Is Vertebral Augmentation the Right Choice for Cancer Patients With Painful Vertebral Compression Fractures?

Ioannis D. Papanastassiou, MD; Kamran Aghayev, MD; James R. Berenson, MD; Meic H. Schmidt, MD; and Frank D. Vrionis, MD, MPH, PhD

Abstract
Cancer-related fractures of the spine are different from osteoporotic ones, not only in pathogenesis but also in natural history and treatment. Higher class evidence now supports offering balloon kyphoplasty to a patient with cancer, provided that the pain is significant in intensity, has a positional character, and correlates to the area of the fractured vertebrae. Absence of clinical spinal cord compression and overt instability are paramount. Because of the frequent disruption of the posterior vertebral body cortex in these patients, the procedure should be performed by experienced operators who could also quickly perform an open decompression if cement extravasation occurs. Patients will benefit from vertebral augmentation, even in chronic malignant fractures. A biopsy should be routinely performed and a combination with radiation treatment would be beneficial in most cases. (JNCCN 2012;10:715–719)

Almost 3 years ago, the International Myeloma Working Group published a statement and raised some questions regarding the treatment of cancer-related fractures with vertebral augmentation procedures (VAPs). Some of those issues included indications, patient selection, preferred procedure (balloon kyphoplasty [BKP] vs. vertebroplasty [VP]), optimal intervention time, and alternatives.1

Among patients with cancer with vertebral compression fractures (VCFs), many retrospective or single-arm prospective studies have reported good results with VP, and especially BKP.1−8 However, results of the first randomized trial (Cancer Fracture Evaluation [CAFE] study) are now available, which show the superiority of immediate BKP compared with nonsurgical management.9 This prospective, randomized, multicenter study involved 134 patients assigned either to kyphoplasty (n = 70) or as controls (n = 64). The results of the CAFE study strongly favor kyphoplasty in terms of pain and disability reduction, improvement in quality of life, and decrease in analgesic use. More than half of the patients in the control group (n = 38) crossed over to the kyphoplasty group after the 1-month assessment, with similar outcomes as those seen in the original kyphoplasty group.

VAPs have many advantages, including immediate impact, reduced mortality,10 avoidance of deleterious effects of prolonged recumbency, more cost-effectiveness compared with conservative management,11 minimally invasive nature requiring outpatient care in most cases, biopsy, restoration of vertebral height,12 and potential antitumor effect of methylmethacrylate monomer and the heat generated by its polymerization.13 In selected cases, VAPs can also be combined with radiofrequency ablation to achieve better local tumor control.13,14 Rare complications of VAPs include cement leakage to canal/foramen,15 pulmonary embolism,16 osteomyelitis,17 pneumothorax, and retroperitoneal haematoma.1

Most studies report higher rates of cement leakage with VP,15,18 and better kyphosis reduction with BKP,12,19 whereas BKP is more expensive.

Because of the randomized trials that showed no benefit of VP compared with a sham procedure17,20 or conservative management,21 the value of VP in treating osteoporotic vertebral fractures has been questioned. Therefore, the American Academy of Orthopedic...
Surgeons published guidelines against using VP in osteoporotic fractures. Furthermore, a retrospective analysis in a wide Medicare population claimed that BKP reduced mortality significantly more than nonsurgical management and VP. In the cancer population, both procedures have been regarded as effective, with only one nonrandomized study reporting better results at 6 months and 1 year with BKP versus VP in patients with myeloma. The randomized CAFE trial now provides strong evidence for the superiority of BKP versus nonsurgical management; no randomized studies of VP in the cancer setting nor randomized controlled trials comparing VP with BKP have been published. For the reasons mentioned (more cement leakage with VP; better reduction of kyphosis/mortality benefit from BKP; and lack of randomized controlled trials supporting VP in patients with cancer), the authors favor BKP, especially in patients with significantly collapsed vertebrae or fractures in high stress areas, such as the thoracolumbar junction. However, they do perform VP for nonindex fractures or nondeformed vertebrae to avoid unnecessary cost, but ultimately this is largely operator-dependent.

The optimal time of VAPs is still debatable. Although in the osteoporotic population earlier intervention may yield superior results and most authorities advocate a 6- to 8-week conservative trial in mild cases because recovery is anticipated with time, this may not be the case in malignant fractures. Patients with cancer have a less favorable natural course because of the increased rate of bone loss from tumor osteolysis, chemotherapy, radiation therapy (RT), gonadal ablation, compromised medical status, poor nutrition, generalized osteoporosis, and chronic steroid use. Additionally, they are less amenable to conservative treatment and prolonged immobilization, have limited expected survival, and their overall poor functional status interferes with the ability to administer other antineoplastic therapies. Therefore, a VAP should be offered to any patient who presents with significant pain (visual analog scale ≥ 4) that corresponds with the clinical examination and correlates with positive findings on MRI (edema on short-tau inversion recovery images). In older fractures, the improvement from BKP intervention may still be satisfactory. In fact, in the cancer fracture literature, most of the procedures were performed on subacute or chronic fractures.

In the CAFE trial, the patients who crossed over from nonsurgical management to undergo BKP after 1 month reported comparable results to those who were initially randomized to BKP, indicating that BKP is still beneficial in older fractures.

Experience has taught that some of the contraindications reported previously now appear relative, such as canal encroachment, and upper thoracic or even cervical location of the fracture. With attention to detail and the advent of accessory tools, such as neuromonitoring and individualized techniques, indications are expanding and surgeons are challenging traditional notions that have previously deterred surgeons from using BKP in certain situations. Part of the reason is that these patients frequently cannot medically withstand the rigors of an open vertebrectomy.

Vertebral height restoration is another factor favoring VAPs. Theoretically it should prevent a domino effect through reducing overall kyphosis. In the CAFE study, rates of subsequent nonindex VCF in kyphoplasty and control groups were similar, despite significant restoration of vertebral height.

A biopsy of the affected vertebrae should be performed concurrently with these procedures. The results may provide significant information regarding future treatment, confirm the presence of metastasis, or reveal a new neoplasm, while not adding to the morbidity of the operation. In fact, patients with cancer may develop VCFs because of a variety of causes, such as osteoporosis, prolonged steroid use, chemotherapy, or RT. Therefore, verification of metastasis provided by biopsy is not only important for staging purposes but may also preclude the use of additional treatments, such as RT. In a recent institutional review, only 50% of patients with cancer with VCFs had biopsy results showing malignant disease. A biopsy is also of paramount importance in cases of multiple primaries or when the VCF represents the first sign of metastasis after a long latency period.

The number of levels that may be safely performed in each session has not been defined; most authorities feel that up to 3 (or 4) levels may be safely performed without significantly increasing the length or morbidity of the operation. The authors frequently perform VAPs for impending or intervening vertebrae, especially when kyphosis is present or if cement extravasation occurs in the disk space (increasing the risk for adjacent fracture).
Finally, regarding the relation of VAPs to RT, the authors believe they are complimentary treatments; although cement augmentation may exert a tumoricidal effect (toxic monomer and heat), the issue of effectively treating the underlying tumor cells within the vertebrae remains. Therefore, RT should be offered to some of these patients. However, RT alone may be insufficient to control the pain and will not address painful mechanical instability. In fact, RT is known to produce detrimental bone effects, including damage to the cellular and vascular bony elements and alteration of biomechanical properties in doses of 20 to 30 Gy. Rose et al. found a 39% chance of fracture after intensity-modulated RT for spinal metastasis. A combination of BKP and intensity-modulated RT may be a new treatment paradigm for some patients with malignant disease in the fractured vertebral body. However, the sequence must be determined and made on an individualized basis, because no studies delineating this issue are currently available. Oncologists must weigh the potential benefits against the deleterious effects of RT to the affected vertebral body and adjacent organs and, importantly, bone marrow function, which may compromise the ability to administer more important systemic therapeutic modalities required to treat patients with metastatic cancer or multiple myeloma.

In conclusion, cancer-related fractures of the spine are different from osteoporotic ones, not only in pathogenesis but also in natural history and treatment. Class 1 to 2 evidence now supports offering a VAP to a patient with cancer, provided that the pain is significant in intensity, has a positional character (i.e., increases with axial loading), and correlates to the area of the fractured vertebrae. Patients will benefit from vertebral augmentation, even in chronic malignant fractures. Figure 1 provides a proposed therapeutic algorithm for those fractures. Absence of clinical spinal cord compression and overt instability are paramount. Because of the frequent disruption of the posterior vertebral body cortex in these patients, the procedure should be performed by experienced operators who could also quickly perform an open decompression if cement extravasation occurs, or else a spine surgeon should be available in case complications occur. A biopsy should routinely be performed and a combination with RT would be benefi-

Figure 1 Algorithm for treatment of vertebral compression fractures.
Abbreviations: BKP, balloon kyphoplasty; Bx, biopsy; RT, radiation treatment; VAS, visual analog score.
cial in most cases. Given the improvement in quality of life that this minimally invasive procedure offers to patients with cancer, it should be considered and discussed, when appropriate, in lieu of open maximally invasive surgeries or pain ablation procedures.

References

Vertebral Augmentation in Cancer Compression Fractures

