NCCN Task Force Report: Evaluating the Clinical Utility of Tumor Markers in Oncology

Restricted access

The molecular analysis of biomarkers in oncology is rapidly advancing, but the incorporation of new molecular tests into clinical practice will require a greater understanding of the genetic changes that drive malignancy, the assays used to measure the resulting phenotypes and genotypes, and the regulatory processes that new molecular biomarkers must face to be accepted for clinical use. To address these issues and provide an overview of current molecular testing in 6 major malignancies, including glioma, breast cancer, colon cancer, lung cancer, prostate cancer, and acute myelogenous leukemia, an NCCN Task Force was convened on the topic of evaluating the clinical utility of tumor markers in oncology. The output of this meeting, contained within this report, describes the ways biomarkers have been developed and used; defines common terminology, including prognostic, predictive, and companion diagnostic markers, and analytic validity, clinical validity, and clinical utility; and proposes the use of a combination level of evidence score to aid in the evaluation of novel biomarker tests as they arise. The current state of regulatory oversight and anticipated changes in the regulation of molecular testing are also addressed.

  • 1

    American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol 2003;21:2397-2406.

    • Search Google Scholar
    • Export Citation
  • 2

    Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell 2011;145:19-24.

  • 3

    Khleif SN, Doroshow JH, Hait WN; AACR-FDA-NCI Cancer Biomarkers Collaborative. AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res 2010;16:3299-3318.

    • Search Google Scholar
    • Export Citation
  • 4

    Marchio C, Dowsett M, Reis-Filho JS. Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box. BMC Med 2011;9:41.

    • Search Google Scholar
    • Export Citation
  • 5

    McShane LM, Altman DG, Sauerbrei W. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 2005;23:9067-9072.

  • 6

    Saijo N. Critical comments for roles of biomarkers in the diagnosis and treatment of cancer. Cancer Treat Rev, in press.

  • 7

    Simon R. Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology. Per Med 2010;7:33-47.

    • Search Google Scholar
    • Export Citation
  • 8

    Faderl S, Talpaz M, Estrov Z. The biology of chronic myeloid leukemia. N Engl J Med 1999;341:164-172.

  • 9

    Goldstein I, Marcel V, Olivier M. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther 2011;18:2-11.

    • Search Google Scholar
    • Export Citation
  • 10

    Joensuu H, Kellokumpu-Lehtinen PL, Bono P. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 2006;354:809-820.

    • Search Google Scholar
    • Export Citation
  • 11

    Piccart-Gebhart MJ, Procter M, Leyland-Jones B. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353:1659-1672.

    • Search Google Scholar
    • Export Citation
  • 12

    Romond EH, Perez EA, Bryant J. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353:1673-1684.

    • Search Google Scholar
    • Export Citation
  • 13

    Chapman PB, Hauschild A, Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507-2516.

  • 14

    Pollock PM, Meltzer PS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2002;2:5-7.

  • 15

    Zelboraf. Available at: http://www.gene.com/gene/products/information/zelboraf/pdf/pi.pdf. Accessed September 30, 2011.

  • 16

    Teutsch SM, Bradley LA, Palomaki GE. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative: methods of the EGAPP Working Group. Genet Med 2009;11:3-14.

    • Search Google Scholar
    • Export Citation
  • 17

    Bordeaux J, Welsh A, Agarwal S. Antibody validation. Biotechniques 2010;48:197-209.

  • 18

    Wu YL, Dudognon C, Nguyen E. Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: nucleolin and telomerase cross paths. J Cell Sci 2006;119:2797-2806.

    • Search Google Scholar
    • Export Citation
  • 19

    Moore HM, Kelly AB, Jewell SD. Biospecimen reporting for improved study quality (BRISQ). Cancer Cytopathol 2011;119:92-101.

  • 20

    McShane LM, Altman DG, Sauerbrei W. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 2005;97:1180-1184.

    • Search Google Scholar
    • Export Citation
  • 21

    Shedden K, Taylor JM, Enkemann SA. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008;14:822-827.

    • Search Google Scholar
    • Export Citation
  • 22

    Xie Y, Minna JD. Predicting the future for people with lung cancer. Nat Med 2008;14:812-813.

  • 23

    Edge SB, Byrd DR, Compton CC. AJCC Cancer Staging Manual, 7th ed. New York: Springer-Verlag; 2009.

  • 24

    Engstrom PF, Bloom MG, Demetri GD. NCCN Molecular Testing White Paper: effectiveness, efficiency, and reimbursement. J Natl Compr Canc Netw, in press.

    • Search Google Scholar
    • Export Citation
  • 25

    The Medical Device Amendments of 1976. Publ L No. 94-295, 90 Stat 539 (May 28, 1976).

  • 26

    FDA Rule on Analyte Specific Reagents, 62 Fed Regist 62,243, 62,249 (November 21, 1997). 1997.

  • 27

    US Food and Drug Administration. Draft Guidance for Industry and Food and Drug Administration Staff. In Vitro Companion Diagnostic Devices. Available at: http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm262292.htm. Accessed October 10, 2011.

    • Search Google Scholar
    • Export Citation
  • 28

    US Food and Drug Administration. Draft Guidance for Industry, Clinical Laboratories, and FDA Staff. In Vitro Diagnostic Multivariate Index Assays. Available at: www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071455.htm. Accessed October 10, 2011.

    • Search Google Scholar
    • Export Citation
  • 29

    Freidlin B, McShane LM, Korn EL. Randomized clinical trials with biomarkers: design issues. J Natl Cancer Inst 2010;102:152-160.

  • 30

    Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 2005;23:2020-2027.

    • Search Google Scholar
    • Export Citation
  • 31

    Hayes DF, Bast RC, Desch CE. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 1996;88:1456-1466.

    • Search Google Scholar
    • Export Citation
  • 32

    Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 2009;101:1446-1452.

    • Search Google Scholar
    • Export Citation
  • 33

    Amado RG, Wolf M, Peeters M. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626-1634.

    • Search Google Scholar
    • Export Citation
  • 34

    Karapetis CS, Khambata-Ford S, Jonker DJ. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008;359:1757-1765.

    • Search Google Scholar
    • Export Citation
  • 35

    Brem SS, Bierman PJ, Brem H. NCCN Clinical Practice Guidelines in Oncology: Central Nervous System Cancers. Version 2, 2011. Available at: http://www.nccn.org/professionals/physician_gls/pdf/cns.pdf. Accessed October 10, 2011.

    • Search Google Scholar
    • Export Citation
  • 36

    Bourne TD, Schiff D. Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 2010;6:695-701.

  • 37

    Hoang-Xuan K, Capelle L, Kujas M. Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J Clin Oncol 2004;22:3133-3138.

    • Search Google Scholar
    • Export Citation
  • 38

    Buckner JC, Gesme D Jr, O'Fallon JR. Phase II trial of procarbazine, lomustine, and vincristine as initial therapy for patients with low-grade oligodendroglioma or oligoastrocytoma: efficacy and associations with chromosomal abnormalities. J Clin Oncol 2003;21:251-255.

    • Search Google Scholar
    • Export Citation
  • 39

    Cairncross G, Macdonald D, Ludwin S. Chemotherapy for anaplastic oligodendroglioma. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1994;12:2013-2021.

    • Search Google Scholar
    • Export Citation
  • 40

    Ino Y, Betensky RA, Zlatescu MC. Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 2001;7:839-845.

    • Search Google Scholar
    • Export Citation
  • 41

    Kaloshi G, Benouaich-Amiel A, Diakite F. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology 2007;68:1831-1836.

    • Search Google Scholar
    • Export Citation
  • 42

    van den Bent M, Chinot OL, Cairncross JG. Recent developments in the molecular characterization and treatment of oligodendroglial tumors. Neuro Oncol 2003;5:128-138.

    • Search Google Scholar
    • Export Citation
  • 43

    Franco-Hernandez C, Martinez-Glez V, de Campos JM. Allelic status of 1p and 19q in oligodendrogliomas and glioblastomas: multiplex ligation-dependent probe amplification versus loss of heterozygosity. Cancer Genet Cytogenet 2009;190:93-96.

    • Search Google Scholar
    • Export Citation
  • 44

    Idbaih A, Kouwenhoven M, Jeuken J. Chromosome 1p loss evaluation in anaplastic oligodendrogliomas. Neuropathology 2008;28:440-443.

  • 45

    Jeuken J, Cornelissen S, Boots-Sprenger S. Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn 2006;8:433-443.

    • Search Google Scholar
    • Export Citation
  • 46

    Smith JS, Alderete B, Minn Y. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 1999;18:4144-4152.

    • Search Google Scholar
    • Export Citation
  • 47

    Woehrer A, Sander P, Haberler C. FISH-based detection of 1p 19q codeletion in oligodendroglial tumors: procedures and protocols for neuropathological practice—a publication under the auspices of the Research Committee of the European Confederation of Neuropathological Societies (Euro-CNS). Clin Neuropathol 2011;30:47-55.

    • Search Google Scholar
    • Export Citation
  • 48

    Parsons DW, Jones S, Zhang X. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-1812.

  • 49

    Houillier C, Wang X, Kaloshi G. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 2010;75:1560-1566.

    • Search Google Scholar
    • Export Citation
  • 50

    von Deimling A, Korshunov A, Hartmann C. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 2011;21:74-87.

    • Search Google Scholar
    • Export Citation
  • 51

    Dubbink HJ, Taal W, van Marion R. IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 2009;73:1792-1795.

    • Search Google Scholar
    • Export Citation
  • 52

    Capper D, Weissert S, Balss J. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 2010;20:245-254.

    • Search Google Scholar
    • Export Citation
  • 53

    Capper D, Zentgraf H, Balss J. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 2009;118:599-601.

  • 54

    van den Bent MJ, Dubbink HJ, Marie Y. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 2010;16:1597-1604.

    • Search Google Scholar
    • Export Citation
  • 55

    Hartmann C, Hentschel B, Wick W. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010;120:707-718.

    • Search Google Scholar
    • Export Citation
  • 56

    English DR, Young JP, Simpson JA. Ethnicity and risk for colorectal cancers showing somatic BRAF V600E mutation or CpG island methylator phenotype. Cancer Epidemiol Biomarkers Prev 2008;17:1774-1780.

    • Search Google Scholar
    • Export Citation
  • 57

    Limsui D, Vierkant RA, Tillmans LS. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 2010;102:1012-1022.

    • Search Google Scholar
    • Export Citation
  • 58

    Ogino S, Nosho K, Kirkner GJ. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 2009;58:90-96.

    • Search Google Scholar
    • Export Citation
  • 59

    Jones DT, Kocialkowski S, Liu L. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68:8673-8677.

    • Search Google Scholar
    • Export Citation
  • 60

    Aldape KD, Wang M, Sulman EP. RTOG 0525: molecular correlates from a randomized phase III trial of newly diagnosed glioblastoma [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract LBA2000.

    • Search Google Scholar
    • Export Citation
  • 61

    Hegi ME, Diserens AC, Gorlia T. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997-1003.

  • 62

    Stupp R, Hegi ME, Mason WP. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459-466.

    • Search Google Scholar
    • Export Citation
  • 63

    Stupp R, Mason WP, van den Bent MJ. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352:987-996.

  • 64

    Weller M, Stupp R, Reifenberger G. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 2010;6:39-51.

    • Search Google Scholar
    • Export Citation
  • 65

    Noushmehr H, Weisenberger DJ, Diefes K. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17:510-522.

    • Search Google Scholar
    • Export Citation
  • 66

    Toyota M, Yamamoto E. DNA methylation changes in cancer. Prog Mol Biol Transl Sci 2011;101:447-457.

  • 67

    Hilsenbeck SG, Ravdin PM, de Moor CA. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 1998;52:227-237.

    • Search Google Scholar
    • Export Citation
  • 68

    Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;365:1687-1717.

    • Search Google Scholar
    • Export Citation
  • 69

    Dowsett M, Allred C, Knox J. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol 2008;26:1059-1065.

    • Search Google Scholar
    • Export Citation
  • 70

    Viale G, Regan MM, Maiorano E. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98. J Clin Oncol 2007;25:3846-3852.

    • Search Google Scholar
    • Export Citation
  • 71

    Viale G, Regan MM, Maiorano E. Chemoendocrine compared with endocrine adjuvant therapies for node-negative breast cancer: predictive value of centrally reviewed expression of estrogen and progesterone receptors—International Breast Cancer Study Group. J Clin Oncol 2008;26:1404-1410.

    • Search Google Scholar
    • Export Citation
  • 72

    Carlson RW, Allred DC, Anderson BO. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 2, 2011. Available at: http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed October 18, 2011.

    • Search Google Scholar
    • Export Citation
  • 73

    Allred DC, Carlson RW, Berry DA. NCCN Task Force Report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Canc Netw 2009;7(Suppl 6):S1-21; quiz S22-23.

    • Search Google Scholar
    • Export Citation
  • 74

    Hammond ME, Hayes DF, Dowsett M. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 2010;134:907-922.

    • Search Google Scholar
    • Export Citation
  • 75

    Hammond ME, Hayes DF, Dowsett M. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 2010;28:2784-2795.

    • Search Google Scholar
    • Export Citation
  • 76

    Hammond ME, Hayes DF, Wolff AC. Clinical notice for American Society of Clinical Oncology-College of American Pathologists guideline recommendations on ER/PgR and HER2 testing in breast cancer. J Clin Oncol 2011;29:e458.

    • Search Google Scholar
    • Export Citation
  • 77

    Carlson RW, Moench SJ, Hammond ME. HER2 testing in breast cancer: NCCN Task Force report and recommendations. J Natl Compr Canc Netw 2006;4(Suppl 3):S1-22; quiz S23-24.

    • Search Google Scholar
    • Export Citation
  • 78

    Wolff AC, Hammond ME, Schwartz JN. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118-145.

    • Search Google Scholar
    • Export Citation
  • 79

    Albain KS, Barlow WE, Shak S. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 2010;11:55-65.

    • Search Google Scholar
    • Export Citation
  • 80

    Paik S, Shak S, Tang G. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817-2826.

    • Search Google Scholar
    • Export Citation
  • 81

    Paik S, Tang G, Shak S. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptorpositive breast cancer. J Clin Oncol 2006;24:3726-3734.

    • Search Google Scholar
    • Export Citation
  • 82

    Harris L, Fritsche H, Mennel R. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287-5312.

    • Search Google Scholar
    • Export Citation
  • 83

    Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med 2009;11:35-41.

    • Search Google Scholar
    • Export Citation
  • 84

    Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med 2009;11:66-73.

    • Search Google Scholar
    • Export Citation
  • 85

    Hormone therapy with or without combination chemotherapy in treating women who have undergone surgery for node-negative breast cancer (the TAILORx trial). Available at: http://clinicaltrials.gov/ct2/show/NCT00310180. Accessed September 30, 2011.

    • Search Google Scholar
    • Export Citation
  • 86

    Tamoxifen citrate, letrozole, anastrozole, or exemestane with or without chemotherapy in treating patients with invasive Rx-PONDER breast cancer. Available at: http://clinicaltrials.gov/ct2/show/NCT01272037. Accessed September 30, 2011.

    • Search Google Scholar
    • Export Citation
  • 87

    van 't Veer LJ, Dai H, van de Vijver MJ. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-536.

  • 88

    van de Vijver MJ, He YD, van 't Veer LJ. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999-2009.

    • Search Google Scholar
    • Export Citation
  • 89

    Cardoso F, Van't Veer L, Rutgers E. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008;26:729-735.

  • 90

    Cristofanilli M, Budd GT, Ellis MJ. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-791.

    • Search Google Scholar
    • Export Citation
  • 91

    Hayes DF, Cristofanilli M, Budd GT. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006;12:4218-4224.

    • Search Google Scholar
    • Export Citation
  • 92

    Brink M, Weijenberg MP, De Goeij AF. Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 2004;25:1619-1628.

    • Search Google Scholar
    • Export Citation
  • 93

    Nosho K, Irahara N, Shima K. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One 2008;3:e3698.

    • Search Google Scholar
    • Export Citation
  • 94

    Samowitz WS, Curtin K, Schaffer D. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Biomarkers Prev 2000;9:1193-1197.

    • Search Google Scholar
    • Export Citation
  • 95

    Bokemeyer C, Kohne C, Rougier P. Cetuximab with chemotherapy (CT) as first-line treatment for metastatic colorectal cancer (mCRC): analysis of the CRYSTAL and OPUS studies according to KRAS and BRAF mutation status [abstract]. J Clin Oncol 2010;28(Suppl 1):Abstract 3506.

    • Search Google Scholar
    • Export Citation
  • 96

    Van Cutsem E, Kohne CH, Hitre E. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408-1417.

    • Search Google Scholar
    • Export Citation
  • 97

    Benson AB III, Amoletti JP, Bekaii-Saab T. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Version 1, 2012. Available at: http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed October 18, 2011.

    • Search Google Scholar
    • Export Citation
  • 98

    Allegra CJ, Jessup JM, Somerfield MR. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 2009;27:2091-2096.

    • Search Google Scholar
    • Export Citation
  • 99

    De Roock W, Jonker DJ, Di Nicolantonio F. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 2010;304:1812-1820.

    • Search Google Scholar
    • Export Citation
  • 100

    Tejpar S, Bokemeyer C, Celik I. Influence of KRAS G13D mutations on outcome in patients with metastatic colorectal cancer (mCRC) treated with first-line chemotherapy with or without cetuximab [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract 3511.

    • Search Google Scholar
    • Export Citation
  • 101

    de Vogel S, Weijenberg MP, Herman JG. MGMT and MLH1 promoter methylation versus APC, KRAS and BRAF gene mutations in colorectal cancer: indications for distinct pathways and sequence of events. Ann Oncol 2009;20:1216-1222.

    • Search Google Scholar
    • Export Citation
  • 102

    Samowitz WS, Albertsen H, Herrick J. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 2005;129:837-845.

    • Search Google Scholar
    • Export Citation
  • 103

    De Roock W, Claes B, Bernasconi D. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753-762.

    • Search Google Scholar
    • Export Citation
  • 104

    Di Nicolantonio F, Martini M, Molinari F. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008;26:5705-5712.

    • Search Google Scholar
    • Export Citation
  • 105

    Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009;361:98-99.

  • 106

    Roth AD, Tejpar S, Delorenzi M. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 6000 trial. J Clin Oncol 2010;28:466-474.

    • Search Google Scholar
    • Export Citation
  • 107

    Samowitz WS, Sweeney C, Herrick J. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 2005;65:6063-6069.

    • Search Google Scholar
    • Export Citation
  • 108

    Ogino S, Kawasaki T, Brahmandam M. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 2005;7:413-421.

  • 109

    Tsiatis AC, Norris-Kirby A, Rich RG. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 2010;12:425-432.

    • Search Google Scholar
    • Export Citation
  • 110

    Arcila M, Lau C, Nafa K, Ladanyi M. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn 2011;13:64-73.

    • Search Google Scholar
    • Export Citation
  • 111

    Ogino S, Cantor M, Kawasaki T. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 2006;55:1000-1006.

    • Search Google Scholar
    • Export Citation
  • 112

    Weisenberger DJ, Siegmund KD, Campan M. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006;38:787-793.

    • Search Google Scholar
    • Export Citation
  • 113

    Des Guetz G, Schischmanoff O, Nicolas P. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 2009;45:1890-1896.

    • Search Google Scholar
    • Export Citation
  • 114

    Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 2010;46:2788-2798.

    • Search Google Scholar
    • Export Citation
  • 115

    Sargent DJ, Marsoni S, Monges G. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28:3219-3226.

    • Search Google Scholar
    • Export Citation
  • 116

    Hampel H, Frankel WL, Martin E. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol 2008;26:5783-5788.

    • Search Google Scholar
    • Export Citation
  • 117

    Hampel H, Frankel WL, Martin E. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 2005;352:1851-1860.

  • 118

    Umar A, Boland CR, Terdiman JP. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96:261-268.

    • Search Google Scholar
    • Export Citation
  • 119

    Umar A, Risinger JI, Hawk ET, Barrett JC. Testing guidelines for hereditary non-polyposis colorectal cancer. Nat Rev Cancer 2004;4:153-158.

  • 120

    Hutchins G, Southward K, Handley K. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011;29:1261-1270.

    • Search Google Scholar
    • Export Citation
  • 121

    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005;23:609-618.

  • 122

    Locker GY, Hamilton S, Harris J. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006;24:5313-5327.

    • Search Google Scholar
    • Export Citation
  • 123

    Bertagnolli MM, Niedzwiecki D, Compton CC. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B protocol 89803. J Clin Oncol 2009;27:1814-1821.

    • Search Google Scholar
    • Export Citation
  • 124

    Domingo E, Laiho P, Ollikainen M. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 2004;41:664-668.

    • Search Google Scholar
    • Export Citation
  • 125

    Julie C, Tresallet C, Brouquet A. Identification in daily practice of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer): revised Bethesda guidelines-based approach versus molecular screening. Am J Gastroenterol 2008;103:2825-2835; quiz 2836.

    • Search Google Scholar
    • Export Citation
  • 126

    Wanebo HJ, Rao B, Pinsky CM. Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer. N Engl J Med 1978;299:448-451.

    • Search Google Scholar
    • Export Citation
  • 127

    Wang JY, Tang R, Chiang JM. Value of carcinoembryonic antigen in the management of colorectal cancer. Dis Colon Rectum 1994;37:272-277.

  • 128

    Cohen SJ, Punt CJ, Iannotti N. Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 2009;20:1223-1229.

    • Search Google Scholar
    • Export Citation
  • 129

    Rahbari NN, Aigner M, Thorlund K. Meta-analysis shows that detection of circulating tumor cells indicates poor prognosis in patients with colorectal cancer. Gastroenterology 2010;138:1714-1726.

    • Search Google Scholar
    • Export Citation
  • 130

    Tol J, Koopman M, Miller MC. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol 2010;21:1006-1012.

    • Search Google Scholar
    • Export Citation
  • 131

    Rosenberg R, Maak M, Simon I. Independent validation of a prognostic genomic profile (ColoPrint) for stage II colon cancer (CC) patients [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract 358.

    • Search Google Scholar
    • Export Citation
  • 132

    Salazar R, Roepman P, Capella G. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol 2011;29:17-24.

    • Search Google Scholar
    • Export Citation
  • 133

    Dahlin AM, Palmqvist R, Henriksson ML. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res 2010;16:1845-1855.

    • Search Google Scholar
    • Export Citation
  • 134

    Barault L, Charon-Barra C, Jooste V. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res 2008;68:8541-8546.

    • Search Google Scholar
    • Export Citation
  • 135

    Ogino S, Nosho K, Kirkner GJ. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 2008;100:1734-1738.

    • Search Google Scholar
    • Export Citation
  • 136

    Ahn JB, Chung WB, Maeda O. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer 2011;117:1847-1854.

  • 137

    Ogino S, Galon J, Fuchs CS, Dranoff G. Cancer immunology-analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol, in press. doi: 10.1038/nrclinonc.2011.122.

    • Search Google Scholar
    • Export Citation
  • 138

    Dahlin AM, Henriksson ML, Van Guelpen B. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod Pathol 2011;24:671-682.

    • Search Google Scholar
    • Export Citation
  • 139

    Nosho K, Baba Y, Tanaka N. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 2010;222:350-366.

    • Search Google Scholar
    • Export Citation
  • 140

    Ogino S, Nosho K, Irahara N. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res 2009;15:6412-6420.

    • Search Google Scholar
    • Export Citation
  • 141

    Galon J, Costes A, Sanchez-Cabo F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-1964.

    • Search Google Scholar
    • Export Citation
  • 142

    Mlecnik B, Tosolini M, Kirilovsky A. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 2011;29:610-618.

    • Search Google Scholar
    • Export Citation
  • 143

    Lynch TJ, Bell DW, Sordella R. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-2139.

    • Search Google Scholar
    • Export Citation
  • 144

    Paez JG, Janne PA, Lee JC. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-1500.

  • 145

    Pao W, Miller V, Zakowski M. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101:13306-13311.

    • Search Google Scholar
    • Export Citation
  • 146

    Riely GJ, Politi KA, Miller VA, Pao W. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006;12:7232-7241.

    • Search Google Scholar
    • Export Citation
  • 147

    Shigematsu H, Lin L, Takahashi T. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-346.

    • Search Google Scholar
    • Export Citation
  • 148

    Ettinger DS, Akerley W, Borghaei H. NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer. Version 2, 2012. Available at: http://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed October 18, 2011.

    • Search Google Scholar
    • Export Citation
  • 149

    Keedy VL, Temin S, Somerfield MR. American Society of Clinical Oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol 2011;29:2121-2127.

    • Search Google Scholar
    • Export Citation
  • 150

    Pao W, Ladanyi M. Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res 2007;13:4954-4955.

    • Search Google Scholar
    • Export Citation
  • 151

    Dacic S. EGFR assays in lung cancer. Adv Anat Pathol 2008;15:241-247.

  • 152

    Han SW, Kim TY, Jeon YK. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 2006;12:2538-2544.

    • Search Google Scholar
    • Export Citation
  • 153

    Sholl LM, Xiao Y, Joshi V. EGFR mutation is a better predictor of response to tyrosine kinase inhibitors in non-small cell lung carcinoma than FISH, CISH, and immunohistochemistry. Am J Clin Pathol 2010;133:922-934.

    • Search Google Scholar
    • Export Citation
  • 154

    Kosaka T, Yatabe Y, Endoh H. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 2004;64:8919-8923.

    • Search Google Scholar
    • Export Citation
  • 155

    Marchetti A, Milella M, Felicioni L. Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in minor clones. Neoplasia 2009;11:1084-1092.

    • Search Google Scholar
    • Export Citation
  • 156

    Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006;118:257-262.

    • Search Google Scholar
    • Export Citation
  • 157

    Miller VA, Riely GJ, Zakowski MF. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 2008;26:1472-1478.

    • Search Google Scholar
    • Export Citation
  • 158

    Pao W, Miller VA, Politi KA. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73.

    • Search Google Scholar
    • Export Citation
  • 159

    Pao W, Wang TY, Riely GJ. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005;2:e17.

  • 160

    Kwak EL, Bang YJ, Camidge DR. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010;363:1693-1703.

  • 161

    Rodig SJ, Mino-Kenudson M, Dacic S. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 2009;15:5216-5223.

    • Search Google Scholar
    • Export Citation
  • 162

    Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs 2010;11:1477-1490.

    • Search Google Scholar
    • Export Citation
  • 163

    An investigational drug, PF-02341066 is being studied versus standard of care in patients with advanced non-small cell lung cancer with a specific gene profile involving the anaplastic lymphoma kinase (ALK) gene. Available at: http://www.clinicaltrials.gov/show/NCT00932893. Accessed September 30, 2011.

    • Search Google Scholar
    • Export Citation
  • 164

    FDA approves Xalkori with companion diagnostic for a type of late-stage lung cancer. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269856.htm. Accessed September 30, 2011.

    • Search Google Scholar
    • Export Citation
  • 165

    Mino-Kenudson M, Chirieac LR, Law K. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res 2010;16:1561-1571.

    • Search Google Scholar
    • Export Citation
  • 166

    Olaussen KA, Dunant A, Fouret P. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355:983-991.

    • Search Google Scholar
    • Export Citation
  • 167

    Simon GR, Sharma S, Cantor A. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest 2005;127:978-983.

    • Search Google Scholar
    • Export Citation
  • 168

    Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011;12:175-180.

  • 169

    Azzoli CG, Baker S Jr., Temin S. American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer. J Clin Oncol 2009;27:6251-6266.

    • Search Google Scholar
    • Export Citation
  • 170

    Andriole GL, Levin DL, Crawford ED. Prostate Cancer Screening in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial: findings from the initial screening round of a randomized trial. J Natl Cancer Inst 2005;97:433-438.

    • Search Google Scholar
    • Export Citation
  • 171

    Hugosson J, Carlsson S, Aus G. Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 2010;11:725-732.

    • Search Google Scholar
    • Export Citation
  • 172

    Schroder FH, Hugosson J, Roobol MJ. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009;360:1320-1328.

  • 173

    Carter HB, Ferrucci L, Kettermann A. Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst 2006;98:1521-1527.

    • Search Google Scholar
    • Export Citation
  • 174

    Mohler JL, Armstrong AJ, Bahnson RR. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Version 4, 2011. Available at: http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed October 18, 2011.

    • Search Google Scholar
    • Export Citation
  • 175

    Freedland SJ, Humphreys EB, Mangold LA. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 2005;294:433-439.

    • Search Google Scholar
    • Export Citation
  • 176

    Pound CR, Partin AW, Eisenberger MA. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999;281:1591-1597.

    • Search Google Scholar
    • Export Citation
  • 177

    Chun FK, de la Taille A, van Poppel H. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur Urol 2009;56:659-667.

    • Search Google Scholar
    • Export Citation
  • 178

    Hessels D, Schalken JA. The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 2009;6:255-261.

  • 179

    Roobol MJ, Haese A, Bjartell A. Tumour markers in prostate cancer III: biomarkers in urine. Acta Oncol 2011;50(Suppl 1):85-89.

  • 180

    Aubin SM, Reid J, Sarno MJ. PCA3 molecular urine test for predicting repeat prostate biopsy outcome in populations at risk: validation in the placebo arm of the dutasteride REDUCE trial. J Urol 2010;184:1947-1952.

    • Search Google Scholar
    • Export Citation
  • 181

    de la Taille A, Irani J, Graefen M. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol 2011;185:2119-2125.

  • 182

    Scher HI, Heller G, Molina A. Evaluation of circulating tumor cell (CTC) enumeration as an efficacy response biomarker of overall survival (OS) in metastatic castration-resistant prostate cancer (mCRPC): planned final analysis (FA) of COU-AA-301, a randomized, double-blind, placebo-controlled, phase III study of abiraterone acetate (AA) plus low-dose prednisone (P) post docetaxel [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract LBA4517.

    • Search Google Scholar
    • Export Citation
  • 183

    Berger MF, Lawrence MS, Demichelis F. The genomic complexity of primary human prostate cancer. Nature 2011;470:214-220.

  • 184

    Mackinnon AC, Yan BC, Joseph LJ, Al-Ahmadie HA. Molecular biology underlying the clinical heterogeneity of prostate cancer: an update. Arch Pathol Lab Med 2009;133:1033-1040.

    • Search Google Scholar
    • Export Citation
  • 185

    Dohner K, Dohner H. Molecular characterization of acute myeloid leukemia. Haematologica 2008;93:976-982.

  • 186

    Mrozek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev 2004;18:115-136.

  • 187

    Mardis ER, Ding L, Dooling DJ. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058-1066.

  • 188

    Mrozek K, Marcucci G, Paschka P. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007;109:431-448.

    • Search Google Scholar
    • Export Citation
  • 189

    Swerdlow SH, Campo E, Harris NL., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2008.

  • 190

    O'Donnell MR, Abboud CN, Altman J. NCCN Clinical Practice Guidelines in Oncology: Acute Myeloid Leukemia. Version 2, 2011. Available at: http://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Accessed October 18, 2011.

    • Search Google Scholar
    • Export Citation
  • 191

    Dohner H, Estey EH, Amadori S. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010;115:453-474.

    • Search Google Scholar
    • Export Citation
  • 192

    Falini B, Mecucci C, Tiacci E. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254-266.

  • 193

    Schlenk RF, Dohner K, Krauter J. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008;358:1909-1918.

    • Search Google Scholar
    • Export Citation
  • 194

    Becker H, Marcucci G, Maharry K. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2010;28:596-604.

    • Search Google Scholar
    • Export Citation
  • 195

    Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009;27:619-628.

    • Search Google Scholar
    • Export Citation
  • 196

    Burnett AK, Hills RK, Green C. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 2010;115:948-956.

    • Search Google Scholar
    • Export Citation
  • 197

    Marcucci G, Maharry K, Radmacher MD. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol 2008;26:5078-5087.

    • Search Google Scholar
    • Export Citation
  • 198

    Taskesen E, Bullinger L, Corbacioglu A. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 2011;117:2469-2475.

    • Search Google Scholar
    • Export Citation
  • 199

    Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009;113:3088-3091.

    • Search Google Scholar
    • Export Citation
  • 200

    Paschka P. Core binding factor acute myeloid leukemia. Semin Oncol 2008;35:410-417.

  • 201

    Paschka P, Marcucci G, Ruppert AS. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B study. J Clin Oncol 2006;24:3904-3911.

    • Search Google Scholar
    • Export Citation
  • 202

    Whitman SP, Ruppert AS, Marcucci G. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 2007;109:5164-5167.

    • Search Google Scholar
    • Export Citation
  • 203

    Tang JL, Hou HA, Chen CY. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009;114:5352-5361.

    • Search Google Scholar
    • Export Citation
  • 204

    Gaidzik VI, Schlenk RF, Moschny S. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 2009;113:4505-4511.

    • Search Google Scholar
    • Export Citation
  • 205

    Paschka P, Marcucci G, Ruppert AS. Wilms' tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2008;26:4595-4602.

    • Search Google Scholar
    • Export Citation
  • 206

    Virappane P, Gale R, Hills R. Mutation of the Wilms' tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol 2008;26:5429-5435.

    • Search Google Scholar
    • Export Citation
  • 207

    Marcucci G, Maharry K, Wu YZ. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010;28:2348-2355.

    • Search Google Scholar
    • Export Citation
  • 208

    Paschka P, Schlenk RF, Gaidzik VI. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010;28:3636-3643.

    • Search Google Scholar
    • Export Citation
  • 209

    Carbuccia N, Trouplin V, Gelsi-Boyer V. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 2010;24:469-473.

    • Search Google Scholar
    • Export Citation
  • 210

    Haferlach C, Dicker F, Herholz H. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 2008;22:1539-1541.

    • Search Google Scholar
    • Export Citation
  • 211

    Ley TJ, Ding L, Walter MJ. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363:2424-2433.

  • 212

    Metzeler KH, Maharry K, Radmacher MD. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011;29:1373-1381.

    • Search Google Scholar
    • Export Citation
  • 213

    Neubauer A, Maharry K, Mrozek K. Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol 2008;26:4603-4609.

    • Search Google Scholar
    • Export Citation
  • 214

    Nibourel O, Kosmider O, Cheok M. Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood 2010;116:1132-1135.

    • Search Google Scholar
    • Export Citation
  • 215

    Gilbert MR, Wang M, Aldape KD. RTOG 0525: a randomized phase III trial comparing standard adjuvant temozolomide (TMZ) with a dose-dense (dd) schedule in newly diagnosed glioblastoma (GBM) [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract 2006.

    • Search Google Scholar
    • Export Citation
  • 216

    Jeuken JW, Wesseling P. MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential. J Pathol 2010;222:324-328.

    • Search Google Scholar
    • Export Citation
  • 217

    Straver ME, Glas AM, Hannemann J. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 2010;119:551-558.

    • Search Google Scholar
    • Export Citation
  • 218

    Knauer M, Mook S, Rutgers EJ. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 2010;120:655-661.

    • Search Google Scholar
    • Export Citation
  • 219

    Budd GT, Cristofanilli M, Ellis MJ. Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin Cancer Res 2006;12:6403-6409.

    • Search Google Scholar
    • Export Citation
  • 220

    Cristofanilli M, Hayes DF, Budd GT. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 2005;23:1420-1430.

    • Search Google Scholar
    • Export Citation
  • 221

    De Giorgi U, Valero V, Rohren E. Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol 2009;27:3303-3311.

    • Search Google Scholar
    • Export Citation
  • 222

    Tol J, Dijkstra JR, Klomp M. Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur J Cancer 2010;46:1997-2009.

    • Search Google Scholar
    • Export Citation
  • 223

    Douillard JY, Shepherd FA, Hirsh V. Molecular predictors of outcome with gefitinib and docetaxel in previously treated nonsmall-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol 2010;28:744-752.

    • Search Google Scholar
    • Export Citation
  • 224

    Kerr D, Gray R, Quirke P. A quantitative multigene RT-PCR assay for prediction of recurrence in stage II colon cancer: selection of the genes in four large studies and results of the independent, prospectively designed QUASAR validation study [abstract]. J Clin Oncol 2009;27(Suppl 1):Abstract 4000.

    • Search Google Scholar
    • Export Citation
  • 225

    Venook AP, Niedzwiecki D, Lopatin M. Validation of a 12-gene colon cancer recurrence score (RS) in patients (pts) with stage II colon cancer (CC) from CALGB 9581 [abstract]. J Clin Oncol 2011;29(Suppl 1):Abstract 3518.

    • Search Google Scholar
    • Export Citation
  • 226

    Mok TS, Wu YL, Thongprasert S. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947-957.

  • 227

    Yang CH, Fukuoka M, Mok TS. Final overall survival (OS) results from a phase III, randomised, open-label, first-line study of gefitinib (G) v carboplatin/paclitaxel (C/P) in clinically selected patients with advanced nonsmall cell lung cancer (NSCLC) in Asia (IPASS). Ann Oncol 2010;21:viii1-viii2.

    • Search Google Scholar
    • Export Citation
  • 228

    Fukuoka M, Wu YL, Thongprasert S. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011;29:2866-2874.

    • Search Google Scholar
    • Export Citation
  • 229

    Lee DH, Park K, Kim JH. Randomized phase III trial of gefitinib versus docetaxel in non-small cell lung cancer patients who have previously received platinum-based chemotherapy. Clin Cancer Res 2010;16:1307-1314.

    • Search Google Scholar
    • Export Citation
  • 230

    Maemondo M, Inoue A, Kobayashi K. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380-2388.

  • 231

    Mitsudomi T, Steinberg SM, Oie HK. ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res 1991;51:4999-5002.

    • Search Google Scholar
    • Export Citation
  • 232

    Linardou H, Dahabreh IJ, Kanaloupiti D. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and metaanalysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 2008;9:962-972.

    • Search Google Scholar
    • Export Citation
  • 233

    Mao C, Qiu LX, Liao RY. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer 2010;69:272-278.

    • Search Google Scholar
    • Export Citation
  • 234

    Freedland SJ, Partin AW. Detecting prostate cancer with molecular markers: uPM3. Rev Urol 2005;7:236-238.

  • 235

    Nogueira L, Corradi R, Eastham JA. Other biomarkers for detecting prostate cancer. BJU Int 2010;105:166-169.

  • 236

    de Bono JS, Scher HI, Montgomery RB. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008;14:6302-6309.

    • Search Google Scholar
    • Export Citation
  • 237

    Danila DC, Heller G, Gignac GA. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 2007;13:7053-7058.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 0 0
Full Text Views 905 775 55
PDF Downloads 260 247 20
EPUB Downloads 0 0 0