The introduction of targeted therapies has revolutionized treatment and improved outcomes in patients with leukemias and lymphomas. However, many patients experience relapse caused by the persistence of residual malignant cells. Cytogenetic and molecular techniques are increasingly being used to assess and quantify minimal residual disease (MRD). The emergence of advanced technologies has led to the discovery of multiple novel molecular markers that can be used to detect MRD and predict outcome in patients with leukemias and lymphomas. Gene expression signatures that predict clinical outcomes in patients with non-Hodgkin's lymphoma have been identified. In chronic myelogenous leukemia, molecular monitoring has become more important in assessing response and detecting resistance to therapy. In acute leukemias, several new markers have shown potential in prognostication and monitoring treatment. In leukemias and lymphomas, microRNAs have been identified that may be useful in diagnostics and prognostication. To address these issues, the National Comprehensive Cancer Network (NCCN) organized a task force consisting of a panel of experts in leukemia and lymphoma to discuss recent advances in the field of molecular markers and monitoring MRD.

If the inline PDF is not rendering correctly, you can download the PDF file here.

References

  • 1

    DiamandisEPFritscheHALiljaH. eds. Tumor Markers: Physiology Pathobiology Technology and Clinical Applications. Washington, DC: AACC Press; 2002.

    • Search Google Scholar
    • Export Citation
  • 2

    DrexlerHGMacLeodRABorkhardtAJanssenJW. Recurrent chromosomal translocations and fusion genes in leukemia-lymphoma cell lines. Leukemia1995;9:480500.

    • Search Google Scholar
    • Export Citation
  • 3

    VegaFMedeirosLJ. Chromosomal translocations involved in non-Hodgkin lymphomas. Arch Pathol Lab Med2003;127:11481160.

  • 4

    FaderlSKurzrockREstrovZ. Minimal residual disease in hematologic disorders. Arch Pathol Lab Med1999;123:10301034.

  • 5

    CorradiniPLadettoMPileriATarellaC. Clinical relevance of minimal residual disease monitoring in non-Hodgkin’s lymphomas: a critical reappraisal of molecular strategies. Leukemia1999;13:16911695.

    • Search Google Scholar
    • Export Citation
  • 6

    BruggemannMPottCRitgenMKnebaM. Significance of minimal residual disease in lymphoid malignancies. Acta Haematol2004;112:111119.

  • 7

    KulasingamVDiamandisEP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol2008;5:588599.

    • Search Google Scholar
    • Export Citation
  • 8

    SehnLH. Optimal use of prognostic factors in non-Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program2006:295302.

  • 9

    FaderlSATalpazMEstrovZ. The biology of chronic myeloid leukemia. N Engl J Med1999;341:164172.

  • 10

    RadichJPDaiHMaoM. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A2006;103:27942799.

    • Search Google Scholar
    • Export Citation
  • 11

    SawyersCL. Chronic myeloid leukemia. N Engl J Med1999;340:13301340.

  • 12

    O’BrienSGGuilhotFLarsonRA. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med2003;348:9941004.

    • Search Google Scholar
    • Export Citation
  • 13

    JabbourECortesJEGilesFJ. Current and emerging treatment options in chronic myeloid leukemia. Cancer2007;109:21712181.

  • 14

    HochhausADrukerBSawyersC. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood2008;111:10391043.

    • Search Google Scholar
    • Export Citation
  • 15

    O’BrienSGGuilhotFGoldmanJM. International randomized study of interferon versus STI571 (IRIS) 7-year follow-up: sustained survival, low rate of transformation and increased rate of major molecular response (MMR) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CMLCP) treated with imatinib (IM) [abstract]. Blood2008;112:Abstract 186.

    • Search Google Scholar
    • Export Citation
  • 16

    KantarjianHO’BrienSTalpazM. Outcome of patients with Philadelphia chromosome-positive chronic myelogenous leukemia post-imatinib mesylate failure. Cancer2007;109:15561560.

    • Search Google Scholar
    • Export Citation
  • 17

    HochhausAKantarjianHMBaccaraniM. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood2007;109:23032309.

    • Search Google Scholar
    • Export Citation
  • 18

    KantarjianHMGilesFGattermannN. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood2007;110:35403546.

    • Search Google Scholar
    • Export Citation
  • 19

    MartinelliGIacobucciISoveriniS. Monitoring minimal residual disease and controlling drug resistance in chronic myeloid leukaemia patients in treatment with imatinib as a guide to clinical management. Hematol Oncol2006;24:196204.

    • Search Google Scholar
    • Export Citation
  • 20

    KantarjianHSchifferCJonesDCortesJ. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood2008;111:17741780.

    • Search Google Scholar
    • Export Citation
  • 21

    LandstromATefferiA. Fluorescent in situ hybridization in the diagnosis, prognosis, and treatment monitoring of chronic myeloid leukemia. Leuk Lymphoma2006;47:397402.

    • Search Google Scholar
    • Export Citation
  • 22

    Douet-GuilbertNMorelFLe CharpentierT. Interphase FISH for follow-up of Philadelphia chromosome-positive chronic myeloid leukemia treatment. Anticancer Res2004;24:25352539.

    • Search Google Scholar
    • Export Citation
  • 23

    SeongDCKantarjianHMRoJY. Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood1995;86:23432349.

    • Search Google Scholar
    • Export Citation
  • 24

    DewaldGWWyattWAJuneauAL. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood1998;91:33573365.

    • Search Google Scholar
    • Export Citation
  • 25

    DrukerBJGuilhotFO’BrienSG. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med2006;355:24082417.

    • Search Google Scholar
    • Export Citation
  • 26

    GuilhotFLarsonRAO’BrienSG. Time to complete cytogenetic response (CCyR) does not affect long-term outcomes for patients on imatinib therapy [abstract]. Blood2007;110:Abstract 27.

    • Search Google Scholar
    • Export Citation
  • 27

    de LavalladeHApperleyJFKhorashadJS. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol2008;26:33583363.

    • Search Google Scholar
    • Export Citation
  • 28

    KantarjianHMQuintas-CardamaAO’BrienS. Importance of early intervention with dasatinib at cytogenetic rather than hematologic resistance to imatinib [abstract]. Blood2007;110:Abstract 1036.

    • Search Google Scholar
    • Export Citation
  • 29

    TamCSKantarjianHGarcia-ManeroG. Failure to achieve a major cytogenetic response by 12 months defines inadequate response in patients receiving nilotinib or dasatinib as second or subsequent line therapy for chronic myeloid leukemia. Blood2008;112:516518.

    • Search Google Scholar
    • Export Citation
  • 30

    BaccaraniMRostiGSaglioG. Dasatinib time to and durability of major and complete cytogenetic response (MCyR and CCyR) in patients with chronic myeloid leukemia in chronic phase (CML-CP) [abstract]. Blood2008;112:Abstract 450.

    • Search Google Scholar
    • Export Citation
  • 31

    BranfordSHughesTPRudzkiZ. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol1999;107:587599.

    • Search Google Scholar
    • Export Citation
  • 32

    KantarjianHTalpazMCortesJ. Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res2003;9:160166.

    • Search Google Scholar
    • Export Citation
  • 33

    BaccaraniMSaglioGGoldmanJ. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood2006;108:18091820.

    • Search Google Scholar
    • Export Citation
  • 34

    HughesTDeiningerMHochhausA. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood2006;108:2837.

    • Search Google Scholar
    • Export Citation
  • 35

    JabbourECortesJHagopMKantarjianH. Molecular monitoring in chronic myeloid leukemia. Cancer2008;112:21122118.

  • 36

    PressRDLoveZTronnesAA. BCR-ABL mRNA levels at and after the time of a complete cytogenetic response (CCR) predict the duration of CCR in imatinib mesylate treated patients with CML. Blood2006;107:42504256.

    • Search Google Scholar
    • Export Citation
  • 37

    PressRDGalderisiCYangR. A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinib-induced complete cytogenetic response. Clin Cancer Res2007;13:61366143.

    • Search Google Scholar
    • Export Citation
  • 38

    CortesJTalpazMO’BrienS. Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res2005;11:34253432.

    • Search Google Scholar
    • Export Citation
  • 39

    IacobucciISaglioGRostiG. Achieving a major molecular response at the time of a complete cytogenetic response predicts a better duration of CCgR in imatinib-treated chronic myeloid leukemia patients. Clin Cancer Res2006;12:30373042.

    • Search Google Scholar
    • Export Citation
  • 40

    KantarjianHMTalpazMO’BrienS. Survival benefit with imatinib mesylate versus interferon-alpha-based regimens in newly diagnosed chronic-phase chronic myelogenous leukemia. Blood2006;108:18351840.

    • Search Google Scholar
    • Export Citation
  • 41

    MarinDMilojkovicDOlavarriaE. European LeukemiaNet criteria for failure or suboptimal response reliably identify patients with CML in early chronic phase treated with imatinib whose eventual outcome is poor. Blood2008;112:44374444.

    • Search Google Scholar
    • Export Citation
  • 42

    KantarjianHMShanJJonesD. Significance of rising levels of minimal residual disease in patients with philadelphia chromosome-positive chronic myelogenous leukemia (Ph+ CML) in complete cytogenetic response (CGCR) [abstract]. Blood2008;112:Abstract 445.

    • Search Google Scholar
    • Export Citation
  • 43

    BranfordSLawrenceRFletcherL. The initial molecular response of chronic phase CML patients treated with second generation ABL inhibitor therapy after imatinib failure can predict inadequate response and provide indications for rational mutation screening [abstract]. Blood2008;112:Abstract 331.

    • Search Google Scholar
    • Export Citation
  • 44

    MilojkovicDBuaMApperleyJF. Prediction of cytogenetic response to second generation TKI therapy in CML chronic phase patients who have failed imatinib therapy and early identification of factors that influence survival [abstract]. Blood2008;112:Abstract 332.

    • Search Google Scholar
    • Export Citation
  • 45

    RadichJPGehlyGGooleyT. Polymerase chain reaction detection of the BCR-ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood1995;85:26322638.

    • Search Google Scholar
    • Export Citation
  • 46

    RadichJPGooleyTBryantE. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients “late,” 18 months or more after transplantation. Blood2001;98:17011707.

    • Search Google Scholar
    • Export Citation
  • 47

    OlavarriaEKanferESzydloR. Early detection of BCR-ABL transcripts by quantitative reverse transcriptase-polymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood2001;97:15601565.

    • Search Google Scholar
    • Export Citation
  • 48

    ApperleyJF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol2007;8:10181029.

  • 49

    Gambacorti-PasseriniCZucchettiMRussoD. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res2003;9:625632.

    • Search Google Scholar
    • Export Citation
  • 50

    LarsonRADrukerBJGuilhotF. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood2008;111:40224028.

    • Search Google Scholar
    • Export Citation
  • 51

    PicardSTitierKEtienneG. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood2007;109:34963499.

    • Search Google Scholar
    • Export Citation
  • 52

    AultPKantarjianHMBryanJ. Clinical use of imatinib plasma levels in patients with chronic myeloid leukemia (CML) [abstract]. Blood2008;112:Abstract 4255.

    • Search Google Scholar
    • Export Citation
  • 53

    ThomasJWangLClarkREPirmohamedM. Active transport of imatinib into and out of cells: implications for drug resistance. Blood2004;104:37393745.

    • Search Google Scholar
    • Export Citation
  • 54

    WhiteDLSaundersVADangP. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood2007;110:40644072.

    • Search Google Scholar
    • Export Citation
  • 55

    WhiteDLSaundersVADangP. CML patients with low OCT-1 activity achieve better molecular responses on high dose imatinib than on standard dose. Those with high OCT-1 activity have excellent responses on either dose: a TOPS correlative study [abstract]. Blood2008;112:Abstract 3187.

    • Search Google Scholar
    • Export Citation
  • 56

    GiannoudisADaviesALucasCM. Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood2008;112:33483354.

    • Search Google Scholar
    • Export Citation
  • 57

    WhiteDLSaundersVADangP. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood2006;108:697704.

    • Search Google Scholar
    • Export Citation
  • 58

    DeiningerMWNO’BrienSGFordJMDrukerBJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol2003;21:16371647.

    • Search Google Scholar
    • Export Citation
  • 59

    GorreMEMohammedMEllwoodK. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science2001;293:876880.

    • Search Google Scholar
    • Export Citation
  • 60

    HochhausAKreilSCorbinAS. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia2002;16:21902196.

  • 61

    BranfordSRudzkiZParkinsonI. Real time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood2004;104:29262932.

    • Search Google Scholar
    • Export Citation
  • 62

    KhorashadJSde LavalladeHApperleyJF. Finding of kinase domain mutations in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol2008;26:48064813.

    • Search Google Scholar
    • Export Citation
  • 63

    SoveriniSMartinelliGRostiG. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol2005;23:41004109.

    • Search Google Scholar
    • Export Citation
  • 64

    NicoliniFECormSLeQH. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia2006;20:10611106.

    • Search Google Scholar
    • Export Citation
  • 65

    SoveriniSColarossiSGnaniA. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res2006;12:73747379.

    • Search Google Scholar
    • Export Citation
  • 66

    BranfordSRudzkiZWalshS. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistant and mutation in the ATP phosphate-binding loop are associated with a poor prognosis. Blood2003;102:276283.

    • Search Google Scholar
    • Export Citation
  • 67

    JabbourEKantarjianHJonesD. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia2006;20:17671773.

    • Search Google Scholar
    • Export Citation
  • 68

    CortesJRousselotPKimDW. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood2007;109:32073213.

    • Search Google Scholar
    • Export Citation
  • 69

    GuilhotFApperleyJKimDW. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood.2007;109:41434150.

    • Search Google Scholar
    • Export Citation
  • 70

    NicoliniFEHayetteSCormS. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR-ABL mutation. Haematologica2007;92:12381241.

    • Search Google Scholar
    • Export Citation
  • 71

    JabbourEKantarjianHJonesD. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood2008;112:5355.

    • Search Google Scholar
    • Export Citation
  • 72

    O’DwyerMEMauroMJBlasdelC. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood2004;103:451455.

    • Search Google Scholar
    • Export Citation
  • 73

    O’DwyerMEMauroMJKurilikG. The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood2002;100:16281633.

    • Search Google Scholar
    • Export Citation
  • 74

    CortesJETalpazMGilesF. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood2003;101:37943800.

    • Search Google Scholar
    • Export Citation
  • 75

    FialkowPJJacobsonRJPapayannopoulouT. Chronic myelocytic leukemia: Clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med1977;63:125130.

    • Search Google Scholar
    • Export Citation
  • 76

    HuffCAMatsuiWHSmithBDJonesRJ. Strategies to eliminate cancer stem cells: clinical implications. Eur J Cancer2006;42:12931297.

  • 77

    JiangXZhaoYForrestD. Stem cell biomarkers in chronic myeloid leukemia. Dis Markers2008;24:201216.

  • 78

    KavalerchikEGoffDJamiesonCHM. Chronic myeloid leukemia stem cells. J Clin Oncol2008;26:29112915.

  • 79

    JamiesonCH. Chronic myeloid leukemia stem cells. Hematology Am Soc Hematol Educ Program2008:436442.

  • 80

    HolyoakeTJiangXEavesCEavesA. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood1999;94:20562064.

    • Search Google Scholar
    • Export Citation
  • 81

    GrahamSMJorgensenHGAllanE. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood2002;99:319325.

    • Search Google Scholar
    • Export Citation
  • 82

    HoltzMSSlovakMLZhangF. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood2002;99:37923800.

    • Search Google Scholar
    • Export Citation
  • 83

    ValentPDeiningerM. Clinical perspectives of concepts on neoplastic stem cells and stem cell-resistance in chronic myeloid leukemia. Leuk Lymphoma2008;49:604609.

    • Search Google Scholar
    • Export Citation
  • 84

    AngstreichGMatsuiWHuffC. Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br J Haematol2005;130:373381.

    • Search Google Scholar
    • Export Citation
  • 85

    BediAZehnbauerBCollectorM. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood1993;81:28982902.

    • Search Google Scholar
    • Export Citation
  • 86

    GerberJMQinLMatsuiW. Expression of potential therapeutic targets by leukemic stem cells [abstract]. Proceedings of the 99th Annual Meeting of American Association for Cancer Research; April 12–16, 2008; San Diego, California. Abstract LB-88.

    • Search Google Scholar
    • Export Citation
  • 87

    YongASMSzydloRMGoldmanJM. Molecular profiling of CD34+ cells identifies low expression of CD7, along with high expression of proteinase 3 or elastase, as predictors of longer survival in patients with CML. Blood2006;107:205212.

    • Search Google Scholar
    • Export Citation
  • 88

    YongASMRezvaniKSavaniBN. High PR3 or ELA2 expression by CD34+ cells in advanced-phase chronic myeloid leukemia is associated with improved outcome following allogeneic stem cell transplantation and may improve PR1 peptide-driven graft-versus-leukemia effects. Blood2007;110:770775.

    • Search Google Scholar
    • Export Citation
  • 89

    EppingMTBernardsR. A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res2006;66:1063910642.

    • Search Google Scholar
    • Export Citation
  • 90

    PaydasSTanriverdiKYavuzS. PRAME mRNA levels in cases with chronic leukemia: clinical importance and review of the literature. Leuk Res2007;31:365369.

    • Search Google Scholar
    • Export Citation
  • 91

    PaydasSTanriverdiKYavuzS. PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol2005;79:257261.

    • Search Google Scholar
    • Export Citation
  • 92

    WatariKTojoANagamura-InoueT. Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene. FEBS Lett2000;466:367371.

  • 93

    OehlerVCummingsCSaboK. Preferentially expressed antigen in melanoma (PRAME) expression in normal and CML CD34+ progenitor cells impairs myeloid differentiation [abstract]. Blood2008;112:Abstract 1071.

    • Search Google Scholar
    • Export Citation
  • 94

    MrozekKMarcucciGPaschkaP. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?Blood2007;109:431448.

    • Search Google Scholar
    • Export Citation
  • 95

    TobalKJohnsonPRSaundersMJ. Detection of CBFB/MYH11 transcripts in patients with inversion and other abnormalities of chromosome 16 at presentation and remission. Br J Haematol1995;91:104108.

    • Search Google Scholar
    • Export Citation
  • 96

    MarcucciGCaligiuriMABloomfieldCD. Core binding factor (CBF) acute myeloid leukemia: is molecular monitoring by RT-PCR useful clinically?Eur J Haematol2003;71:143154.

    • Search Google Scholar
    • Export Citation
  • 97

    SchochCSchnittgerSKlausM. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood2003;102:23952402.

    • Search Google Scholar
    • Export Citation
  • 98

    Lo-CocoFAmmatunaEMontesinosPSanzMA. Acute promyelocytic leukemia: recent advances in diagnosis and management. Semin Oncol2008;35:401409.

    • Search Google Scholar
    • Export Citation
  • 99

    MarcucciGCaligiuriMADohnerH. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia2001;15:10721080

    • Search Google Scholar
    • Export Citation
  • 100

    LaneSSaalRMolleeP. A > or = 1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leuk Lymphoma2008;49:517523

    • Search Google Scholar
    • Export Citation
  • 101

    StentoftJHoklandPOstergaardM. Minimal residual core binding factor AMLs by real time quantitative PCR—initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res2006;30:389395

    • Search Google Scholar
    • Export Citation
  • 102

    PaschkaPMarcucciGRuppertAS. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol2006;24:39043911

    • Search Google Scholar
    • Export Citation
  • 103

    CairoliRBeghiniAGrilloG. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood2006;107:34633468

    • Search Google Scholar
    • Export Citation
  • 104

    MarcucciGLivakKJBiW. Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia1998;12:14821489

    • Search Google Scholar
    • Export Citation
  • 105

    WeisserMKernWSchochC. Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy. Haematologica2005;90:881889

    • Search Google Scholar
    • Export Citation
  • 106

    MitterbauerGZimmerCPirc-DanoewinataH. Monitoring of minimal residual disease in patients with MLL-AF6-positive acute myeloid leukaemia by reverse transcriptase polymerase chain reaction. Br J Haematol2000;109:622628

    • Search Google Scholar
    • Export Citation
  • 107

    TakatsukiHYufuYTachikawaYUikeN. Monitoring minimal residual disease in patients with MLL-AF6 fusion transcript-positive acute myeloid leukemia following allogeneic bone marrow transplantation. Int J Hematol2002;75:298301

    • Search Google Scholar
    • Export Citation
  • 108

    SchollCSchlenkRFEiwenK. The prognostic value of MLL-AF9 detection in patients with t(9;11)(p22;q23)-positive acute myeloid leukemia. Haematologica2005;90:16261634

    • Search Google Scholar
    • Export Citation
  • 109

    StirewaltDLRadichJP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer2003;3:650665

  • 110

    FerraraFPalmieriSLeoniF. Clinically useful prognostic factors in acute myeloid leukemia. Crit Rev Oncol Hematol2008;66:181193

  • 111

    SchnittgerSSchochCDugasM. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood2002;100:5966

    • Search Google Scholar
    • Export Citation
  • 112

    ShihLYHuangCFWuJH. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood2002;100:23872392

    • Search Google Scholar
    • Export Citation
  • 113

    KottaridisPDGaleRELangabeerSE. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood2002;100:23932398

    • Search Google Scholar
    • Export Citation
  • 114

    CloosJGoemansBFHessCJ. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia2006;20:12171220

    • Search Google Scholar
    • Export Citation
  • 115

    DohnerKSchlenkRFHabdankM. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood2005;106:37403746

    • Search Google Scholar
    • Export Citation
  • 116

    ThiedeCKochSCreutzigE. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood2006;107:40114020

    • Search Google Scholar
    • Export Citation
  • 117

    GorelloPCazzanigaGAlbertiF. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia2006;20:11031108

    • Search Google Scholar
    • Export Citation
  • 118

    ChouWCTangJLWuSJ. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia2007;21:9981004

    • Search Google Scholar
    • Export Citation
  • 119

    PalmisanoMGrafoneTOttavianiE. NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica2007;92:12681269

    • Search Google Scholar
    • Export Citation
  • 120

    InoueKOgawaHYamagamiT. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood1996;88:22672278

    • Search Google Scholar
    • Export Citation
  • 121

    CilloniDGottardiEDe MicheliD. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia2002;16:21152121

    • Search Google Scholar
    • Export Citation
  • 122

    OgawaHTamakiHIkegameK. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood2003;101:16981704

    • Search Google Scholar
    • Export Citation
  • 123

    GargMMooreHTobalKLiu YinJA. Prognostic significance of quantitative analysis of WT1 gene transcripts by competitive reverse transcription polymerase chain reaction in acute leukaemia. Br J Haematol2003;123:4959

    • Search Google Scholar
    • Export Citation
  • 124

    OstergaardMOlesenLHHasleH. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients - results from a single-centre study. Br J Haematol2004;125:590600.

    • Search Google Scholar
    • Export Citation
  • 125

    BarraganECerveraJBoluferP. Prognostic implications of Wilms’ tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica2004;89:926933

    • Search Google Scholar
    • Export Citation
  • 126

    WeisserMKernWRauhutS. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia2005;19:14161423

    • Search Google Scholar
    • Export Citation
  • 127

    HamalainenMMKairistoVJuvonenV. Wilms tumour gene 1 overexpression in bone marrow as a marker for minimal residual disease in acute myeloid leukaemia. Eur J Haematol2008;80:201207

    • Search Google Scholar
    • Export Citation
  • 128

    CandoniATiribelliMToffolettiE. Quantitative assessment of WT1 gene expression after allogeneic stem cell transplantation is a useful tool for monitoring minimal residual disease in acute myeloid leukemia. Eur J Haematol2009;82:6168

    • Search Google Scholar
    • Export Citation
  • 129

    GaigerASchmidDHeinzeG. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia. Leukemia1998;12:18861894

    • Search Google Scholar
    • Export Citation
  • 130

    BarraganEPajueloJCBallesterS. Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): comparison with WT1 gene expression. Clin Chim Acta2008;395:120123

    • Search Google Scholar
    • Export Citation
  • 131

    LarsonRA. Management of acute lymphoblastic leukemia in older patients. Semin Hematol2006;43:126133

  • 132

    van der VeldenVHCazzanigaGSchrauderA. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia2007;21:604611

    • Search Google Scholar
    • Export Citation
  • 133

    van DongenJJWolvers-TetteroIL. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta1991;198:93174

    • Search Google Scholar
    • Export Citation
  • 134

    BeishuizenAVerhoevenMAMolEJ. Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia1993;7:20452053

    • Search Google Scholar
    • Export Citation
  • 135

    SzczepanskiTBeishuizenAPongers-WillemseMJ. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia1999;13:196205

    • Search Google Scholar
    • Export Citation
  • 136

    BreitTMWolvers-TetteroILBeishuizenA. Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood1993;82:30633074

    • Search Google Scholar
    • Export Citation
  • 137

    van der VeldenVHHochhausACazzanigaG. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia2003;17:10131034

    • Search Google Scholar
    • Export Citation
  • 138

    MortuzaFYPapaioannouMMoreiraIM. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol2002;20:10941104

    • Search Google Scholar
    • Export Citation
  • 139

    BruggemannMRaffTFlohrT. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood2006;107:11161123

    • Search Google Scholar
    • Export Citation
  • 140

    LeeSKimDWChoB. Risk factors for adults with Philadelphia-chromosome-positive acute lymphoblastic leukaemia in remission treated with allogeneic bone marrow transplantation: the potential of real-time quantitative reverse-transcription polymerase chain reaction. Br J Haematol2003;120:145153

    • Search Google Scholar
    • Export Citation
  • 141

    GleissnerBRiederHThielE. Prospective BCR-ABL analysis by polymerase chain reaction (RT-PCR) in adult acute B-lineage lymphoblastic leukemia: reliability of RT-nested-PCR and comparison to cytogenetic data. Leukemia2001;15:18341840

    • Search Google Scholar
    • Export Citation
  • 142

    RadichJP. Molecular measurement of minimal residual disease in Philadelphia-positive acute lymphoblastic leukaemia. Best Pract Res Clin Haematol2002;15:91103

    • Search Google Scholar
    • Export Citation
  • 143

    StirewaltDLGuthrieKABeppuL. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant2003;9:206212

    • Search Google Scholar
    • Export Citation
  • 144

    YanadaMSugiuraITakeuchiJ. Prospective monitoring of BCR-ABL1 transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia undergoing imatinib-combined chemotherapy. Br J Haematol2008;143:503510

    • Search Google Scholar
    • Export Citation
  • 145

    OliveroSMarocCBeillardE. Detection of different Ikaros isoforms in human leukaemias using real-time quantitative polymerase chain reaction. Br J Haematol2000;110:826830

    • Search Google Scholar
    • Export Citation
  • 146

    PaulssonKCazierJBMacDougallF. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: unexpected similarities with pediatric disease. Proc Natl Acad Sci U S A2008;105:67086713

    • Search Google Scholar
    • Export Citation
  • 147

    MullighanCGMillerCBRadtkeI. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature2008;453:110114

  • 148

    IacobucciILonettiACilloniD. Identification of different Ikaros cDNA transcripts in Philadelphia-positive adult acute lymphoblastic leukemia by a high-throughput capillary electrophoresis sizing method. Haematologica2008;93:18141821

    • Search Google Scholar
    • Export Citation
  • 149

    IacobucciILonettiAMessaF. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood2008;112:38473855

    • Search Google Scholar
    • Export Citation
  • 150

    The International Non Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non Hodgkin’s lymphoma. N Engl J Med1993;329:987994

    • Search Google Scholar
    • Export Citation
  • 151

    Solal CelignyPPascalRColombatP. Follicular lymphoma international prognostic index. Blood2004;104:12581265

  • 152

    HosterEDreylingMKlapperW. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood2008;111:55856

  • 153

    DunphyCH. Applications of flow cytometry and immunohistochemistry to diagnostic hematopathology. Arch Pathol Lab Med2004;128:10041022

    • Search Google Scholar
    • Export Citation
  • 154

    de JongDRosenwaldAChhanabhaiM. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications—a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol2007;25:805812.

    • Search Google Scholar
    • Export Citation
  • 155

    KaleemZ. Flow cytometric analysis of lymphomas: current status and usefulness. Arch Pathol Lab Med2006;130:18501858

  • 156

    CraigFEFoonKA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood2008;111;39413967

  • 157

    DouglasVKGordonLIGoolsbyCL. Lymphoid aggregates in bone marrow mimic residual lymphoma after rituximab therapy for non-Hodgkin lymphoma. Am J Clin Pathol1999;112:844853

    • Search Google Scholar
    • Export Citation
  • 158

    CampbellLJ. Cytogenetics of lymphomas. Pathology2005;37:493507

  • 159

    VenturaRAMartin-SuberoJIJonesM. FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. J Mol Diagn2006;8:141151

    • Search Google Scholar
    • Export Citation
  • 160

    SreekantaishC. FISH panels for hematologic malignancies. Cytogenet Genome Res2007;118:284296

  • 161

    PoetschMWeber-MatthiesenKPlendlHJ. Detection of the t(14;18) chromosomal translocation by interphase cytogenetics with yeast-artificial-chromosome probes in follicular lymphoma and nonneoplastic lymphoproliferation. J Clin Oncol1996;14:963969

    • Search Google Scholar
    • Export Citation
  • 162

    Sanchez-IzquierdoDSiebertRHarderL. Detection of translocations affecting the BCL6 locus in B cell non-Hodgkin’s lymphoma by interphase fluorescence in situ hybridization. Leukemia2001;15:14751484

    • Search Google Scholar
    • Export Citation
  • 163

    KallioniemiAKallioniemiOPSudarD. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science1992;258:818821

    • Search Google Scholar
    • Export Citation
  • 164

    PinkelDSegravesRSudarD. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet1998;20:207211

    • Search Google Scholar
    • Export Citation
  • 165

    DrexlerHGBorkhardtAJanssenJW. Detection of chromosomal translocations in leukemia-lymphoma cells by polymerase chain reaction. Leuk Lymphoma1995;19:359380

    • Search Google Scholar
    • Export Citation
  • 166

    GuKChanWCHawleyRC. Practical detection of t(14;18) (IgH/BCL2) in follicular lymphoma. Arch Pathol Lab Med2008;132:13551361

  • 167

    MocellinSRossiCRPilatiP. Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol Med2003;9:189195

  • 168

    LeichEHartmannEMBurekC. Diagnostic and prognostic significance of gene expression profiling in lymphomas. APMIS2007;115:11351146

  • 169

    BrazmaAHingampPQuackenbushJ. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet2001;29;365371

    • Search Google Scholar
    • Export Citation
  • 170

    MAQC ConsortiumShiLReidLH. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol2006;24:11511161

    • Search Google Scholar
    • Export Citation
  • 171

    ShiLJonesWJensenR. The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics2008;9(Suppl 9):S10

    • Search Google Scholar
    • Export Citation
  • 172

    EbertBLGolubTR. Genomic approaches to hematologic malignancies. Blood2004;104:923932

  • 173

    LossosISMorgenszternD. Prognostic biomarkers in diffuse large B-cell lymphoma. J Clin Oncol2006;24:9951007

  • 174

    AbramsonJSShippMA. Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood2005;106:11641174

    • Search Google Scholar
    • Export Citation
  • 175

    AlizadehAAEisenMBDavisRE. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature2000;403:503511

    • Search Google Scholar
    • Export Citation
  • 176

    WrightGTanBRosenwaldA. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A2003;100:99919996

    • Search Google Scholar
    • Export Citation
  • 177

    LenzGWrightGWEmreNC. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A2008;105:1352013525

    • Search Google Scholar
    • Export Citation
  • 178

    RosenwaldAWrightGChanWC. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med2002;346:19371947

    • Search Google Scholar
    • Export Citation
  • 179

    RimszaLMRobertsRAMillerTP. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood2004;103:42514258

    • Search Google Scholar
    • Export Citation
  • 180

    LenzGWrightGDaveSS. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med2008;359:23132323

  • 181

    LenzGWrightGDaveS. Molecular signatures implicate iImmune cells, fibrosis, and angiogenesis in survival following R-CHOP treatment of diffuse large B cell lymphoma [abstract]. Blood2008;112:Abstract 475

    • Search Google Scholar
    • Export Citation
  • 182

    HansCPWeisenburgerDDGreinerTC. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood2004;103:275282

    • Search Google Scholar
    • Export Citation
  • 183

    LossosISCzerwinskiDKAlizadehAA. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med2004;350:18281837

    • Search Google Scholar
    • Export Citation
  • 184

    RimszaLMLeBlancMLUngerJM. Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-CHOP. Blood2008;112:34253433

    • Search Google Scholar
    • Export Citation
  • 185

    MalumbresRChenJTibshiraniR. Paraffin-based 6-gene model predicts outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Blood2008;111:55095514

    • Search Google Scholar
    • Export Citation
  • 186

    ChoiWWLWeisenburgerDDGreinerTC. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res2009;in press

    • Search Google Scholar
    • Export Citation
  • 187

    FuKWeisenburgerDDChoiWWL. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol2008;26:45874594

    • Search Google Scholar
    • Export Citation
  • 188

    NymanHAddeMKarjalainen-LindsbergML. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood2007;109:49304935

    • Search Google Scholar
    • Export Citation
  • 189

    LenzGWrightGDaveS. Gene expression signatures predict overall survival in diffuse large B cell lymphoma treated with rituximab and CHOP-like chemotherapy [abstract]. Blood2007;110:Abstract 348

    • Search Google Scholar
    • Export Citation
  • 190

    IqbalJSangerWGHorsmanDE. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol2004;165:159166

    • Search Google Scholar
    • Export Citation
  • 191

    HuangJZSangerWGGreinerTC. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood2002;99:22852290.

    • Search Google Scholar
    • Export Citation
  • 192

    GascoyneRDAdomatSAKrajewskiS. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood1997;90:244251

    • Search Google Scholar
    • Export Citation
  • 193

    IqbalJNeppalliVTWrightG. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol2006;24:961968

    • Search Google Scholar
    • Export Citation
  • 194

    MounierNBriereJGisselbrechtC. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood2003;101:42794284

    • Search Google Scholar
    • Export Citation
  • 195

    WilsonKSSehnLHBerryB. CHOP-R therapy overcomes the adverse prognostic influence of BCL-2 expression in diffuse large B-cell lymphoma. Leuk Lymphoma2007;48:11021109

    • Search Google Scholar
    • Export Citation
  • 196

    MounierNBriereJGisselbrechtC. Estimating the impact of rituximab on bcl-2-associated resistance to CHOP in elderly patients with diffuse large B-cell lymphoma. Haematologica2006;91:715716

    • Search Google Scholar
    • Export Citation
  • 197

    LossosISJonesCDWarnkeR. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood2001;98:945951

    • Search Google Scholar
    • Export Citation
  • 198

    WinterJNZhangLLiS. P21, BCL-2, and the IPI, but not BCL-6, predict clinical outcome in DLBCL treated with rituximab-CHOP: long-term follow-up from E4494 [abstract]. Ann Oncol2008;19(Suppl 4):Abstract 51

    • Search Google Scholar
    • Export Citation
  • 199

    WinterJNWellerEAHorningSJ. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood2006;107:42074213

    • Search Google Scholar
    • Export Citation
  • 200

    The Lunenburg Lymphoma Biomarker Consortium (LLBC). First results of an international study to establish a new clinico-biological prognostic index for diffuse large B-cell lymphoma (DLBCL) [abstract]. Ann Oncol2008;19(Suppl 4):Abstract 54bis

    • Search Google Scholar
    • Export Citation
  • 201

    YoungKHLeroyKMollerMB. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood2008;112:30883098

    • Search Google Scholar
    • Export Citation
  • 202

    ChilosiMDoglioniCMagaliniA. p21/WAF1 cyclin-kinase inhibitor expression in non-Hodgkin’s lymphomas: a potential marker of p53 tumor-suppressor gene function. Blood1996;88:40124020

    • Search Google Scholar
    • Export Citation
  • 203

    YoungKHWeisenburgerDDDaveBJ. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAILreceptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood2007;110:43964405

    • Search Google Scholar
    • Export Citation
  • 204

    AuroraVLiSHorningSJ. Prognostic significance of p53/p21 expression in DLBCL treated with CHOP or R-CHOP: a correlative study of E4494 [abstract]. J Clin Oncol2007;25(Suppl 1):Abstract 8038

    • Search Google Scholar
    • Export Citation
  • 205

    NatkunamYZhaoSMasonDY. The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood2007;109:16361642

    • Search Google Scholar
    • Export Citation
  • 206

    NatkunamYFarinhaPHsiED. LMO2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy with and without rituximab. J Clin Oncol2008;26:447454

    • Search Google Scholar
    • Export Citation
  • 207

    DaveSSWrightGTanB. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med2004;351:21592169

    • Search Google Scholar
    • Export Citation
  • 208

    GlasAMKerstenMJDelahayeLJ. Gene expression profiling in follicular lymphoma to assess clinical aggressiveness and to guide the choice of treatment. Blood2005;105:301307

    • Search Google Scholar
    • Export Citation
  • 209

    Al-TourahAJChhanabhaiMHoskinsPJ. Transformed lymphoma: incidence and long-term outcome [abstract]. Blood2004;104:Abstract 3253

  • 210

    LossosISAlizadehAADiehnM. Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc Natl Acad Sci U S A2002;99:88868891

    • Search Google Scholar
    • Export Citation
  • 211

    Elenitoba-JohnsonKSJJensonSDAbbottRT. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc Natl Acad Sci U S A2003;100:72597264

    • Search Google Scholar
    • Export Citation
  • 212

    Martinez-ClimentJAAlizadehAASegravesR. Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood2003;101:31093117

    • Search Google Scholar
    • Export Citation
  • 213

    DaviesAJRosenwaldAWrightG. Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br J Haematol2007;136:286293

    • Search Google Scholar
    • Export Citation
  • 214

    FernandezVHartmannEOttG. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol2005;23:63646369

    • Search Google Scholar
    • Export Citation
  • 215

    HartmannEFernandezVMorenoV. Five-gene model to predict survival in mantle-cell lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol2008;26:49664972

    • Search Google Scholar
    • Export Citation
  • 216

    RosenwaldAWrightGWiestnerA. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell2003;3:185197

    • Search Google Scholar
    • Export Citation
  • 217

    RätyRFranssilaKJoensuuH. Ki-67 expression level, histological subtype, and the International Prognostic Index as outcome predictors in mantle cell lymphoma. Eur J Haematol2002;69:1120

    • Search Google Scholar
    • Export Citation
  • 218

    TiemannMSchraderCKlapperW. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol2005;131:2938

    • Search Google Scholar
    • Export Citation
  • 219

    KatzenbergerTPetzoldtCHollerS. The Ki67 proliferation index is a quantitative indicator of clinical risk in mantle cell lymphoma. Blood2006;107:3407

    • Search Google Scholar
    • Export Citation
  • 220

    JohnsonNAGascoyneRD. Gene expression signatures in follicular lymphoma: are they ready for the clinic?Haematologica2008;93:982987

  • 221

    van der VeldenVHHochhausACazzanigaG. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia2003;17:10131034

    • Search Google Scholar
    • Export Citation
  • 222

    HorsmanDEGascoyneRDCouplandRW. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am J Clin Pathol1995;103:472478

    • Search Google Scholar
    • Export Citation
  • 223

    BucksteinRPennellNBerinsteinNL. What is remission in follicular lymphoma and what is its relevance?Best Pract Res Clin Haematol2005;18:2756

    • Search Google Scholar
    • Export Citation
  • 224

    AkasakaTAkasakaHYonetaniN. Refinement of the BCL2/immunoglobulin heavy chain fusion gene in t(14;18) (q32;q21) by polymerase chain reaction amplification for long targets. Genes Chromosomes Cancer1998;21:1729.

    • Search Google Scholar
    • Export Citation
  • 225

    WeinbergOKAiWZMariappanMR. “Minor” BCL2 breakpoints in follicular lymphoma: frequency and correlation with grade and disease presentation in 236 cases. J Mol Diagn2007;9:530537

    • Search Google Scholar
    • Export Citation
  • 226

    Albinger-HegyiAHochreutenerBAbdouMT. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol2002;160:823832

    • Search Google Scholar
    • Export Citation
  • 227

    van DongenJJLangerakAWBruggemannM. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia2003;17:22572317

    • Search Google Scholar
    • Export Citation
  • 228

    SummersKEGoffLKWilsonAG. Frequency of the Bcl-2/IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma. J Clin Oncol2001;19:420424

    • Search Google Scholar
    • Export Citation
  • 229

    SchmittCBaloghBGrundtA. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res2006;30:745750

    • Search Google Scholar
    • Export Citation
  • 230

    CzuczmanMS. Controversies in follicular lymphoma: “who, what, when, where, and why?” (not necessarily in that order!). Hematology Am Soc Hematol Educ Program2006:303310

    • Search Google Scholar
    • Export Citation
  • 231

    JohnsonPWSwinbankKMacLennanS. Variability of polymerase chain reaction detection of the bcl-2-IgH translocation in an international multicentre study. Ann Oncol1999;10:13491354

    • Search Google Scholar
    • Export Citation
  • 232

    DarbyAJLanhamSSoubeyranPJohnsonPW. Variability of quantitative polymerase chain reaction detection of the bcl-2-IgH translocation in an international multicenter study. Haematologica2005;90:17061707

    • Search Google Scholar
    • Export Citation
  • 233

    CorradiniPAstolfiMCherascoC. Molecular monitoring of minimal residual disease in follicular and mantle cell non-Hodgkin’s lymphomas treated with high-dose chemotherapy and peripheral blood progenitor cell autografting. Blood1997;89:724731

    • Search Google Scholar
    • Export Citation
  • 234

    LeonardBMHetuFBusqueL. Lymphoma cell burden in progenitor cell grafts measured by competitive polymerase chain reaction: less than one log difference between bone marrow and peripheral blood sources. Blood1998;91:331339

    • Search Google Scholar
    • Export Citation
  • 235

    GribbenJNeubergDBarberM. Detection of residual lymphoma cells by polymerase chain reaction in peripheral blood is significantly less predictive for relapse than detection in bone marrow. Blood1994;83:38003807

    • Search Google Scholar
    • Export Citation
  • 236

    GribbenJFreedmanAWooS. All advanced stage non-Hodgkin’s lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood1991;78:32753280

    • Search Google Scholar
    • Export Citation
  • 237

    Lopez-GuillermoACabanillasFMcLaughlinP. The clinical significance of molecular response in indolent follicular lymphomas. Blood1998;91:29552960

    • Search Google Scholar
    • Export Citation
  • 238

    Fernandez-RuizECabrerizoMOrtegaM. High molecular response rate and clinical correlation in patients with follicular lymphoma treated with cyclophosphamide-vincristine-prednisone plus interferon alpha 2b. Clin Cancer Res2003;9:24972503

    • Search Google Scholar
    • Export Citation
  • 239

    LambrechtsAHupkesPDorssersLvan’t VeerM. Clinical significance of t(14; 18)-positive cells in the circulation of patients with stage III or IV follicular non-Hodgkin’s lymphoma during first remission. J Clin Oncol1994;12:15411546

    • Search Google Scholar
    • Export Citation
  • 240

    MandigersCMMeijerinkJPMensinkEJ. Lack of correlation between numbers of circulating t(14;18)-positive cells and response to first-line treatment in follicular lymphoma. Blood2001;98:940944

    • Search Google Scholar
    • Export Citation
  • 241

    CzuczmanMSGrillo-LopezAJMcLaughlinP. Clearing of cells bearing the bcl-2 [t(14;18)] translocation from blood and marrow of patients treated with rituximab alone or in combination with CHOP chemotherapy. Ann Oncol2001;12:109114

    • Search Google Scholar
    • Export Citation
  • 242

    SchmittCBaloghBGrundtA. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res2006;30:745750

    • Search Google Scholar
    • Export Citation
  • 243

    ColombatPSallesGBrousseN. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood2001;97:101106

    • Search Google Scholar
    • Export Citation
  • 244

    GhielminiMSchmitzSFCogliattiSB. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly x 4 schedule. Blood2004;103:44164423

    • Search Google Scholar
    • Export Citation
  • 245

    ForanJMGuptaRKCunninghamD. A UK multicentre phase II study of rituximab (chimaeric anti-CD20 monoclonal antibody) in patients with follicular lymphoma, with PCR monitoring of molecular response. Br J Haematol2000;109:8188

    • Search Google Scholar
    • Export Citation
  • 246

    CzuczmanMSGrillo-LopezAJWhiteCA. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol1999;17:268276

    • Search Google Scholar
    • Export Citation
  • 247

    CzuczmanMSWeaverRAlkuzwenyB. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol2004;22:47114716

    • Search Google Scholar
    • Export Citation
  • 248

    PottCBoettcherSBrueggemannM. Quantitative assessment of circulating t(14;18) positive cells by RQ-PCR at diagnosis and follow-up correspond to clinical characteristics and predicts time to treatment failure in follicular lymphoma [abstract]. Blood2006;108:Abstact 2414

    • Search Google Scholar
    • Export Citation
  • 249

    LadettoMDe MarcoFBenedettiF. Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood2008;111:40044013

    • Search Google Scholar
    • Export Citation
  • 250

    HirtCSchulerFKieferT. Rapid and sustained clearance of circulating lymphoma cells after chemotherapy plus rituximab: clinical significance of quantitative t(14;18) PCR monitoring in advanced stage follicular lymphoma patients. Br J Haematol2008;141:631640

    • Search Google Scholar
    • Export Citation
  • 251

    RambaldiACarlottiEOldaniE. Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood2005;105:34283433

    • Search Google Scholar
    • Export Citation
  • 252

    GribbenJNeubergDFreedmanA. Detection by polymerase chain reaction of residual cells with the bcl-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood1993;81:34493457.

    • Search Google Scholar
    • Export Citation
  • 253

    HirtCDolkenG. Quantitative detection of t(14;18)-positive cells in patients with follicular lymphoma before and after autologous bone marrow transplantation. Bone Marrow Transplant2000;25:419426

    • Search Google Scholar
    • Export Citation
  • 254

    FreedmanAGribbenJNeubergD. High-dose therapy and autologous bone marrow transplantation in patients with follicular lymphoma during first remission. Blood1996;88:27802786

    • Search Google Scholar
    • Export Citation
  • 255

    FreedmanASNeubergDMauchP. Long-term follow-up of autologous bone marrow transplantation in patients with relapsed follicular lymphoma. Blood1999;94:33253333

    • Search Google Scholar
    • Export Citation
  • 256

    BrownJRFengYGribbenJG. Long-term survival after autologous bone marrow transplantation for follicular lymphoma in first remission. Biol Blood Marrow Transplant2007;13:10571065

    • Search Google Scholar
    • Export Citation
  • 257

    GribbenJGFreedmanASNeubergD. Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med1991;325:15251533

    • Search Google Scholar
    • Export Citation
  • 258

    BerinsteinNLBucksteinRImrieK. Bcl-2 clearance: optimising outcomes in follicular non-Hodgkin‘s lymphoma. Bone Marrow Transplant2002;29(Suppl 1):S14S17

    • Search Google Scholar
    • Export Citation
  • 259

    GalimbertiSGuerriniFMorabitoF. Quantitative molecular evaluation in autotransplant programs for follicular lymphoma: efficacy of in vivo purging by Rituximab. Bone Marrow Transplant2003;32:5763

    • Search Google Scholar
    • Export Citation
  • 260

    ArcainiLMontanariFAlessandrinoEP. Immunochemotherapy with in vivo purging and autotransplant induces long clinical and molecular remission in advanced relapsed and refractory follicular lymphoma. Ann Oncol2008;19:13311335

    • Search Google Scholar
    • Export Citation
  • 261

    BottcherSRitgenMBuskeS. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica2008;93:551559

    • Search Google Scholar
    • Export Citation
  • 262

    AndersenNSDonovanJWZuckermanA. Real-time polymerase chain reaction estimation of bone marrow tumor burden using clonal immunoglobulin heavy chain gene and bcl-1/JH rearrangements in mantle cell lymphoma. Exp Hematol2002;30:703710

    • Search Google Scholar
    • Export Citation
  • 263

    BrizovaHKalinovaMKrskovaL. Quantitative monitoring of cyclin D1 expression: a molecular marker for minimal residual disease monitoring and a predictor of the disease outcome in patients with mantle cell lymphoma. Int J Cancer2008;123:28652870

    • Search Google Scholar
    • Export Citation
  • 264

    HowardOMGribbenJGNeubergDS. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol2002;20:12881294

    • Search Google Scholar
    • Export Citation
  • 265

    PottCHosterEBöttcherS. Molecular remission after combined immunochemotherapy is of prognostic relevance in patients with MCL: results of the randomized Intergroup trials of the European MCL Network [abstract]. Blood2008;112:Abstract 582

    • Search Google Scholar
    • Export Citation
  • 266

    PottCSchraderCGeskS. Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood2006;107:22712278

    • Search Google Scholar
    • Export Citation
  • 267

    LadettoMMagniMPaglianoG. Rituximab induces effective clearance of minimal residual disease in molecular relapses of mantle cell lymphoma. Biol Blood Marrow Transplant2006;12:12701276

    • Search Google Scholar
    • Export Citation
  • 268

    GianniAMMagniMMartelliM. Long-term remission in mantle cell lymphoma following high-dose sequential chemotherapy and in vivo rituximab-purged stem cell autografting (R-HDS regimen). Blood2003;102:749755

    • Search Google Scholar
    • Export Citation
  • 269

    GeislerCHKolstadALaurellA. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood2008;112:26872693

    • Search Google Scholar
    • Export Citation
  • 270

    van der VeldenVHHoogeveenPGPietersRvan DongenJJ. Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. Br J Haematol2006;133:382388

    • Search Google Scholar
    • Export Citation
  • 271

    JonesDKamel-ReidSBahlerD. Laboratory practice guidelines for detecting and reporting BCR-ABL drug resistance mutations in chronic myelogenous leukemia and acute lymphoblastic leukemia: a report of the Association for Molecular Pathology. J Mol Diagn2009;11:411

    • Search Google Scholar
    • Export Citation
  • 272

    LucioPGaipaGvan LochemEG. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia2001;15:11851192

    • Search Google Scholar
    • Export Citation
  • 273

    RawstronACVillamorNRitgenM. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia2007;21:956964

    • Search Google Scholar
    • Export Citation
  • 274

    GabertJBeillardEvan der VeldenVH. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia2003;17:23182357

    • Search Google Scholar
    • Export Citation
  • 275

    van KriekenJHLangerakAWMacintyreEA. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia2007;21:201206

    • Search Google Scholar
    • Export Citation
  • 276

    van der VeldenVHCazzanigaGSchrauderA. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia2007;21:604611

    • Search Google Scholar
    • Export Citation
  • 277

    van der VeldenVHWijkhuijsJMvan DongenJJ. Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: implications for minimal residual disease monitoring. Leukemia2008;22:6416464164

    • Search Google Scholar
    • Export Citation
  • 278

    CroceCM. Oncogenes and cancer. N Engl J Med2008;358:502511

  • 279

    CowlandJBHotherCGronbaekK. MicroRNAs and cancer. APMIS2007;115:10901106

  • 280

    Esquela-KerscherASlackFJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer2006;6:259269

  • 281

    CalinGASevignaniCDumitruCD. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A2004;101:29993004.

    • Search Google Scholar
    • Export Citation
  • 282

    BarbarottoECalinGA. Potential therapeutic applications of miRNA-based technology in hematological malignancies. Curr Pharm Des2008;14:20402050

    • Search Google Scholar
    • Export Citation
  • 283

    GarzonRCroceCM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol2008;15:352358

  • 284

    MiSLuJSunM. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A2007;104:1997119976

    • Search Google Scholar
    • Export Citation
  • 285

    Dixon-McIverAEastPMeinCA. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE2008;3:e2141

    • Search Google Scholar
    • Export Citation
  • 286

    MarcucciGMaharryKRadmacherMD. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol2008;26:50785087

    • Search Google Scholar
    • Export Citation
  • 287

    LiZLuJSunM. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A2008;105:1553515540

    • Search Google Scholar
    • Export Citation
  • 288

    GarzonRVoliniaSLiuC-G. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood2008;111:31833189

    • Search Google Scholar
    • Export Citation
  • 289

    SchotteDChauJCKSylvesterG. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia2008;23:313322

    • Search Google Scholar
    • Export Citation
  • 290

    KaddarTChienWWBertrandY. Prognostic value of miR-16 expression in childhood acute lymphoblastic leukemia relationships to normal and malignant lymphocyte proliferation. Leuk Res2009; in press

    • Search Google Scholar
    • Export Citation
  • 291

    CalinGADumitruCDShimizuM. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A2002;99:1552415529

    • Search Google Scholar
    • Export Citation
  • 292

    CimminoACalinGAFabbriM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A2005;102:1394413949

  • 293

    CalinGACimminoAFabbriM. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A2008;105:51665171

  • 294

    PekarskyYSantanamUCimminoA. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res2006;66:1159011593

    • Search Google Scholar
    • Export Citation
  • 295

    CalinGALiuC-GSevignaniC. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A2004;101:1175511760

    • Search Google Scholar
    • Export Citation
  • 296

    CalinGAFerracinMCimminoA. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med2005;353:17931801

    • Search Google Scholar
    • Export Citation
  • 297

    EisPSTamWSunL. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A2005;102:36273632

  • 298

    KluiverJPoppemaSde JongD. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol2005;207:243249

    • Search Google Scholar
    • Export Citation
  • 299

    LawrieCHGalSDunlopHM. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol2008;141:672675

    • Search Google Scholar
    • Export Citation
  • 300

    LawrieCHSonejiSMarafiotiT. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer2007;121:11561161

    • Search Google Scholar
    • Export Citation
  • 301

    RaiDKarantiSJungI. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet2008;181:815.

    • Search Google Scholar
    • Export Citation

Article Information

PubMed

Google Scholar

Related Articles

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 9
PDF Downloads 2 2 0
EPUB Downloads 0 0 0