Epigenetic Modulation in Hematologic Malignancies: Challenges and Progress

Genetic alterations, including gene mutations, and chromosomal amplifications, deletions, inversions, and translocations, are hallmarks of the molecular biology of cancer. These events lead to oncogene activation, formation of chimeric oncoproteins, and/or inactivation of tumor suppressor genes. Such genetic changes contribute to the neoplastic transformation of cells, as well as the eventual acquisition by malignant cells of a more aggressive biologic and clinical behavior. However, in recent years, it has become apparent that these genetic events are not the sole determinants of the biologic behavior of tumor cells. Indeed, it is becoming increasingly apparent that tumor cells with a given genotype exhibit a differential phenotype depending on the microenvironment in which they reside. Furthermore, extensive data have shown that derivative daughter cells of neoplastic, as well as normal cells, inherit changes in the patterns of gene expression that are not associated with changes in the primary DNA sequence but are instead related to changes in chromatin structure and its accessibility for transcriptional activity. These heritable gene expression changes that are not associated with changes in the primary nucleotide sequence are referred to as epigenetic changes. This review provides an overview of the regulation of the “epigenome” in neoplastic cells, with particular emphasis on DNA methylation and histone acetylation as therapeutic targets for hematologic malignancies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

References

  • 1.

    BalmainAGrayJPonderB. The genetics and genomics of cancer. Nat Genet2003;33:238-244.

  • 2.

    ParsonsDWJonesSZhangX. An integrated genomic analysis of human glioblastoma multiforme. Science2008;321:1807-1812.

  • 3.

    PiekarzRLBatesSE. Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res2009;15:3918-3926.

  • 4.

    MitsiadesCSMcMillinDWKlippelS. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am2007;21:1007-1034vii–viii.

    • Search Google Scholar
    • Export Citation
  • 5.

    JonesPABaylinSB. The fundamental role of epigenetic events in cancer. Nat Rev Genet2002;3:415-428.

  • 6.

    JenuweinTAllisCD. Translating the histone code. Science2001;293:1074-1080.

  • 7.

    LugerKMaderAWRichmondRK. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature1997;389:251-260.

  • 8.

    Gardiner-GardenMFrommerM. CpG islands in vertebrate genomes. J Mol Biol1987;196:261-282.

  • 9.

    ConstanciaMPickardBKelseyGReikW. Imprinting mechanisms. Genome Res1998;8:881-900.

  • 10.

    RobertsonKDJonesPA. Dynamic interrelationships between DNA replication, methylation, and repair. Am J Hum Genet1997;61:1220-1224.

  • 11.

    FeinbergAPVogelsteinB. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun1983;111:47-54.

  • 12.

    FeinbergAPVogelsteinB. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature1983;301:89-92.

  • 13.

    EstellerM. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene2002;21:5427-5440.

  • 14.

    HermanJGBaylinSB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med2003;349:2042-2054.

  • 15.

    EstellerMCornPGBaylinSBHermanJG. A gene hypermethylation profile of human cancer. Cancer Res2001;61:3225-3229.

  • 16.

    EngCHermanJGBaylinSB. A bird's eye view of global methylation. Nat Genet2000;24:101-102.

  • 17.

    EggerGLiangGAparicioAJonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature2004;429:457-463.

  • 18.

    GaudetFHodgsonJGEdenA. Induction of tumors in mice by genomic hypomethylation. Science2003;300:489-492.

  • 19.

    EdenAGaudetFWaghmareAJaenischR. Chromosomal instability and tumors promoted by DNA hypomethylation. Science2003;300:455.

  • 20.

    HowellCYBestorTHDingF. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell2001;104:829-838.

  • 21.

    UlanerGAVuTHLiT. Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet2003;12:535-549.

    • Search Google Scholar
    • Export Citation
  • 22.

    Roman-GomezJCastillejoJAJimenezA. 5' CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood2002;99:2291-2296.

    • Search Google Scholar
    • Export Citation
  • 23.

    BoldtDH. p21(CIP1/WAF1/SDI1) hypermethylation: an exciting new lead in ALL biology. Blood2002;99:2283.

  • 24.

    SakaiTToguchidaJOhtaniN. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet1991;48:880-888.

  • 25.

    ChimCSWongKYLoongF. Frequent epigenetic inactivation of Rb1 in addition to p15 and p16 in mantle cell and follicular lymphoma. Hum Pathol2007;38:1849-1857.

    • Search Google Scholar
    • Export Citation
  • 26.

    VerdoneLAgricolaECasertaMDi MauroE. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic2006;5:209-221.

  • 27.

    VerdoneLCasertaMDi MauroE. Role of histone acetylation in the control of gene expression. Biochem Cell Biol2005;83:344-353.

  • 28.

    YangXJ. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays2004;26:1076-1087.

  • 29.

    FuksFBurgersWABrehmA. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet2000;24:88-91.

  • 30.

    BachmanKEParkBHRheeI. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell2003;3:89-95.

    • Search Google Scholar
    • Export Citation
  • 31.

    EspadaJBallestarEFragaMF. Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem2004;279:37175-37184.

    • Search Google Scholar
    • Export Citation
  • 32.

    LachnerMJenuweinT. The many faces of histone lysine methylation. Curr Opin Cell Biol2002;14:286-298.

  • 33.

    LachnerMO'SullivanRJJenuweinT. An epigenetic road map for histone lysine methylation. J Cell Sci2003;116:2117-2124.

  • 34.

    HakeSBXiaoAAllisCD. Linking the epigenetic 'language' of covalent histone modifications to cancer. Br J Cancer2004;90:761-769.

  • 35.

    EstellerM. Epigenetics in cancer. N Engl J Med2008;358:1148-1159.

  • 36.

    StirzakerCMillarDSPaulCL. Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res1997;57:2229-2237.

  • 37.

    EstellerMTortolaSToyotaM. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res2000;60:129-133.

    • Search Google Scholar
    • Export Citation
  • 38.

    FosterSAWongDJBarrettMTGallowayDA. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol1998;18:1793-1801.

    • Search Google Scholar
    • Export Citation
  • 39.

    EstellerMFragaMFGuoM. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet2001;10:3001-3007.

    • Search Google Scholar
    • Export Citation
  • 40.

    KikuchiTToyotaMItohF. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene2002;21:2741-2749.

    • Search Google Scholar
    • Export Citation
  • 41.

    CornPGKuerbitzSJvan NoeselMM. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5' CpG island methylation. Cancer Res1999;59:3352-3356.

    • Search Google Scholar
    • Export Citation
  • 42.

    KawanoSMillerCWGombartAF. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood1999;94:1113-1120.

  • 43.

    TakitaJYangHWChenYY. Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene2001;20:4424-4432.

    • Search Google Scholar
    • Export Citation
  • 44.

    GalmOWilopSReicheltJ. DNA methylation changes in multiple myeloma. Leukemia2004;18:1687-1692.

  • 45.

    BanelliBCascianoICroceM. Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med2002;8:1333-1335; author reply 1335.

    • Search Google Scholar
    • Export Citation
  • 46.

    ConwayKEMcConnellBBBowringCE. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res2000;60:6236-6242.

    • Search Google Scholar
    • Export Citation
  • 47.

    StimsonKMVertinoPM. Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem2002;277:4951-4958.

    • Search Google Scholar
    • Export Citation
  • 48.

    GalmOYoshikawaHEstellerM. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood2003;101:2784-2788.

    • Search Google Scholar
    • Export Citation
  • 49.

    YoshikawaHMatsubaraKQianGS. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet2001;28:29-35.

    • Search Google Scholar
    • Export Citation
  • 50.

    HeBYouLUematsuK. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A2003;100:14133-14138.

    • Search Google Scholar
    • Export Citation
  • 51.

    NiwaYKandaHShikauchiY. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene2005;24:6406-6417.

    • Search Google Scholar
    • Export Citation
  • 52.

    EstellerMGuoMMorenoV. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res2002;62:5902-5905.

    • Search Google Scholar
    • Export Citation
  • 53.

    TaniguchiTTischkowitzMAmezianeN. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med2003;9:568-574.

    • Search Google Scholar
    • Export Citation
  • 54.

    MelkiJRVincentPCClarkSJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res1999;59:3730-3740.

  • 55.

    HegiMELiuLHermanJG. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol2008;26:4189-4199.

    • Search Google Scholar
    • Export Citation
  • 56.

    PazMFYaya-TurRRojas-MarcosI. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res2004;10:4933-4938.

    • Search Google Scholar
    • Export Citation
  • 57.

    HermanJGLatifFWengY. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A1994;91:9700-9704.

    • Search Google Scholar
    • Export Citation
  • 58.

    CalvisiDFLaduSGordenA. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest2007;117:2713-2722.

    • Search Google Scholar
    • Export Citation
  • 59.

    KuzminIGeilLGeH. Analysis of aberrant methylation of the VHL gene by transgenes, monochromosome transfer, and cell fusion. Oncogene1999;18:5672-5679.

    • Search Google Scholar
    • Export Citation
  • 60.

    BachmanKEHermanJGCornPG. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res1999;59:798-802.

    • Search Google Scholar
    • Export Citation
  • 61.

    KramerASchultheisBBergmannJ. Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma. Leukemia2002;16:1844-1851.

  • 62.

    CameronEEBachmanKEMyohanenS. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet1999;21:103-107.

    • Search Google Scholar
    • Export Citation
  • 63.

    BruserudOStapnesCErsvaerE. Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell. Curr Pharm Biotechnol2007;8:388-400.

    • Search Google Scholar
    • Export Citation
  • 64.

    BruserudOStapnesCTronstadKJ. Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML. Expert Opin Ther Targets2006;10:51-68.

    • Search Google Scholar
    • Export Citation
  • 65.

    ShilatifardA. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol2008;20:341-348.

    • Search Google Scholar
    • Export Citation
  • 66.

    ShilatifardA. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem2006;75:243-269.

    • Search Google Scholar
    • Export Citation
  • 67.

    EstellerMGaidanoGGoodmanSN. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst2002;94:26-32.

    • Search Google Scholar
    • Export Citation
  • 68.

    EstellerMGarcia-FoncillasJAndionE. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med2000;343:1350-1354.

    • Search Google Scholar
    • Export Citation
  • 69.

    HegiMEDiserensACGorliaT. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med2005;352:997-1003.

  • 70.

    GorliaTvan den BentMJHegiME. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol2008;9:29-38.

    • Search Google Scholar
    • Export Citation
  • 71.

    ChimCSWongSYKwongYL. Aberrant gene promoter methylation in acute promyelocytic leukaemia: profile and prognostic significance. Br J Haematol2003;122:571-578.

    • Search Google Scholar
    • Export Citation
  • 72.

    ShenLToyotaMKondoY. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood2003;101:4131-4136.

    • Search Google Scholar
    • Export Citation
  • 73.

    UchidaTKinoshitaTOhnoT. Hypermethylation of p16INK4A gene promoter during the progression of plasma cell dyscrasia. Leukemia2001;15:157-165.

    • Search Google Scholar
    • Export Citation
  • 74.

    MateosMVGarcia-SanzRLopez-PerezR. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol2002;118:1034-1040.

    • Search Google Scholar
    • Export Citation
  • 75.

    NgMHToKWLoKW. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma. Clin Cancer Res2001;7:1724-1729.

  • 76.

    RosenfeldCS. Clinical development of decitabine as a prototype for an epigenetic drug program. Semin Oncol2005;32:465-472.

  • 77.

    FenauxPMuftiGJHellstrom-LindbergE. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomized, open-label-phase III study. Lancet Oncol2009;10:223-232.

    • Search Google Scholar
    • Export Citation
  • 78.

    KantarjianHMO'BrienSHuangX. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer2007;109:1133-1137.

    • Search Google Scholar
    • Export Citation
  • 79.

    IssaJPGarcia-ManeroGGilesFJ. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood2004;103:1635-1640.

    • Search Google Scholar
    • Export Citation
  • 80.

    Muller-ThomasCSchusterTPeschelCGotzeKS. A limited number of 5-azacitidine cycles can be effective treatment in MDS. Ann Hematol2009;88:213-219.

    • Search Google Scholar
    • Export Citation
  • 81.

    MaslakPChanelSCamachoLH. Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia2006;20:212-217.

    • Search Google Scholar
    • Export Citation
  • 82.

    NandSGodwinJSmithS. Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: results from a pilot trial. Leuk Lymphoma2008;49:2141-2147.

    • Search Google Scholar
    • Export Citation
  • 83.

    GriffithsEAGoreSD. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol2008;45:23-30.

    • Search Google Scholar
    • Export Citation
  • 84.

    De Padua SilvaLde LimaMKantarjianH. Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marrow Transplant2009;43:839-843.

    • Search Google Scholar
    • Export Citation
  • 85.

    OkiYKantarjianHMGharibyanV. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer2007;109:899-906.

    • Search Google Scholar
    • Export Citation
  • 86.

    BlumWKlisovicRBHackansonB. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol2007;25:3884-3891.

    • Search Google Scholar
    • Export Citation
  • 87.

    SorianoAOYangHFaderlS. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood2007;110:2302-2308.

    • Search Google Scholar
    • Export Citation
  • 88.

    Quintas-CardamaATongWKantarjianH. A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia2008;22:965-970.

    • Search Google Scholar
    • Export Citation
  • 89.

    WijermansPWRuterBBaerMR. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res2008;32:587-591.

    • Search Google Scholar
    • Export Citation
  • 90.

    Garcia-ManeroG. Demethylating agents in myeloid malignancies. Curr Opin Oncol2008;20:705-710.

  • 91.

    LozzioCBLozzioBBMachadoEA. Effects of sodium butyrate on human chronic myelogenous leukaemia cell line K562. Nature1979;281:709-710.

  • 92.

    HoffmanRMurnaneMJBenzEJJr. Induction of erythropoietic colonies in a human chronic myelogenous leukemia cell line. Blood1979;54:1182-1187.

    • Search Google Scholar
    • Export Citation
  • 93.

    BakerPNMorserJBurkeDC. Effects of sodium butyrate on a human lymphoblastoid cell line (Namalwa) and its interferon production. J Interferon Res1980;1:71-77.

    • Search Google Scholar
    • Export Citation
  • 94.

    BodeJHochkeppelHKMaassK. Links between effects of butyrate on histone hyperacetylation and regulation of interferon synthesis in Namalva and FS-4 cell lines. J Interferon Res1982;2:159-166.

    • Search Google Scholar
    • Export Citation
  • 95.

    KruhJ. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem1982;42:65-82.

  • 96.

    GoreSDCarducciMA. Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors. Expert Opin Investig Drugs2000;9:2923-2934.

    • Search Google Scholar
    • Export Citation
  • 97.

    PrinceHMBishtonMJHarrisonSJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res2009;15:3958-3969.

  • 98.

    PiekarzRLRobeyRSandorV. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood2001;98:2865-2868.

    • Search Google Scholar
    • Export Citation
  • 99.

    DuvicMTalpurRNiX. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood2007;109:31-39.

    • Search Google Scholar
    • Export Citation
  • 100.

    OlsenEAKimYHKuzelTM. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol2007;25:3109-3115.

    • Search Google Scholar
    • Export Citation
  • 101.

    MannBSJohnsonJRCohenMH. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist2007;12:1247-1252.

    • Search Google Scholar
    • Export Citation
  • 102.

    EllisLPanYSmythGK. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res2008;14:4500-4510.

    • Search Google Scholar
    • Export Citation
  • 103.

    MitsiadesCSMitsiadesNSMcMullanCJ. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A2004;101:540-545.

    • Search Google Scholar
    • Export Citation
  • 104.

    MitsiadesNMitsiadesCSRichardsonPG. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood2003;101:4055-4062.

    • Search Google Scholar
    • Export Citation
  • 105.

    RichardsonPMitsiadesCColsonK. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma2008;49:502-507.

    • Search Google Scholar
    • Export Citation
  • 106.

    BadrosAPhilipSNiesvizkyR. Phase I trial of suberoylanilide hydroxamic acid (SAHA) plus bortezomib (Bort) in relapsed multiple myeloma (MM) patients (pts). Blood2007;110:354A-354A.

    • Search Google Scholar
    • Export Citation
  • 107.

    WeberDMJagannathSMazumderA. Phase I trial of oral vorinostat (Suberoylanilide hydroxamic acid, SAHA) in combination with bortezomib in patients with advanced multiple myeloma. Blood2007;110:355A-355A.

    • Search Google Scholar
    • Export Citation
  • 108.

    CatleyLWeisbergETaiYT. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood2003;102:2615-2622.

    • Search Google Scholar
    • Export Citation
  • 109.

    CatleyLWeisbergEKiziltepeT. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood2006;108:3441-3449.

    • Search Google Scholar
    • Export Citation
  • 110.

    HideshimaTBradnerJEWongJ. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A2005;102:8567-8572.

    • Search Google Scholar
    • Export Citation
  • 111.

    HaggartySJKoellerKMWongJC. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A2003;100:4389-4394.

    • Search Google Scholar
    • Export Citation
  • 112.

    BaliPPranpatMBradnerJ. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem2005;280:26729-26734.

    • Search Google Scholar
    • Export Citation
  • 113.

    Garcia-ManeroGYangHBueso-RamosC. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood2008;111:1060-1066.

    • Search Google Scholar
    • Export Citation
  • 114.

    OdenikeOMAlkanSSherD. Histone deacetylase inhibitor romidepsin has differential activity in core binding factor acute myeloid leukemia. Clin Cancer Res2008;14:7095-7101.

    • Search Google Scholar
    • Export Citation
  • 115.

    GilesFFischerTCortesJ. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res2006;12:4628-4635.

    • Search Google Scholar
    • Export Citation
  • 116.

    ByrdJCMarcucciGParthunMR. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood2005;105:959-967.

    • Search Google Scholar
    • Export Citation
  • 117.

    KlimekVMFircanisSMaslakP. Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res2008;14:826-832.

    • Search Google Scholar
    • Export Citation
  • 118.

    KellyWKRichonVMO'ConnorO. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res2003;9:3578-3588.

    • Search Google Scholar
    • Export Citation
  • 119.

    EllisLAtadjaPWJohnstoneRW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther2009;8:1409-1420.

  • 120.

    BotsMJohnstoneRW. Rational combinations using HDAC inhibitors. Clin Cancer Res2009;15:3970-3977.

  • 121.

    BoldenJEPeartMJJohnstoneRW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Disc2006;5:769-784.

  • 122.

    AoyagiSArcherTK. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol2005;15:565-567.

  • 123.

    JeongJWBaeMKAhnMY. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell2002;111:709-720.

  • 124.

    O'SheaJJKannoYChenXLevyDE. Cell signaling. Stat acetylation—a key facet of cytokine signaling?Science2005;307:217-218.

  • 125.

    LuoJSuFChenD. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature2000;408:377-381.

  • 126.

    InsingaAMonestiroliSRonzoniS. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. Embo J2004;23:1144-1154.

    • Search Google Scholar
    • Export Citation
  • 127.

    QuivyVVan LintC. Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol2004;68:1221-1229.

    • Search Google Scholar
    • Export Citation
  • 128.

    FuMRaoMWangC. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol2003;23:8563-8575.

    • Search Google Scholar
    • Export Citation
  • 129.

    MazumdarAWangRAMishraSK. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol2001;3:30-37.

    • Search Google Scholar
    • Export Citation
  • 130.

    WangCFuMAngelettiRH. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem2001;276:18375-18383.

    • Search Google Scholar
    • Export Citation
  • 131.

    RobeyRWZhanZPiekarzRL. Increased MDR1 expression in normal and malignant peripheral blood mononuclear cells obtained from patients receiving depsipeptide (FR901228, FK228, NSC630176). Clin Cancer Res2006;12:1547-1555.

    • Search Google Scholar
    • Export Citation
  • 132.

    JinSScottoKW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol1998;18:4377-4384.

    • Search Google Scholar
    • Export Citation
  • 133.

    TabeYKonoplevaMContractorR. Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood2006;107:1546-1554.

    • Search Google Scholar
    • Export Citation
  • 134.

    ToKKPolgarOHuffLM. Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res2008;6:151-164.

    • Search Google Scholar
    • Export Citation
  • 135.

    YatoujiSEl-KhouryVTrentesauxC. Differential modulation of nuclear texture, histone acetylation, and MDR1 gene expression in human drug-sensitive and -resistant OV1 cell lines. Int J Oncol2007;30:1003-1009.

    • Search Google Scholar
    • Export Citation
  • 136.

    HauswaldSDuque-AfonsoJWagnerMM. Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin Cancer Res2009;15:3705-3715.

    • Search Google Scholar
    • Export Citation
  • 137.

    ChanATTaoQRobertsonKD. Azacitidine induces demethylation of the Epstein-Barr virus genome in tumors. J Clin Oncol2004;22:1373-1381.

  • 138.

    RitchieDPiekarzRLBlomberyP. Reactivation of DNA viruses in association with histone deacetylase inhibitor (HDI) therapy: a case series report. Haematologica2009; in press.

    • Search Google Scholar
    • Export Citation

Article Information

PubMed

Google Scholar

Related Articles

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 2
PDF Downloads 3 3 1
EPUB Downloads 0 0 0