trastuzumab (AC-TH) had an HR for disease-free survival of 0.64 (\textit{P}<.001) when compared with the group of patients in the control arm receiving the same chemotherapy regimen without trastuzumab (AC-T). The HR for disease-free survival was 0.75 (\textit{P}=.04) when patients in the carboplatin/docetaxel/trastuzumab (TCH)-arm were compared with patients in the control arm. No statistically significant difference in the HR for disease-free survival was observed between...
of adjuvant anthracycline-based chemotherapy with or without docetaxel.179 No statistically significant disease-free survival or overall survival benefit was observed with the addition of trastuzumab. These results suggest that the sequential administration of trastuzumab after chemotherapy is not as efficacious as a schedule involving concomitant chemotherapy and trastuzumab.

Retrospective analyses of low-risk patients with small tumors show that in T1a–b,N0 breast cancers, HER2 overexpression added a 15% to 30% risk for recurrence.280–283 These risks rates are substantially higher than those seen among similarly sized HER2+ tumors.

A recent single-arm, multicenter trial studied the benefit of trastuzumab-based chemotherapy in patients with HER2+ node-negative tumors 3 cm or less. All patients received trastuzumab and weekly paclitaxel for 12 weeks, followed by completion of a year of trastuzumab monotherapy.284 Among patients enrolled, 50% had tumors 1.0 cm or less and 9% of patients had tumors between 2 and 3 cm. The end point of the study was disease-free survival. The results presented at the 2013 San Antonio Breast Cancer Symposium showed that the 3-year disease-free survival rate in the overall population was 98.7% (95% CI, 97.6–99.8; \(P < .0001 \)).

Dual anti-HER2 blockade associated with trastuzumab plus lapatinib, trastuzumab plus pertuzumab has shown significant improvements in the pathologic complete response rate when compared with chemotherapy associated with one anti-HER2 agent in the neoadjuvant setting. The results of the ongoing ALTTO trial are expected to provide additional data on the long-term outcome in the adjuvant setting with dual HER2 blockade (lapatinib plus trastuzumab).

NCCN Recommendation for Adjuvant HER2-Targeted Therapy: Based on these studies, the panel has designated the use of trastuzumab with chemotherapy as a category 1 recommendation in patients with HER2+ tumors greater than 1 cm.

The panel suggests that trastuzumab and chemotherapy be used for women with HER2+ node-negative tumors measuring 0.6 to 1.0 cm (ie, T1b) and for smaller tumors that have 2 mm or less axillary node metastases (pN1mi). Some support for this recommendation comes from studies showing a higher risk of recurrence for patients with HER2+ node-negative tumors 1 cm or less compared with those with HER2-

References:

1. Trastuzumab-containing arms. An overall survival advantage was reported for patients in both trastuzumab-containing arms relative to the control arm (HR for AC-TH vs AC-T, 0.63; \(P = .001 \); HR for TCH vs AC-T, 0.77; \(P = .04 \)). Cardiac toxicity was significantly lower in the TCH arm (9.4% patients with >10% relative decline in left ventricular ejection fraction) compared with the AC-TH arm (18.6%; \(P < .0001 \)). CHF was also more frequent with AC-TH than TCH (2.0% vs 0.4%; \(P < .001 \)). Analysis of this trial by critical clinical event revealed more distant breast cancer recurrences with TCH (144 vs 124), but fewer cardiac events with TCH compared with AC-TH (4 vs 21).154

In the FinHer trial, 1010 women were randomized to 9 weeks of vinorelbine followed by 3 cycles of FEC chemotherapy versus docetaxel for 3 cycles followed by 3 cycles of FEC chemotherapy.149 Patients (n=232) with HER2+ cancers that were either node-positive or were node-negative, 2 cm or greater, and PR- were further randomized to treatment with or without trastuzumab for 9 weeks during the vinorelbine or docetaxel portions of the chemotherapy only. With a median follow-up of 3 years, the addition of trastuzumab was associated with a reduction in risk of recurrence (HR, 0.42; 95% CI, 0.21–0.83; \(P = .01 \)). No statistically significant differences in overall survival (HR, 0.41; 95% CI, 0.16–1.08; \(P = .07 \)) or cardiac toxicity were observed with the addition of trastuzumab.149 At 5-year follow-up, a comparison of the arms (ie, chemotherapy with and without trastuzumab) showed that the HRs for distant disease-free survival (HR, 0.65; 95% CI, 0.38–1.12; \(P = .12 \)) and overall survival (HR, 0.55; 95% CI, 0.27–1.11; \(P = .094 \)) were higher relative to those reported at 3 years.271

All of the adjuvant trials of trastuzumab have demonstrated clinically significant improvements in disease-free survival, and the combined analysis from the NSABP B31 and NCCTG N9831 trials,272 and the HERA trial,150 showed significant improvement in overall survival with the use of trastuzumab in patients with high-risk HER2+ breast cancer. Therefore, regimens from each of these trials are included as trastuzumab-containing adjuvant regimen choices in the guidelines. The benefits of trastuzumab are independent of ER status.152,153 In the FNCLCC-PACS-04 trial, 528 women with HER2+, node-positive breast cancer were randomly assigned to receive trastuzumab or observation after completion...
tumors of the same size. Results of a retrospective study of 1245 women with early-stage breast cancer tumors characterized as T1pN0. Rates of 10-year breast cancer–specific and recurrence-free survivals were 85% and 75%, respectively, in women with tumors characterized as HER2+/ER−, and 70% and 61%, respectively, in women with HER2+/ER− tumors.

Two additional retrospective studies have also investigated recurrence-free survival in this patient population. In one large study, 5-year recurrence-free survival rates of 77.1% and 93.7% (P<0.001) were observed for patients with HER2+ and HER2− T1a–bN0M0 breast tumors, respectively, with no recurrence-free survival differences seen in the HER2+ group when hormonal receptor status was considered. In another retrospective study of women with small HER2+ tumors, the risk of recurrence at 5 years was low, although disease-free survival was inferior in the group with HER2+, hormone receptor–positive disease. None of the patients in these 2 retrospective studies had received trastuzumab. Subgroup analyses from several of the randomized trials have shown a consistent benefit with trastuzumab irrespective of tumor size or nodal status.

The panel recommends AC followed by paclitaxel with trastuzumab, commencing with the first dose of paclitaxel, for 1 year as a preferred HER2-targeting adjuvant regimen. The TCH regimen is also a preferred regimen, especially in those with risk factors for cardiac toxicity, given the results of the BCIRG 006 study that showed superior disease-free survival in patients receiving either TCH or AC followed by docetaxel plus trastuzumab both compared with AC followed by docetaxel alone.

Other trastuzumab-containing regimens included in these guidelines are AC followed by docetaxel and trastuzumab, and docetaxel plus trastuzumab followed by FEC.

Based on the recent data presented at the 2013 San Antonio Breast Cancer Symposium, the panel has included paclitaxel and trastuzumab as an option for patients with low-risk HER2+ stage I tumors. Considering the unprecedented improvement in overall survival in the metastatic setting and the significant improvement in pathologic complete response seen in the neoadjuvant setting, the panel considers it reasonable to incorporate pertuzumab to the above adjuvant regimens, if the patient has not received pertuzumab as a part of their neoadjuvant therapy. An ongoing study is evaluating pertuzumab and trastuzumab with standard chemotherapy regimens in the adjuvant setting.

Posttherapy Surveillance and Follow-up

Posttherapy follow-up is optimally performed by members of the treatment team and includes the performance of regular history/physical examinations every 4 to 6 months for the first 5 years after primary therapy and annually thereafter. Mammography should be performed annually.

The routine performance of alkaline phosphatase and liver function tests are not included in the guidelines. In addition, the Panel notes no evidence to support the use of “tumor markers” for breast cancer, and routine bone scans, CT scans, MRI scans, PET scans, or ultrasound examinations in the asymptomatic patient provide no advantage in survival or ability to palliate recurrent disease and are, therefore, not recommended.

The use of dedicated breast MRI may be considered an option for posttherapy surveillance and follow-up in women at high risk for bilateral disease, such as carriers of BRCA1/2 mutations. Rates of contralateral breast cancer after either breast-conserving therapy or mastectomy have been reported to be increased in women with BRCA1/2 mutations compared with patients with sporadic breast cancer. (see NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian and NCCN Guidelines for Breast Cancer Screening and Diagnosis; to view the most recent version of these guidelines, visit NCCN.org).

The panel recommends that women with an intact uterus who are taking adjuvant tamoxifen should have yearly gynecologic assessments and rapid evaluation of any vaginal spotting that might occur, because of the risk of tamoxifen-associated endometrial carcinoma in postmenopausal women. The performance of routine endometrial biopsy or ultrasonography in the asymptomatic woman is not recommended. Neither test has demonstrated utility as a screening test in any population of women. Most women with tamoxifen-associated uterine carcinoma have early vaginal spotting.

If an adjuvant aromatase inhibitor is considered in women with amenorrhea after treatment, baseline levels of estradiol and gonadotropin followed by serial monitoring of these hormones should be
performed if endocrine therapy with an aromatase inhibitor is initiated.236 Bilateral oophorectomy assures postmenopausal status in young women with therapy-induced amenorrhea and may be considered before initiating therapy with an aromatase inhibitor in a young woman.

Symptom management for women on adjuvant endocrine therapies often requires treatment of hot flashes and the treatment of concurrent depression. Venlafaxine, a serotonin-norepinephrine reuptake inhibitor (SNRI), has been studied and is an effective intervention in decreasing hot flashes.299–302 Evidence suggests that concomitant use of tamoxifen with certain SSRIs (eg, paroxetine, fluoxetine) may decrease plasma levels of endoxifen, an active metabolite of tamoxifen.303,304 These SSRIs/SNRIs may interfere with the enzymatic conversion of tamoxifen to endoxifen by inhibiting a particular isoform of CYP2D6. However, the mild CYP2D6 inhibitors, such as citalopram, escitalopram, sertraline, and venlafaxine, seem to have no or only minimal effect on tamoxifen metabolism.236,305,306

Follow-up also includes assessment of patient adherence to ongoing medication regimens, such as endocrine therapies. Predictors of poor adherence to medication include the presence of side effects associated with the medication, and incomplete understanding by the patient of the benefits associated with regular administration of the medication.307 The panel recommends the implementation of simple strategies to enhance patient adherence to endocrine therapy, such as direct questioning of the patient during office visits and brief, clear explanations on the value of taking the medication regularly and the therapeutic importance of longer durations of endocrine therapy.

Evidence suggests that a healthy lifestyle may lead to better breast cancer outcomes. A nested case control study of 369 women with ER+ tumors who developed a second primary breast cancer compared with 734 matched control patients who did not develop a second primary tumor showed an association between obesity (body mass index [BMI] ≥30), smoking, and alcohol consumption and contralateral breast cancer.308 A prospective study of 1490 women diagnosed with stage I–III breast cancer showed an association among high fruit and vegetable consumption and physical activity and improved survivorship, regardless of obesity.309 Thus, the panel recommends an active lifestyle and ideal body weight (BMI, 20–25) for optimal overall health and breast cancer outcomes.

Many young women treated for breast cancer remain or regain premenopausal status after treatment for breast cancer. For these women, the panel discourages the use of hormonal birth control methods, regardless of the hormone receptor status of the tumor.310 Alternative birth control methods are recommended, including intrauterine devices, barrier methods, and, for those with no intent of future pregnancy, tubal ligation or vasectomy for the partner. Breastfeeding during endocrine or chemotherapy treatment is not recommended by the panel because of risks to the infant. Breastfeeding after breast-conserving treatment for breast cancer is not contraindicated. However, lactation from an irradiated breast may not be possible, or may occur only with a diminished capacity.310,311

The panel recommends that women on an adjuvant aromatase inhibitor or who experience ovarian failure secondary to treatment should have monitoring of bone health, with a bone mineral density determination at baseline and periodically thereafter. The use of estrogen, progesterone, or selective ER modulators to treat osteoporosis or osteopenia in women with breast cancer is discouraged. The use of a bisphosphonate is generally the preferred intervention to improve bone mineral density. Optimal duration of bisphosphonate therapy has not been established. Factors to consider for duration of antosteoporosis therapy include bone mineral density, response to therapy, and risk factors for continued bone loss or fracture. Women treated with a bisphosphonate should undergo a dental examination with preventive dentistry before the initiation of therapy, and should take supplemental calcium and vitamin D.

References

trastuzumab (T), and docetaxel (D) in patients (pts) with HER2-positive first-line (II) metastatic breast cancer (MBC) [abstract]. Cancer Res 2012;72(24 Suppl):Abstract P5-18-26.

106. Overgaard M, Nielsen HM, Overgaard J. Is the benefit of postmastectomy irradiation limited to patients with four or more positive nodes, as recommended in international consensus reports? A subgroup analysis of the DBCG 82 b&c randomized trials. Radiother Oncol 2007;82:247–253.

173. A phase III, randomized clinical trial of standard adjuvant endocrine therapy +/-chemotherapy in patients with 1-3 positive nodes, hormone receptor-positive and HER2-negative breast cancer with recurrence score (RS) of 25 or less. RXFONDER: a clinical trial RX for positive node, endocrine responsive breast cancer. ClinicalTrials.gov identifier: NCT01272037.

174. MINDACT (Microarray In Node-Negative and 1 to 3 positive lymph node disease may avoid chemotherapy): a prospective, randomized study comparing the 70-gene signature with the common clinical-pathological criteria in selecting patients for adjuvant chemotherapy in breast cancer with 0 to 3 positive nodes. ClinicalTrials.gov identifier: NCT00433389.

176. Hormone therapy with or without combination chemotherapy in treating women who have undergone surgery for node-negative breast cancer (The TAILORx Trial). ClinicalTrials.gov identifier: NCT00310180.

290. A randomized multicenter, double-blind, placebo-controlled comparison of chemotherapy plus trastuzumab plus placebo versus chemotherapy plus trastuzumab plus pertuzumab as adjuvant therapy in patients with operable HER2-positive primary breast ClinicalTrials.gov identifier: NCT01358877.

Individual Disclosures for the NCCN Breast Cancer Panel

<table>
<thead>
<tr>
<th>Panel Member</th>
<th>Clinical Research Support/ Data Safety Monitoring Board</th>
<th>Advisory Boards, Speakers Bureau, Expert Witness, or Consultant</th>
<th>Patent, Equity, or Royalty</th>
<th>Other</th>
<th>Date Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin O. Anderson, MD</td>
<td>General Electric; and sanofi-aventis U.S.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>5/31/13</td>
</tr>
<tr>
<td>Sarah L. Blair, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>7/22/13</td>
</tr>
<tr>
<td>Harold J. Burstein, MD, PhD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>5/23/13</td>
</tr>
<tr>
<td>Amy Cz, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>5/22/13</td>
</tr>
<tr>
<td>Anthony B. Elias, MD</td>
<td>Exelis Inc.; Genentech, Inc.; Astellas US LLC; Medivation, Inc.; and NeuVax</td>
<td>Genentech, Inc.</td>
<td>None</td>
<td>None</td>
<td>6/7/13</td>
</tr>
<tr>
<td>William B. Farrar, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/19/13</td>
</tr>
<tr>
<td>Andres Forero, MD</td>
<td>Abbott Laboratories; Biogen Idec; Celgene Corporation; Daiichi-Sankyo Co.; Eisai Inc.; Eli Lilly and Company; Genentech, Inc.; BioCryt Pharmaceuticals, Inc.; Immunomedics, Inc.; and Seattle Genetics, Inc.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>5/5/12</td>
</tr>
<tr>
<td>Sharon Hermes Giordano, MD, MPH</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>5/24/13</td>
</tr>
<tr>
<td>Lori J. Goldstein, MD</td>
<td>Novartis Pharmaceuticals Corporation; and Dompe</td>
<td>Genomic Health, Inc.; Novartis Pharmaceuticals Corporation; NanoString Technologies, Inc.; and Syntas</td>
<td>None</td>
<td>Novartis Pharmaceuticals Corporation</td>
<td>11/11/13</td>
</tr>
<tr>
<td>William J. Gradishar, MD</td>
<td>None</td>
<td>Bayer HealthCare; Eisai Inc.; Genentech, Inc.; Genomic Health, Inc.; Myriad Genetic Laboratories, Inc.; and Onyx Pharmaceuticals, Inc.</td>
<td>None</td>
<td>None</td>
<td>1/2/13</td>
</tr>
<tr>
<td>Daniel F. Hayes, MD</td>
<td>Janssen Pharmaceuticals</td>
<td>Inbiomotion; and Oncomune LLC</td>
<td>None</td>
<td>None</td>
<td>11/20/13</td>
</tr>
<tr>
<td>Clifford A. Hudis, MD</td>
<td>Alliance Pharma; and I-SPY2</td>
<td>None</td>
<td>None</td>
<td>ASCO; and Breast Cancer Research Foundation</td>
<td>8/16/13</td>
</tr>
<tr>
<td>Steven J. Isakoff, MD, PhD</td>
<td>Abbott Laboratories</td>
<td>Myriad Genetic Laboratories, Inc.</td>
<td>None</td>
<td>None</td>
<td>3/7/13</td>
</tr>
<tr>
<td>Britt-Marie E. Ljung, MD</td>
<td>National Cancer Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1/3/13</td>
</tr>
<tr>
<td>P. Kelly Marcom, MD</td>
<td>Abbott Laboratories; and Veridex, LLC</td>
<td>Novartis Pharmaceuticals Corporation; and NanoString Technologies, Inc.</td>
<td>None</td>
<td>None</td>
<td>7/22/13</td>
</tr>
<tr>
<td>Ingrid A. Mayer, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>10/1/12</td>
</tr>
<tr>
<td>Beryl McCormick, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/19/13</td>
</tr>
<tr>
<td>Robert S. Miller, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1/15/14</td>
</tr>
<tr>
<td>Mark Pegram, MD</td>
<td>Pending</td>
<td>Pending</td>
<td>Pending</td>
<td>Pending</td>
<td></td>
</tr>
<tr>
<td>Lori J. Pierce, MD</td>
<td>None</td>
<td>Genomic Health, Inc.</td>
<td>UpToDate</td>
<td>None</td>
<td>8/16/13</td>
</tr>
<tr>
<td>Elizabeth C. Reed, MD</td>
<td>Agenda BV; and Novartis Pharmaceuticals Corporation</td>
<td>UnitedHealthcare</td>
<td>None</td>
<td>None</td>
<td>8/20/13</td>
</tr>
<tr>
<td>Kilian E. Salerno, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>10/10/13</td>
</tr>
<tr>
<td>Lee S. Schwartzberg, MD</td>
<td>Bristol-Myers Squibb Company; and Eisai Inc.</td>
<td>Amgen Inc.; Eisai Inc.; Genentech, Inc.; and GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>8/26/13</td>
</tr>
<tr>
<td>Mary Lou Smith, JD, MBA</td>
<td>Genentech, Inc.</td>
<td>None</td>
<td>None</td>
<td>Gateway for Cancer Research Foundation; and National Accreditation Program for Breast Centers</td>
<td>7/20/13</td>
</tr>
<tr>
<td>Hatem Soliman, MD</td>
<td>Agenda BV</td>
<td>Agenda BV; Celgene Corporation; NanoString Technologies, Inc.; and Veridex, LLC</td>
<td>None</td>
<td>None</td>
<td>12/5/12</td>
</tr>
<tr>
<td>George Somlo, MD</td>
<td>Celgene Corporation; Genentech, Inc.; National Cancer Institute; and Veridex, LLC</td>
<td>Celgene Corporation; Genentech, Inc.; Millennium Pharmaceuticals, Inc.; Abraxane; and Roche Laboratories, Inc.</td>
<td>None</td>
<td>None</td>
<td>7/12/13</td>
</tr>
<tr>
<td>John H. Ward, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>1/17/13</td>
</tr>
<tr>
<td>Antonio C. Wolff, MD</td>
<td>Bristol-Myers Squibb Company</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>8/21/13</td>
</tr>
<tr>
<td>Richard Zellars, MD</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>11/5/13</td>
</tr>
</tbody>
</table>

The NCCN guidelines staff have no conflicts to disclose.