Biologics in Cervical Cancer Therapy

Restricted access

Though cervical cancer incidence and prevalence have decreased in the United States, the disease remains a very important cause of morbidity and mortality worldwide. Current therapy for early-stage disease is surgical with adjuvant therapy being administered according to histopathologic findings. Pelvic radiation with concomitant platinum-based chemotherapy is used to treat locally advanced disease, whereas metastatic and recurrent lesions continue to be difficult to effectively treat and cure. Clinical trials in this latter scenario have suggested that clinical benefit may be associated with biologic therapies. This article focuses on the use of targeted therapies in cervical cancer, specifically evaluating antiangiogenesis and endothelial growth factor receptor–related treatments.

Correspondence: Bradley J. Monk, MD, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Creighton University School of Medicine at St. Joseph's Hospital and Medical Center, 500 West Thomas Road, Suite 800, Phoenix, AZ 85013. E-mail: Bradley.monk@chw.edu
  • 1.

    JemalASiegelRWardE. Cancer statistics, 2009. CA Cancer J Clin2009;59:225249.

  • 2.

    JemalASiegelRWardE. Cancer statistics, 2006. CA Cancer J Clin2006;56:106130.

  • 3.

    American Cancer Society. Cancer Facts and Figures for African Americans 2007–2008. Available at: http://www.cancer.org/Research/CancerFactsFigures/cancer-facts-figures-for-african-americans-2007-2008. Accessed October 25 2010.

    • Search Google Scholar
    • Export Citation
  • 4.

    American Cancer Society. Cancer Facts and Figures for Hispanics/Latinos 2006–2008. Available at: http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFiguresforHispanicsLatinos/cancer-facts--figures-for-hispanics-latinos-2006-2008. Accessed October 25 2010.

    • Search Google Scholar
    • Export Citation
  • 5.

    HopflGOgunsholaOGassmannM. HIFs and tumors—causes and consequences. Am J Physiol Regul Integr Comp Physiol2004;286:608623.

  • 6.

    BrownLMCowenRLDebrayC. Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1. Mol Pharmacol2006;69:411418.

    • Search Google Scholar
    • Export Citation
  • 7.

    BeppuKNakamuraKLinehanWM. Toptecan blocks hypoxia-inducible factor-1 alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res2005;65:47754781.

    • Search Google Scholar
    • Export Citation
  • 8.

    KutCMacGFPopelAS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer2007;37:978985.

  • 9.

    FukumuraDXavierRSugiuraT. Tumor induction of VEGF promoter activity in stromal cells. Cell1998;94:715725.

  • 10.

    LiangWCWuXPealeFV. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem2006;281:951961.

    • Search Google Scholar
    • Export Citation
  • 11.

    KesslerTFehrmannFBiekerR. Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets2007;8:257268.

    • Search Google Scholar
    • Export Citation
  • 12.

    DonXHanZCYangR. Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol2007;35:105118.

  • 13.

    DallasNAFanFGrayMJ. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev2007;26:433441.

    • Search Google Scholar
    • Export Citation
  • 14.

    RasilaKKBurgerRASmithH. Angiogenesis in gynecological oncology-mechanism of tumor progression and therapeutic targets. Int J Gynecol Cancer2005;15:710726.

    • Search Google Scholar
    • Export Citation
  • 15.

    FoxSGeneraliDHarrisA. Breast tumour angiogenesis. Breast Cancer Res2007;9:216.

  • 16.

    WillmottLMonkB. Cervical cancer therapy: current, future, and anti-angiogenesis targeted treatment. Expert Rev Anticancer Ther2009;9:895903.

    • Search Google Scholar
    • Export Citation
  • 17.

    CooperRAWilksDPLogueJP. High tumor angiogenesis is associated with poorer survival in carcinoma of the cervix treated with radiotherapy. Clin Cancer Res1998;4:27952800.

    • Search Google Scholar
    • Export Citation
  • 18.

    HawighorstHKnapsteinPWeikelW. Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res1997;57:47774786.

    • Search Google Scholar
    • Export Citation
  • 19.

    LosMRoodhartJMVoestEE. Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncologist2007;12:443450.

    • Search Google Scholar
    • Export Citation
  • 20.

    HurwitzHFehrenbacherLCartwrightT. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC [abstract]. J Clin Oncol2003;22(Suppl 1):Abstract 3646.

    • Search Google Scholar
    • Export Citation
  • 21.

    WrightJDVivianoDPowellMA. Bevacizumab combination therapy in heavily pretreated, recurrent cervical cancer. Gynecol Oncol2006;103:489493.

    • Search Google Scholar
    • Export Citation
  • 22.

    MonkBJStillMWBurgerRA. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group Study. J Clin Oncol2009;27:10691074.

    • Search Google Scholar
    • Export Citation
  • 23.

    Paclitaxel and cisplatin or topotecan with or without bevacizumab in treating patients with stage IVB recurrent or persistent cervical cancer. Available at: http://clinicaltrials.gov/show/NCT00803062. Accessed October 25 2010.

    • Search Google Scholar
    • Export Citation
  • 24.

    RaymondEFaivreSArmandJP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs2000;60(Suppl 1):1523.

    • Search Google Scholar
    • Export Citation
  • 25.

    CarpenterGCohenS. Epidermal growth factor. J Biol Chem1990;265:77097712.

  • 26.

    OkanoJGaslightwalaIBirnbaumMJ. Akt/protein kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem2000;275:3093430942.

    • Search Google Scholar
    • Export Citation
  • 27.

    KimJWKimYTKimDS. Expression of epidermal growth factor receptor in carcinoma of the cervix. Gynecol Oncol1996;60:283287.

  • 28.

    WeberWGillGNSpiessJ. Production of an epidermal growth factor receptor-related protein. Science1984;224:294297.

  • 29.

    RubinMSShinDMPasmantierM. Monoclonal antibody (MoAb) IMC-C225, an antiepidermal growth factor receptor (EGFr), for patients (pts) with EGFr-positive tumors refractory to or in relapse from previous therapeutic regimens [abstract]. J Clin Oncol2000;19(Suppl 1):Abstract 498.

    • Search Google Scholar
    • Export Citation
  • 30.

    SchilderRJSillMWLee. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Int J Gynecol Cancer2009;19:929933.

    • Search Google Scholar
    • Export Citation
  • 31.

    BaselgaJ. New therapeutic agents targeting the epidermal growth factor receptor. J Clin Oncol2000;18:54S59S.

  • 32.

    CiardielloFDamianoVBiancoR. Antitumor activity of combined blockade of epidermal growth factor receptor and protein kinase A. J Natl Cancer Inst1996;88:17701776.

    • Search Google Scholar
    • Export Citation
  • 33.

    KawamotoTSatoJDLeA. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci USA1983;80:13371341.

    • Search Google Scholar
    • Export Citation
  • 34.

    SatoJDKawamotoTLeAD. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med1983;1:511529.

    • Search Google Scholar
    • Export Citation
  • 35.

    FanZLuYWuXMendelsohnJ. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem1994;269:2759527602.

    • Search Google Scholar
    • Export Citation
  • 36.

    MandalMAdamLMendelsohnJKumarR. Nuclear targeting of Bax during apoptosis in human colorectal cancer cells. Oncogene1998;17:9991007.

  • 37.

    WuXRubinMFanZ. Involvement of p27KIP1 in G1 arrest mediated by an antiepidermal growth factor receptor monoclonal antibody. Oncogene1996;12:13971403.

    • Search Google Scholar
    • Export Citation
  • 38.

    PetitAMRakJHungMC. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol1997;151:15231530.

    • Search Google Scholar
    • Export Citation
  • 39.

    MatsumotoTPerrottePBar-EliM. Blockade of EGF-R signalling with anti-EGFR monoclonal antibody (Mb) C225 inhibits matrix metalloproteinase-9 (MMP-9) expression and invasion of human transitional cell carcinoma (tCC) in vitro and in vivo [abstract]. Proc Am Assoc Cancer Res1998;39:Abstract 83.

    • Search Google Scholar
    • Export Citation
  • 40.

    BelloneSFreraGLandolfiG. Overexpression of epidermal growth factor type-1 receptor (EGF-R1) in cervical cancer: implications for Cetuximab-mediated therapy in recurrent/metastatic disease. Gynecol Oncol2007;106:513520.

    • Search Google Scholar
    • Export Citation
  • 41.

    FarleyJSillMBirrerM. Phase II evaluation of cisplatin plus cetuximab in the treatment of recurrent and persistent cancers of the cervix: a limited access phase II study of the Gynecologic Oncology Group [abstract]. J Clin Oncol2009;27(Suppl 1):Abstract 5521.

    • Search Google Scholar
    • Export Citation
  • 42.

    MonkBJMas LopezLZarbaJJ. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J Clin Oncol2010;28:35623569.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 178 17
PDF Downloads 8 8 2
EPUB Downloads 0 0 0