NCCN Task Force Report: Estrogen Receptor and Progesterone Receptor Testing in Breast Cancer by Immunohistochemistry

Restricted access

The NCCN Task Force on Estrogen Receptor and Progesterone Receptor Testing in Breast Cancer by Immunohistochemistry was convened to critically evaluate the extent to which the presence of the estrogen receptor (ER) and progesterone receptor (PgR) biomarkers in breast cancer serve as prognostic and predictive factors in the adjuvant and metastatic settings, and the ability of immunohistochemical (IHC) detection of ER and PgR to provide an accurate assessment of the expression of these biomarkers in breast cancer tumor tissue. The task force is a multidisciplinary panel of 13 experts in breast cancer who are affiliated with NCCN member institutions and represent the disciplines of pathology, medical oncology, radiation oncology, surgical oncology, and biostatistics. The main overall conclusions of the task force are ER is a strong predictor of response to endocrine therapy; ER status of all samples of invasive breast cancer or ductal carcinoma in situ (DCIS) should be evaluated by IHC; IHC measurements of PgR, although not as important clinically as ER, can provide useful information and should also be performed on all samples of invasive breast cancer or DCIS; IHC is the main testing strategy for evaluating ER and PgR in breast cancer and priority should be given to improve the quality of IHC testing methodologies; all laboratories performing IHC assays of ER and PgR should undertake formal validation studies to show both technical and clinical validation of the assay in use; and all laboratories performing IHC assays of hormone receptors in breast cancer should follow additional quality control and assurance measures as outlined in the upcoming guidelines from the American Society of Clinical Oncology and College of American Pathologists.

  • 1

    Early Breast Cancer Trialists’ Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet2005;365:16871717.

    • Search Google Scholar
    • Export Citation
  • 2

    ClarkeMCoatesASDarbySC. Adjuvant chemotherapy in oestrogen-receptor-poor breast cancer: patient-level meta-analysis of randomised trials. Lancet2008;371:2940.

    • Search Google Scholar
    • Export Citation
  • 3

    ManniAArafahBPearsonOH. Estrogen and progesterone receptors in the prediction of response of breast cancer to endocrine therapy. Cancer1980;46(12 Suppl):28382841.

    • Search Google Scholar
    • Export Citation
  • 4

    OsborneCKYochmowitzMGKnightWAIIIMcGuireWL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer1980;46(12 Suppl):28842888.

    • Search Google Scholar
    • Export Citation
  • 5

    VialeGReganMMMaioranoE. Chemoendocrine compared with endocrine adjuvant therapies for node-negative breast cancer: predictive value of centrally reviewed expression of estrogen and progesterone receptors—International Breast Cancer Study Group. J Clin Oncol2008;26:14041410.

    • Search Google Scholar
    • Export Citation
  • 6

    BerryDACirrincioneCHendersonIC. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA2006;295:16581667.

    • Search Google Scholar
    • Export Citation
  • 7

    HedeK. Breast cancer testing scandal shines spotlight on black box of clinical laboratory testing. J Natl Cancer Inst2008;100:836837844.

    • Search Google Scholar
    • Export Citation
  • 8

    AllredDC. Commentary: hormone receptor testing in breast cancer: a distress signal from Canada. Oncologist2008;13:11341136.

  • 9

    CBC News. Quebec re-examining breast cancer study. Available at: http://www.cbc.ca/health/story/2009/05/30/breast-cancer-quebec.html Accessed August 2 2009.

    • Search Google Scholar
    • Export Citation
  • 10

    RhodesAJasaniBBarnesDM. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J Clin Pathol2000;53:125130.

    • Search Google Scholar
    • Export Citation
  • 11

    VialeGReganMMMaioranoE. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98. J Clin Oncol2007;25:38463852.

    • Search Google Scholar
    • Export Citation
  • 12

    BadveSSBaehnerFLGrayRP. Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol2008;26:24732481.

    • Search Google Scholar
    • Export Citation
  • 13

    NadjiMGomez-FernandezCGanjei-AzarPMoralesAR. Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol2005;123:2127.

    • Search Google Scholar
    • Export Citation
  • 14

    ElledgeRMGreenSPughR. Estrogen receptor (ER) and progesterone receptor (PgR), by LB assay compared with ER, PgR and pS2, by immuno-histochemistry in predicting response to tamoxifen in metastatic breast cancer: a Southwest Oncology Group study. Int J Cancer2000;89:111117.

    • Search Google Scholar
    • Export Citation
  • 15

    RhodesAJasaniBBalatonAJ. Frequency of oestrogen and progesterone receptor positivity by immunohistochemistry analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Oncol2009;53:688696.

    • Search Google Scholar
    • Export Citation
  • 16

    WinnRJMcClureJS. About the NCCN Clinical Practice Guidelines in Oncology. Available at: http://www.nccn.org/professionals/physician_gls/about.asp Accessed August 2 2009.

    • Search Google Scholar
    • Export Citation
  • 17

    JensenEV. On the mechanism of estrogen action. Perspect Biol Med1962;6:4759.

  • 18

    JensenEVJordanVC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res2003;9:19801989.

  • 19

    GreeneGLPressMF. Structure and dynamics of the estrogen receptor. J Steroid Biochem1986;24:17.

  • 20

    KuiperGGEnmarkEPelto-HuikkoM. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A1996;93:59255930.

    • Search Google Scholar
    • Export Citation
  • 21

    KuiperGGCarlssonBGrandienK. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology1997;138:863870.

    • Search Google Scholar
    • Export Citation
  • 22

    EnmarkEPelto-HuikkoMGrandienK. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab1997;82:42584265.

    • Search Google Scholar
    • Export Citation
  • 23

    HorwitzKBAlexanderPS. In situ photolinked nuclear progesterone receptors of human breast cancer cells: subunit molecular weights after transformation and translocation. Endocrinology1983;113:21952201.

    • Search Google Scholar
    • Export Citation
  • 24

    KastnerPKrustATurcotteB. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. J Embo1990;9:16031614.

    • Search Google Scholar
    • Export Citation
  • 25

    EllmannSStichtHThielF. Estrogen and progesterone receptors: from molecular structures to clinical targets. Cell Mol Life Sci2009;66:24052426.

    • Search Google Scholar
    • Export Citation
  • 26

    TanenbaumDMWangYWilliamsSPSiglerPB. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci U S A1998;95:59986003.

    • Search Google Scholar
    • Export Citation
  • 27

    FigtreeGAMcDonaldDWatkinsHChannonKM. Truncated estrogen receptor alpha 46-kDa isoform in human endothelial cells: relationship to acute activation of nitric oxide synthase. Circulation2003;107:120126.

    • Search Google Scholar
    • Export Citation
  • 28

    PoolaISpeirsV. Expression of alternatively spliced estrogen receptor alpha mRNAs is increased in breast cancer tissues. J Steroid Biochem Mol Biol2001;78:459469.

    • Search Google Scholar
    • Export Citation
  • 29

    FascoMJKeyomarsiKArcaroKFGierthyJF. Expression of an estrogen receptor alpha variant protein in cell lines and tumors. Mol Cell Endocrinol2000;166:156169.

    • Search Google Scholar
    • Export Citation
  • 30

    PedramARazandiMLevinER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol2006;20:19962009.

  • 31

    SchlegelAWangCKatzenellenbogenBS. Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem1999;274:3355133556.

    • Search Google Scholar
    • Export Citation
  • 32

    PedramARazandiMSainsonRC. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem2007;282:2227822288.

    • Search Google Scholar
    • Export Citation
  • 33

    NormanAWMizwickiMTNormanDP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov2004;3:2741.

    • Search Google Scholar
    • Export Citation
  • 34

    LevinERPietrasRJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat2008;108:351361.

  • 35

    LikhiteVSStossiFKimK. Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand, deoxyribonucleic acid, and coregulators associated with alterations in estrogen and tamoxifen activity. Mol Endocrinol2006;20:31203132.

    • Search Google Scholar
    • Export Citation
  • 36

    MintzPJHabibNAJonesLJ. The phosphorylated membrane estrogen receptor and cytoplasmic signaling and apoptosis proteins in human breast cancer. Cancer2008;113:14891495.

    • Search Google Scholar
    • Export Citation
  • 37

    GiordanoCCuiYBaroneI. Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat2009; in press.

    • Search Google Scholar
    • Export Citation
  • 38

    WijayaratneALMcDonnellDP. The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem2001;276:3568435692.

    • Search Google Scholar
    • Export Citation
  • 39

    JordanVCO’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol2007;25:58155824.

    • Search Google Scholar
    • Export Citation
  • 40

    McClellandRAManningDLGeeJM. Effects of short-term antiestrogen treatment of primary breast cancer on estrogen receptor mRNA and protein expression and on estrogen-regulated genes. Breast Cancer Res Treat1996;41:3141.

    • Search Google Scholar
    • Export Citation
  • 41

    PietrasRJ. Biologic basis of sequential and combination therapies for hormone-responsive breast cancer. Oncologist2006;11:704717.

  • 42

    MillerWRBartlettJBrodieAM. Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter?Oncologist2008;13:829837.

    • Search Google Scholar
    • Export Citation
  • 43

    NormannoNDi MaioMDe MaioE. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer2005;12:721747.

    • Search Google Scholar
    • Export Citation
  • 44

    GeneraliDBuffaFMBerrutiA. Phosphorylated ERalpha, HIF-1alpha, and MAPK signaling as predictors of primary endocrine treatment response and resistance in patients with breast cancer. J Clin Oncol2009;27:227234.

    • Search Google Scholar
    • Export Citation
  • 45

    DowsettMAllredCKnoxJ. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol2008;26:10591065.

    • Search Google Scholar
    • Export Citation
  • 46

    PietrasRJArboledaJReeseDM. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene1995;10:24352446.

    • Search Google Scholar
    • Export Citation
  • 47

    McGuireWL. Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst1991;83:154155.

  • 48

    BurkeHBHensonDE. The American Joint Committee on Cancer. Criteria for prognostic factors and for an enhanced prognostic system. Cancer1993;72:31313135.

    • Search Google Scholar
    • Export Citation
  • 49

    HensonDEFieldingLPGrignonDJ. College of American Pathologists Conference XXVI on clinical relevance of prognostic markers in solid tumors. Summary. Members of the Cancer Committee. Arch Pathol Lab Med1995;119:11091112.

    • Search Google Scholar
    • Export Citation
  • 50

    HayesDFBastRCDeschCE. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst1996;88:14561466.

    • Search Google Scholar
    • Export Citation
  • 51

    HarrisLFritscheHMennelR. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol2007;25:52875312.

    • Search Google Scholar
    • Export Citation
  • 52

    AllredDCHarveyJMBerardoMClarkGM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol1998;11:155168.

    • Search Google Scholar
    • Export Citation
  • 53

    GrahamJDRomanSDMcGowanE. Preferential stimulation of human progesterone receptor B expression by estrogen in T-47D human breast cancer cells. J Biol Chem1995;270:3069330700.

    • Search Google Scholar
    • Export Citation
  • 54

    WeiLLKrettNLFrancisMD. Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells. Mol Endocrinol1988;2:6272.

    • Search Google Scholar
    • Export Citation
  • 55

    McGuireWL. Estrogen receptors in human breast cancer. J Clin Invest1973;52:7377.

  • 56

    ClarkGM. Prognostic and predictive factors. In: HarrisJLippmanMEMorrowMHellmanS eds. Diseases of the Breast. Philadelphia: Lippincott-Raven; 1996:461485.

    • Search Google Scholar
    • Export Citation
  • 57

    OsborneCK. Receptors. In: HarrisJRHellmanSHendersonJC eds. Philadelphia: Lippincott; 1991:310325.

  • 58

    McCartyKSJrMillerLSCoxEB. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med1985;109:716721.

    • Search Google Scholar
    • Export Citation
  • 59

    McCartyKSJrSzaboEFlowersJL. Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res1986;46(Suppl 8):4244s4248s.

    • Search Google Scholar
    • Export Citation
  • 60

    MagneNToillonRACastadotP. Different clinical impact of estradiol receptor determination according to the analytical method: a study on 1940 breast cancer patients over a period of 16 consecutive years. Breast Cancer Res Treat2006;95:179184.

    • Search Google Scholar
    • Export Citation
  • 61

    Budwit-NovotnyDAMcCartyKSCoxEB. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res1986;46:54195425.

    • Search Google Scholar
    • Export Citation
  • 62

    DowsettM. Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr Relat Cancer2001;8:191195.

    • Search Google Scholar
    • Export Citation
  • 63

    CollinsLCBoteroMLSchnittSJ. Bimodal frequency distribution of estrogen receptor immunohistochemical staining results in breast cancer: an analysis of 825 cases. Am J Clin Pathol2005;123:1620.

    • Search Google Scholar
    • Export Citation
  • 64

    FisherERAndersonSDeanS. Solving the dilemma of the immunohistochemical and other methods used for scoring estrogen receptor and progesterone receptor in patients with invasive breast carcinoma. Cancer2005;103:164173.

    • Search Google Scholar
    • Export Citation
  • 65

    TurbinDALeungSCheangMC. Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3484 cases. Breast Cancer Res Treat2008;110:417426.

    • Search Google Scholar
    • Export Citation
  • 66

    HarveyJMClarkGMOsborneCKAllredDC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol1999;17:14741481.

    • Search Google Scholar
    • Export Citation
  • 67

    BarnesDMHarrisWHSmithP. Immunohistochemical determination of oestrogen receptor: comparison of different methods of assessment of staining and correlation with clinical outcome of breast cancer patients. Br J Cancer1996;74:14451451.

    • Search Google Scholar
    • Export Citation
  • 68

    WilburDCWillisJMooneyRA. Estrogen and progesterone receptor detection in archival formalin-fixed, paraffin-embedded tissue from breast carcinoma: a comparison of immunohistochemistry with the dextran-coated charcoal assay. Mod Pathol1992;5:7984.

    • Search Google Scholar
    • Export Citation
  • 69

    ReganMMVialeGMastropasquaMG. Re-evaluating adjuvant breast cancer trials: assessing hormone receptor status by immunohistochemical versus extraction assays. J Natl Cancer Inst2006;98:15711581.

    • Search Google Scholar
    • Export Citation
  • 70

    MohsinSKWeissHHavighurstT. Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol2004;17:15451554.

    • Search Google Scholar
    • Export Citation
  • 71

    AllredDCMohsinSK. The assessment of hormone receptors in breast cancer by immunohistochemistry. Semin Breast Dis2005;8:5761.

  • 72

    CheangMCTreabaDOSpeersCH. Immunohistochemical detection using the new rabbit monoclonal antibody SP1 of estrogen receptor in breast cancer is superior to mouse monoclonal antibody 1D5 in predicting survival. J Clin Oncol2006;24:56375644.

    • Search Google Scholar
    • Export Citation
  • 73

    LoveRRDucNBAllredDC. Oophorectomy and tamoxifen adjuvant therapy in premenopausal Vietnamese and Chinese women with operable breast cancer. J Clin Oncol2002;20:25592566.

    • Search Google Scholar
    • Export Citation
  • 74

    EllisMJTaoYLuoJ. Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J Natl Cancer Inst2008;100:13801388.

    • Search Google Scholar
    • Export Citation
  • 75

    HoriguchiJKoibuchiYIijimaK. Co-expressed type of ER and HER2 protein as a predictive factor in determining resistance to antiestrogen therapy in patients with ER-positive and HER2-positive breast cancer. Oncol Rep2005;14:11091116.

    • Search Google Scholar
    • Export Citation
  • 76

    ArpinoGGreenSJAllredDC. HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a Southwest Oncology Group study. Clin Cancer Res2004;10:56705676.

    • Search Google Scholar
    • Export Citation
  • 77

    ER/PR pharm DX™ kit [Package Insert]. Carpinteria, CA: Dako Corp2008.

  • 78

    PhillipsTMurrayGWakamiyaK. Development of standard estrogen and progesterone receptor immunohistochemical assays for selection of patients for antihormonal therapy. Appl Immunohistochem Mol Morphol2007;15:325331.

    • Search Google Scholar
    • Export Citation
  • 79

    ChungGGZerkowskiMPGhoshS. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Lab Invest2007;87:662669.

  • 80

    RimmDLGiltnaneJMMoederC. Bimodal population or pathologist artifact?J Clin Oncol2007;25:24872488.

  • 81

    McCabeADolled-FilhartMCampRLRimmDL. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst2005;97:18081815.

    • Search Google Scholar
    • Export Citation
  • 82

    CreggerMBergerAJRimmDL. Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med2006;130:10261030.

  • 83

    MinaLSouleSEBadveS. Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue. Breast Cancer Res Treat2007;103:197208.

    • Search Google Scholar
    • Export Citation
  • 84

    PaikSShakSTangG. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med2004;351:28172826.

    • Search Google Scholar
    • Export Citation
  • 85

    PaikSTangGShakS. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol2006;24:37263734.

    • Search Google Scholar
    • Export Citation
  • 86

    AllredDC. Problems and solutions in the evaluation of hormone receptors in breast cancer. J Clin Oncol2008;26:24332435.

  • 87

    RoepmanPHorlingsHMKrijgsmanO. Microarray-based readout of ER, PR, and HER2 expression in breast cancer tissue [abstract]. Presented at the 2008 ASCO Breast Cancer Symposium; September 5–7, 2008; Washington, DC. Abstract 33.

    • Search Google Scholar
    • Export Citation
  • 88

    OhDSTroesterMAUsaryJ. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol2006;24:16561664.

    • Search Google Scholar
    • Export Citation
  • 89

    RakhaEAEl-SayedMEReis-FilhoJSEllisIO. Expression profiling technology: its contribution to our understanding of breast cancer. Histopathology2008;52:6781.

    • Search Google Scholar
    • Export Citation
  • 90

    KnightWALivingstonRBGregoryEJMcGuireWL. Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. Cancer Res1977;37:46694671.

    • Search Google Scholar
    • Export Citation
  • 91

    FisherBRedmondCFisherERCaplanR. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project protocol B-06. J Clin Oncol1988;6:10761087.

    • Search Google Scholar
    • Export Citation
  • 92

    BardouVJArpinoGElledgeRM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol2003;21:19731979.

    • Search Google Scholar
    • Export Citation
  • 93

    AamdalSBormerOJorgensenO. Estrogen receptors and long-term prognosis in breast cancer. Cancer1984;53:25252529.

  • 94

    HilsenbeckSGRavdinPMde MoorCA. Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat1998;52:227237.

    • Search Google Scholar
    • Export Citation
  • 95

    PichonMFBroetPMagdelenatH. Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. Br J Cancer1996;73:15451551.

    • Search Google Scholar
    • Export Citation
  • 96

    HahnelRWoodingsTVivianAB. Prognostic value of estrogen receptors in primary breast cancer. Cancer1979;44:671675.

  • 97

    SaphnerTTormeyDCGrayR. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol1996;14:27382746.

  • 98

    DunnwaldLKRossingMALiCI. Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res2007;9:R6.

    • Search Google Scholar
    • Export Citation
  • 99

    SorlieTPerouCMTibshiraniR. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A2001;98:1086910874.

    • Search Google Scholar
    • Export Citation
  • 100

    SorlieTTibshiraniRParkerJ. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A2003;100:84188423.

    • Search Google Scholar
    • Export Citation
  • 101

    BrentonJDCareyLAAhmedAACaldasC. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?J Clin Oncol2005;23:73507360.

    • Search Google Scholar
    • Export Citation
  • 102

    DawoodSCollinsLCConnollyJL. Defining breast cancer prognosis based on molecular phenotypes: results from a large cohort study [abstract]. Presented at the San Antonio Breast Cancer Symposium; December 10–14, 2008; San Antonio, Texas. Abstract 1068.

    • Search Google Scholar
    • Export Citation
  • 103

    ParkerRLHuntsmanDGLesackDW. Assessment of interlaboratory variation in the immunohistochemical determination of estrogen receptor status using a breast cancer tissue microarray. Am J Clin Pathol2002;117:723728.

    • Search Google Scholar
    • Export Citation
  • 104

    CheangMCChiaSKVoducD. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst2009;101:736750.

    • Search Google Scholar
    • Export Citation
  • 105

    DesmedtCHaibe-KainsBWirapatiP. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res2008;14:51585165.

    • Search Google Scholar
    • Export Citation
  • 106

    HuZFanCOhDS. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics2006;7:96.

  • 107

    HughJHansonJCheangMC. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol2009;27:11681176.

    • Search Google Scholar
    • Export Citation
  • 108

    RouzierRPerouCMSymmansWF. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res2005;11:56785685.

    • Search Google Scholar
    • Export Citation
  • 109

    SrourNReymondMASteinertR. Lost in translation? A systematic database of gene expression in breast cancer. Pathobiology2008;75:112118.

    • Search Google Scholar
    • Export Citation
  • 110

    AllredDC. The utility of conventional and molecular pathology in managing breast cancer. Breast Cancer Res2008;10(Suppl 4):S4.

  • 111

    LivasyCAKaracaGNandaR. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol2006;19:264271.

  • 112

    AllredDCWuYMaoS. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res2008;14:370378.

    • Search Google Scholar
    • Export Citation
  • 113

    LivasyCAPerouCMKaracaG. Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol2007;38:197204.

  • 114

    TamimiRMBaerHJMarottiJ. Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res2008;10:R67.

    • Search Google Scholar
    • Export Citation
  • 115

    KokMLinnSvan de VijverM. Estrogen receptor phenotypes defined by gene expression profiling. In: FuquaSAW ed. Hormone Receptors in Breast Cancer. New York: Springer; 2009:231248.

    • Search Google Scholar
    • Export Citation
  • 116

    AllredDCBryantJLandS. Estrogen receptor expression as a predictive marker of the effectiveness of tamoxifen in the treatment of DCIS: findings from NSABP protocol B-24 [abstract]. Breast Cancer Res Treat2004;76(Suppl 1):Abstract 30.

    • Search Google Scholar
    • Export Citation
  • 117

    GossPEIngleJNMartinoS. Efficacy of letrozole extended adjuvant therapy according to estrogen receptor and progesterone receptor status of the primary tumor: National Cancer Institute of Canada Clinical Trials Group MA.17. J Clin Oncol2007;25:20062011.

    • Search Google Scholar
    • Export Citation
  • 118

    EllisMJCoopASinghB. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol2001;19:38083816.

    • Search Google Scholar
    • Export Citation
  • 119

    FisherBRedmondCBrownA. Adjuvant chemotherapy with and without tamoxifen in the treatment of primary breast cancer: 5-year results from the National Surgical Adjuvant Breast and Bowel Project trial. J Clin Oncol1986;4:459471.

    • Search Google Scholar
    • Export Citation
  • 120

    HutchinsLFGreenSJRavdinPM. Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of Intergroup Protocol INT-0102. J Clin Oncol2005;23:83138321.

    • Search Google Scholar
    • Export Citation
  • 121

    Adjuvant tamoxifen in the management of operable breast cancer: the Scottish Trial. Report from the Breast Cancer Trials Committee, Scottish Cancer Trials Office (MRC), Edinburgh. Lancet1987;2:171175.

    • Search Google Scholar
    • Export Citation
  • 122

    LippmanMEAllegraJC. Lack of estrogen receptor associated with an increased response rate to cytotoxic chemotherapy in metastatic breast cancer?Recent Results Cancer Res1980;71:155161.

    • Search Google Scholar
    • Export Citation
  • 123

    U.S. Department of Health & Human Services Nation Institutes of Health. NIH Consensus Development Program: Adjuvant Therapy for Breast Cancer. November2000. Available at: http://consensus.nih.gov/2000/2000AdjuvantTherapyBreastCancer114html.htm Accessed August 2 2009.

    • Search Google Scholar
    • Export Citation
  • 124

    CarlsonRWAllredDCAndersonBO. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. J Natl Compr Canc Netw2009;7:122192.

  • 125

    AlbainKBarlowWO’MalleyF. Concurrent (CAFT) versus sequential (CAF-T) chemohormonal therapy (cyclophosphamide, doxorubin, 5-fluorouracil, tamoxifen) versus T alone for postmenopausal node positive estrogen (ER) and/or progesterone (PgR) receptor-positive breast cancer: mature outcomes and new biologic correlates on phase III Intergroup trial 0100 [abstract]. Presented at the San Antonio Breast Cancer Symposium; December 8–11, 2004; San Antonio, Texas. Abstract LBA37.

    • Search Google Scholar
    • Export Citation
  • 126

    GoldhirschAIngleJNGelberRD. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009. Ann Oncol2009;20:13191329.

    • Search Google Scholar
    • Export Citation
  • 127

    GoldhirschAWoodWCGelberRD. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol2007;18:11331144.

    • Search Google Scholar
    • Export Citation
  • 128

    SimmonsCMillerNGeddieD. Changes in tumor receptor status with time: a prospective study assessing the impact of obtaining confirmatory biopsy at metastatic recurrence on patient management [abstract]. Presented at the 2008 ASCO Breast Cancer Symposium; September 5–7, 2008; Washington, DC. Abstract 124.

    • Search Google Scholar
    • Export Citation
  • 129

    GuarneriVGiovannelliSFicarraG. Comparison of HER-2 and hormone receptor expression in primary breast cancers and asynchronous paired metastases: impact on patient management. Oncologist2008;13:838844.

    • Search Google Scholar
    • Export Citation
  • 130

    BroglioKMoulderSLHsuL. Prognostic impact of discordance/concordance of triple-receptor expression between primary tumor and metastasis in patients with metastatic breast cancer [abstract]. J Clin Oncol2008;26(Suppl 1):Abstract 1001.

    • Search Google Scholar
    • Export Citation
  • 131

    ZhengWQLuJZhengJM. Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression. Steroids2001;66:905910.

    • Search Google Scholar
    • Export Citation
  • 132

    RhodesAJasaniBBalatonAJ. Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol2000;53:688696.

    • Search Google Scholar
    • Export Citation
  • 133

    RhodesAJasaniBBalatonAJ. Study of interlaboratory reliability and reproducibility of estrogen and progesterone receptor assays in Europe. Documentation of poor reliability and identification of insufficient microwave antigen retrieval time as a major contributory element of unreliable assays. Am J Clin Pathol2001;115:4458.

    • Search Google Scholar
    • Export Citation
  • 134

    ChebilGBendahlPOIdvallIFernoM. Comparison of immunohistochemical and biochemical assay of steroid receptors in primary breast cancer—clinical associations and reasons for discrepancies. Acta Oncol2003;42:719725.

    • Search Google Scholar
    • Export Citation
  • 135

    LayfieldLJGoldsteinNPerkinsonKRProiaAD. Interlaboratory variation in results from immunohistochemical assessment of estrogen receptor status. Breast J2003;9:257259.

    • Search Google Scholar
    • Export Citation
  • 136

    RegitnigPReinerADingesHP. Quality assurance for detection of estrogen and progesterone receptors by immunohistochemistry in Austrian pathology laboratories. Virchows Arch2002;441:328334.

    • Search Google Scholar
    • Export Citation
  • 137

    DiazLKSneigeN. Estrogen receptor analysis for breast cancer: current issues and keys to increasing testing accuracy. Adv Anat Pathol2005;12:1019.

    • Search Google Scholar
    • Export Citation
  • 138

    TaylorCRLevensonRM. Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II. Histopathology2006;49:411424.

    • Search Google Scholar
    • Export Citation
  • 139

    YazijiHTaylorCRGoldsteinNS. Consensus recommendations on estrogen receptor testing in breast cancer by immunohistochemistry. Appl Immunohistochem Mol Morphol2008;16:513520.

    • Search Google Scholar
    • Export Citation
  • 140

    WalkerRA. Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol2008;61:689696.

  • 141

    Douglas-JonesAGCollettNMorganJMJasaniB. Comparison of core oestrogen receptor (ER) assay with excised tumour: intratumoral distribution of ER in breast carcinoma. J Clin Pathol2001;54:951955.

    • Search Google Scholar
    • Export Citation
  • 142

    ParkSYKimKSLeeTG. The accuracy of preoperative core biopsy in determining histologic grade, hormone receptors, and human epidermal growth factor receptor 2 status in invasive breast cancer. Am J Surg2009;197:266269.

    • Search Google Scholar
    • Export Citation
  • 143

    GownAM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol2008;21(Suppl 2):S815.

  • 144

    HodiZChakrabartiJLeeAH. The reliability of assessment of oestrogen receptor expression on needle core biopsy specimens of invasive carcinomas of the breast. J Clin Pathol2007;60:299302.

    • Search Google Scholar
    • Export Citation
  • 145

    NkoyFLHammondEReesW. Day of surgery affects estrogen receptor test results in women with breast cancer [abstract]. Presented at the San Antonio Breast Cancer Symposium; December 8–11, 2005; San Antonio, Texas. Abstract 5107.

    • Search Google Scholar
    • Export Citation
  • 146

    GoldsteinNSFerkowiczMOdishE. Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am J Clin Pathol2003;120:8692.

    • Search Google Scholar
    • Export Citation
  • 147

    RhodesAJasaniBBalatonAJMillerKD. Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external quality assessment material in over 150 laboratories from 26 countries. J Clin Pathol2000;53:292301.

    • Search Google Scholar
    • Export Citation
  • 148

    PertschukLPMasoodSSimoneJ. Estrogen receptor immunocytochemistry in endometrial carcinoma: a prognostic marker for survival. Gynecol Oncol1996;63:2833.

    • Search Google Scholar
    • Export Citation
  • 149

    GownAM. Unmasking the mysteries of antigen or epitope retrieval and formalin fixation. Am J Clin Pathol2004;121:172174.

  • 150

    RieraJSimpsonJFTamayoRBattiforaH. Use of cultured cells as a control for quantitative immunocytochemical analysis of estrogen receptor in breast cancer. The Quicgel method. Am J Clin Pathol1999;111:329335.

    • Search Google Scholar
    • Export Citation
  • 151

    SompuramSRKodelaVRamanathanH. Synthetic peptides identified from phage-displayed combinatorial libraries as immunodiagnostic assay surrogate quality-control targets. Clin Chem2002;48:410420.

    • Search Google Scholar
    • Export Citation
  • 152

    SompuramSRKodelaVZhangK. A novel quality control slide for quantitative immunohistochemistry testing. J Histochem Cytochem2002;50:14251434.

    • Search Google Scholar
    • Export Citation
  • 153

    SompuramSRVaniKBogenSA. A molecular model of antigen retrieval using a peptide array. Am J Clin Pathol2006;125:9198.

  • 154

    VaniKSompuramSRFitzgibbonsPBogenSA. National HER2 proficiency test results using standardized quantitative controls: characterization of laboratory failures. Arch Pathol Lab Med2008;132:211216.

    • Search Google Scholar
    • Export Citation
  • 155

    SchnittSJ. Estrogen receptor testing of breast cancer in current clinical practice: what’s the question?J Clin Oncol2006;24:17971799.

    • Search Google Scholar
    • Export Citation
  • 156

    UmemuraSItohJItohH. Immunohistochemical evaluation of hormone receptors in breast cancer: which scoring system is suitable for highly sensitive procedures?Appl Immunohistochem Mol Morphol2004;12:813.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 342 342 48
PDF Downloads 125 125 23
EPUB Downloads 0 0 0