NCCN Task Force Report: mTOR Inhibition in Solid Tumors

Restricted access

The mammalian target of rapamycin (mTOR) protein complex functions as an integration center for various intracellular signaling pathways involving cell cycle progression, proliferation, and angiogenesis. These pathways are frequently dysregulated in cancer, and therefore mTOR inhibition is a potentially important antitumor target. Commercially available mTOR inhibitors include rapamycin (i.e., sirolimus) and temsirolimus. Other agents under investigation include everolimus and deforolimus. mTOR inhibition has been studied in various solid tumors, including breast, gynecologic, gastrointestinal, prostate, lung, and head and neck cancers. Studies have focused on mTOR inhibition as a monotherapy or in combination with other drugs based on the principle that inhibiting as many targets as possible reduces the emergence of drug resistance. Temsirolimus is currently the only mTOR inhibitor that is specifically labeled for treatment of solid tumors. However, preclinical studies and early-phase trials are rapidly evolving. Additionally, research is further defining the complicated mTOR pathways and how they may be disordered in specific malignancies. To address these issues, NCCN convened a task force to review the underlying physiology of mTOR and related cellular pathways, and to review the current status of research of mTOR inhibition in solid tumors. (JNCCN 2008;6[Suppl 5]:S1—S20)

  • 1.

    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471484.

  • 2.

    Bjornsti MA, Houghton PJ. The TOR pathway: a target for caner therapy. Nat Rev 2004;4:335348.

  • 3.

    Shaw RJ, Cantley LC. Ras, PI3K and mTOR signaling controls tumour cell growth. Nature 2006;441:424430.

  • 4.

    O’Reilly KE, Rojo R, She QB, mTOR inhibition induced upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:15001508.

  • 5.

    Sarbassov DD, Ali SM, Sengupta S, Prolonged sirolimus treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22:159168.

  • 6.

    Guertin DA, Sabatina DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:922.

  • 7.

    Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 2005;102:82048209.

  • 8.

    Kaelin WG. The von Hippel-lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res 2007;13(2 Suppl):680s684s.

  • 9.

    George DJ, Kaelin WG. The von Hippel-Lindau protein, vascular endothelial growth factors, and kidney cancer. N Engl J Med 2003;349:419421.

  • 10.

    Phung TL, Ziv K, Dabydeen D, Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006;10:159170.

  • 11.

    Abraham RT, Gibbons JJ. The mammalian target of sirolimus signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 2007;13:31093114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ratain MJ, Napoli KL, Knightley Moshier K, A phase 1b study of oral rapamycin (sirolimus) in patients with advanced malignancies [abstract]. J Clin Oncol 2007:25 (Suppl 1):Abstract 3510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Jimeno A, Kulesza P, Cusatis G, Pharmacodynamic-guided, modified continuous reassessment method (mCRM)-based, dose finding study of rapamycin in adult patients with solid tumors [abstract]. J Clin Oncol 2006: 24;(Suppl 1):Abstract 3020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Thomas GV, Tran C, Mellinghoff IK, Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006;12:122127.

  • 15.

    Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev 2006;5:671688.

  • 16.

    Atkins MB, Hidalgo M, Stadler WM, Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of sirolimus kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004;22:909918.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Motzer RJ, Mazumdar M, Bacik J, Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 1999;17:25302540.

  • 18.

    Smith JW, Ko Y, Dutcher J, Update of a phase 1 study of intravenous CCI-779 given in combination with interferon-α to patients with advanced renal cell carcinoma [abstract]. J Clin Oncol 2004;22(Suppl 1):Abstract 4513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hudes G, Carducci M, Tomczak P, Temsirolimus, interferon alfa, or both for advanced renal cell carcinoma. N Engl J Med 2007;356: 22712281.

  • 20.

    Dutcher JP, Szczylik C, Tannir N, Correlation of survival with tumor histology, age, and prognostic risk group for previously untreated patients with advanced renal cell carcinoma receiving tem- sirolimus or interferon alpha [abstract]. J Clin Oncol 2007;25(Suppl 1): Abstract 5033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Amato R, Misellati A, Khan M, Chiang S. A phase II trial of RAD001 in patients (Pts) with metastatic renal cell carcinoma (MRCC) [abstract]. J Clin Oncol 2006;24(Suppl 1):Abstract 4530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Motzer RJ, Escudier B, Oudard S, RAD001 vs placebo in patients with metastatic renal cell carcinoma after progression on VEGFr-TKI therapy: results from a randomized, double blind, multicenter phase-III study [abstract]. J Clin Oncol 2008;26(Suppl 1):Abstract LBA5026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Chan S, Scheulen ME, Johnston S, Phase II study of tem- sirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 2005;23:53145322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Baselga J, Fumoleau P, Gil M, Phase II, 3 arm study of CCI-779 in combination with letrozole in postmenopausal women with locally advanced or metastatic breast cancer. Preliminary results [abstract]. J Clin Oncol 2004;22(Suppl 1):Abstract 544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Chow LW, Sun Y, Jassem J, Phase 3 study of temsirolimus with letrozole or letrozole alone in postmenopausal women with locally advanced or metastatic disease [abstract]. Presented at the 29th Annual San Antonio Breast Cancer Symposium; December 14-17, 2006; San Antonio, Texas. Abstract 6091.

    • Search Google Scholar
    • Export Citation
  • 26.

    Baselga J, Semiglazov V, van Dam P, Phase II double blind randomized trial of daily oral RAD001 plus letrozole or placebo plus letrozole as neoadjuvant therapy for estrogen positive breast cancer [abstract]. Presented at the 30th Annual San Antonio Breast Cancer Symposium; December 13-16, 2007; San Antonio, Texas. Abstract 2066.

    • Export Citation
  • 27.

    Gardner H, Bandaru R, Barrett C, Biomarker analysis of pa phase II double blind randomized trial of daily oral RAD—1 plus letrozole or placebo plus letrozole as neoadjuvant therapy for patients with estrogen receptor positive breast cancer. Presented at the 30th Annual San Antonio Breast Cancer Symposium; December 13-16, 2007; San Antonio, Texas. Abstract 4006.

    • Export Citation
  • 28.

    Bonner JA, Harari PM, Giralt J, Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567578.

  • 29.

    Vermorken J, Moesia R, Vega V, Cetuximab extends survival of patients with recurrent or metastatic squamous cell cancer of the head and neck when added to first line platinum based therapy [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract 6091.

    • Search Google Scholar
    • Export Citation
  • 30.

    Soulieres D, Senzer NN, Vokes E, Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22:7785.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen EE, Rosen F, Stadler WM, Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2003;21:19801987.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jimeno A, Kulesza P, Wheelhouse J, Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br J Cancer 2007;96:952959.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nathan CO, Amirghahari N, Rong X, Mammalian target of sirolimus inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res 2007;67:21602168.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Yeager N, Brewer C, Cai KQ, Mammalian target of sirolimus is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res 2008;68:444449.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Duran I, Kortmansky J, Singh D, A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 2006;95:11481154.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Yao JC, Phan A, Chang DZ, Phase II study of RAD001 (everolimus) and depot octreotide in advanced low grade neuroendocrine carcinoma [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract4503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Llovet J, Ricci S, Mazzaferro P, Sorafenib improves survival in advanced Hepatocellular Carcinoma (HCC): results of a Phase III randomized placebo-controlled trial (SHARP trial) [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract LBA1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hecht JL, Mutter GL. Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol 2006;24:47834791.

  • 39.

    Oza AM, Elit L, Biagi J, Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer—NCIC IND 160 [abstract]. J Clin Oncol 2006;24(Suppl 1):Abstract 3003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Columbo N, McMeekin S, Schwartz P, AP23573 as a single agent in advanced endometrial cancer [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract 5516.

    • Search Google Scholar
    • Export Citation
  • 41.

    Mabuchi S, Altomare DA, Cheung M, RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model [abstract]. Clin Cancer Res 2007;13:42614270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Mabuchi S, Altomare DA, Connolly DC, RAD001 (everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 2007;67:24082413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Burger RA, Sill MW, Monk BJ, Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study. J Clin Oncol 2007;25:51655171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Cannistra SA, Matulonis US, Penson RT, Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007;25:51805186.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Garcia AA, Hirte H, Fleming G, Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol 2008;26:7682.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    David O, Jett J, LeBeau H, Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res 2004;10:68656871.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 2001;61:39863997.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Engelman JA, Janne PA, Mermel C, ErbB-3 mediates phospho- inositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci U S A 2005;102:37883793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Mondesire WH, Jian W, Zhang H, Targeting mammalian target of sirolimus synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004;10:70317042.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Liu JL, Mao Z, LaFortune TA, Cell cycle-dependent nuclear export of phosphatase and tensin homologue tumor suppressor is regulated by the phosphoinositide-3-kinase signaling cascade. Cancer Res 2007;67:1105411063.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Shepherd FA, Rodrigues Pereira J, Ciuleanu T Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353:123132.

  • 52.

    Conde E, Angulo B, Tang M, Molecular context of the EGFR mutations: evidence for the activation of mTOR/S6K signaling. Clin Cancer Res 2006;12(3 Pt 1):710717.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Buck E, Eyzaguirre A, Brown E, Sirolimus synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006;5:26762684.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Phillips RJ, Mestas J, Gharaee-Kermani M, Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidyli- nositol 3-kinase/PTEN/AKT/mammalian target of sirolimus signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 2005;280:2247322481.

    • Search Google Scholar
    • Export Citation
  • 55.

    Papadimitrakopoulou V, Sorda JC, Douillard JY, A phase II study of RAD001 monotherapy in patients with advanced non-small cell lung cancer failing prior platinum-based chemotherapy or prior chemotherapy and EGFR inhibitors [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract 7589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kris MG, Riely GJ, Azzoli CG, Combined inhibition of mTOR and EGFR with everolimus (RAD001) and gefitinib in patients with non small cell lung cancer who have smoked cigarettes: a phase II trial [abstract]. J Clin Oncol 2007;25(Suppl 1):Abstract 7575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Pandya KJ, Dahlberg S, Hidalgo M, A randomized, phase II trial of two dose levels of temsirolimus in patients with extensive-stage small cell lung cancer who have responding or stable disease after induction chemotherapy. A trial of the Eastern Cooperative Oncology Group (E1 500). J Thorac Oncol 2007;2:10361041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Tannock IF, de Wit R, Berry WR, Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:15021512.

  • 59.

    McMenamin ME, Soung P, Perera S, Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999;59:42914296.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Cairns P, Okami K, Halachmi S, Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997; 57:49975000.

  • 61.

    Li Y, Yen C, Liaw D, PTEN, a putative protrein tyrosine kinase phophatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275:19431947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 1998;4:811815.

    • Search Google Scholar
    • Export Citation
  • 63.

    Trotman LC, Niki M, Dotan ZA, PTEN dose dictates cancer progression in the prostate. PloS Biol 2003;1:E59.

  • 64.

    Shen WH, Balajee AS, Wang J, Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007;128:157170.

  • 65.

    Ayala G, Thompson T, Yang G, High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 2004;10:65726578.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Bedolla R, Prihoda TJ, Kreisberg JI, Determining the risk of biochemical recurrent in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation. Clin Cancer Res 2007;13:38603867.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Wang SI, Gao J, Lei Q, Prostate specific deletion of the murine PTEN tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003;4:209221.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Wu L, Birle DC, Tannock IF. Effects of the mammalian target of sirolimus inhibitor CC1-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res 2005; 65:28252831.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Majumder PK, Febbo PG, Bikoff R, mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004;10:594601.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Thomas GV, Horvath S, Smith BL, Antibody based profiling of the phopshoinositide 3-kinase pathway in clinical prostate cancer. Clin Cancer Res 2004;10:83518356.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Thomas GV, Speicher L, Reiter R, Demonstration that tem- sirolimus preferentially inhibits the mTOR pathway in tumors of prostate cancer patients with PTEN deficiencies [abstract] . Presented at the 2005 AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics: Discovery, Biology, and Clinical Applications; November 14-18, 2005; Philadelphia, Pennsylvania. Abstract C131.

    • Export Citation
  • 72.

    George DJ, Armstrong AJ, Creel P, A phase II study of RAD001 in men with hormone-refractory metastatic prostate cancer [abstract]. Presented at the 2008 Genitourinary Cancers Symposium; February 14-16, 2008; San Francisco, California. Abstract 181.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 5
PDF Downloads 9 9 3
EPUB Downloads 0 0 0