NCCN Task Force Report: Positron Emission Tomography (PET)/Computed Tomography (CT) Scanning in Cancer

Authors:
Donald A. Podoloff
Search for other papers by Donald A. Podoloff in
Current site
Google Scholar
PubMed
Close
 MD
,
Ranjana H. Advani
Search for other papers by Ranjana H. Advani in
Current site
Google Scholar
PubMed
Close
 MD
,
Craig Allred
Search for other papers by Craig Allred in
Current site
Google Scholar
PubMed
Close
 MD
,
Al B. Benson III
Search for other papers by Al B. Benson III in
Current site
Google Scholar
PubMed
Close
 MD
,
Elizabeth Brown
Search for other papers by Elizabeth Brown in
Current site
Google Scholar
PubMed
Close
 MD
,
Harold J. Burstein
Search for other papers by Harold J. Burstein in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Robert W. Carlson
Search for other papers by Robert W. Carlson in
Current site
Google Scholar
PubMed
Close
 MD
,
R. Edward Coleman
Search for other papers by R. Edward Coleman in
Current site
Google Scholar
PubMed
Close
 MD
,
Myron S. Czuczman
Search for other papers by Myron S. Czuczman in
Current site
Google Scholar
PubMed
Close
 MD
,
Dominique Delbeke
Search for other papers by Dominique Delbeke in
Current site
Google Scholar
PubMed
Close
 MD, PhD;
,
Stephen B. Edge
Search for other papers by Stephen B. Edge in
Current site
Google Scholar
PubMed
Close
 MD
,
David S. Ettinger
Search for other papers by David S. Ettinger in
Current site
Google Scholar
PubMed
Close
 MD
,
Frederic W. Grannis Jr.
Search for other papers by Frederic W. Grannis Jr. in
Current site
Google Scholar
PubMed
Close
 MD
,
Bruce E. Hillner
Search for other papers by Bruce E. Hillner in
Current site
Google Scholar
PubMed
Close
 MD
,
John M. Hoffman
Search for other papers by John M. Hoffman in
Current site
Google Scholar
PubMed
Close
 MD
,
Krystyna Kiel
Search for other papers by Krystyna Kiel in
Current site
Google Scholar
PubMed
Close
 MD
,
Ritsuko Komaki
Search for other papers by Ritsuko Komaki in
Current site
Google Scholar
PubMed
Close
 MD
,
Steven M. Larson
Search for other papers by Steven M. Larson in
Current site
Google Scholar
PubMed
Close
 MD
,
David A. Mankoff
Search for other papers by David A. Mankoff in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Kenneth E. Rosenzweig
Search for other papers by Kenneth E. Rosenzweig in
Current site
Google Scholar
PubMed
Close
 MD
,
John M. Skibber
Search for other papers by John M. Skibber in
Current site
Google Scholar
PubMed
Close
 MD
,
Joachim Yahalom
Search for other papers by Joachim Yahalom in
Current site
Google Scholar
PubMed
Close
 MD
,
JQ Michael Yu
Search for other papers by JQ Michael Yu in
Current site
Google Scholar
PubMed
Close
 MD
, and
Andrew D. Zelenetz
Search for other papers by Andrew D. Zelenetz in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

The use of positron emission tomography (PET) is increasing rapidly in the United States, with the most common use of PET scanning related to oncology. It is especially useful in the staging and management of lymphoma, lung cancer, and colorectal cancer, according to a panel of expert radiologists, surgeons, radiation oncologists, nuclear medicine physicians, medical oncologists, and general internists convened in November 2006 by the National Comprehensive Cancer Network. The Task Force was charged with reviewing existing data and developing clinical recommendations for the use of PET scans in the evaluation and management of breast cancer, colon cancer, non-small cell lung cancer, and lymphoma. This report summarizes the proceedings of this meeting, including discussions of the background of PET, possible future developments, and the role of PET in oncology. (JNCCN 2007;5(Suppl 1):S1–S22)

  • Collapse
  • Expand
  • 1.

    Cohade C, Osman M, Leal J, Wahl RL. Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 2003;44:17971803.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    De Wever W, Ceyssens S, Mortelmans L, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol 2007;17:2332.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003;348:25002507.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 2004;31:932939.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Freudenberg LS, Antoch G, Schutt P, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging 2004;31:325329.

  • 6.

    Larson SM, Schwartz LH. 18F-FDG PET as a candidate for “qualified biomarker”: functional assessment of treatment response in oncology. J Nucl Med 2006;47:901903.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hartwell L, Mankoff D, Paulovich A, et al. Cancer biomarkers: a systems approach. Nat Biotechnol 2006;24:905908.

  • 8.

    Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am 2005;43:153167.

  • 9.

    Smith-Jones PM, Solit DB, Akhurst T, et al. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22:701706.

  • 10.

    Veach DR, Namavari M, Beresten T, et al. Synthesis and in vitro examination of [124I]-, [125I]- and [131I]-2-(4-iodophenylamino) pyrido[2,3-d]pyrimidin-7-one radiolabeled Abl kinase inhibitors. Nucl Med Biol 2005;32:313321.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hillner BE, Tunuguntla R, Fratkin M. Clinical decisions associated with positron emission tomography in a prospective cohort of patients with suspected or known cancer at one United States center. J Clin Oncol 2004;22:41474156.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 2002;359:13881393.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ruers TJ, Langenhoff BS, Neeleman N, et al. Value of positron emission tomography with [F-18]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 2002;20:388395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wahl Rl, Siegel BA, Coleman RE, et al. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 2004;22: 277285.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kumar R, Zhuang H, Schnall M, et al. PDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl Med Commun 2006;27:231236.

  • 16.

    Fehr MK, Hornung R, Varga Z, et al. Axillary staging using positron emission tomography in breast cancer patients qualifying for sentinel lymph node biopsy. Breast J 2004;10:8993.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Barranger E, Grahek D, Antoine M, et al. Evaluation of fluorodeoxyglucose positron emission tomography in the detection of axillary lymph node metastasis in patients with early-stage breast cancer. Ann Surg Oncol 2003;10:622627.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Keleman PR, Lowe V, Phillips N. Positron emission tomography and sentinel node dissection in breast cancer. Clin Breast Cancer 2002;3:7377.

  • 19.

    Veronesi U, De Cicco C, Galimberti V, et al. A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol 2007;18:473478.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gil-Rendo A, Zornoza G, Garcia-Velloso MJ, et al. Fluorodeoxyglucose positron emission tomography with sentinel node biopsy for evaluation of axillary involvement in breast cancer. Br J Surg 2006;93:707712.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zornoza G, Garcia-Velloso MJ, Sola J, et al. 18F-FDG PET complemented with sentinel lymph node biopsy in the detection of axillary involvement in breast cancer. Eur J Surg Oncol 2004;30:1519.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hathaway PB, Mankoff DA, Maravilla KR, et al. Value of combined FDG PET and MR imaging in the evaluation of suspected recurrent local-regional breast cancer: preliminary experience. Radiology 1999;210:807814.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ahmad A, Barrington S, Maisey M, Rubens RD. Use of positron emission tomography in evaluation of brachial plexopathy in breast cancer patients. Br J Cancer 1999;79: 478482.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Inoue T, Yutani K, Taguchi T, et al. Preoperative evaluation of prognosis in breast cancer patients by [(18)F]2-Deoxy2-fluoro-D-glucose-positron emission tomography. J Cancer Res Clin Oncol 2004;130:273278.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mankoff DA, Dunnwald LK, Gralow JR, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002;43: 500509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bellon JR, Livingston RB, Eubank WB, et al. Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer (LABC). Am J Clin Oncol 2004;27:407410.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Norum J, Andreassen T. Screening for metastatic disease in newly diagnosed breast cancer patients. What is costeffective? Anticancer Res 2000;20:21932196.

  • 28.

    Puglisi F, Follador A, Minisini AM, et al. Baseline staging tests after a new diagnosis of breast cancer: further evidence of their limited indications. Ann Oncol 2005;16:263266.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Barry MC, Thornton F, Murphy M, et al. The value of metastatic screening in early primary breast cancer. Ir J Med Sci 1999;168:248250.

  • 30.

    Moon DH, Maddahi J, Silverman DH, et al. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 1998; 39:431435.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kamel EM, Wyss MT, Fehr MK, et al. [18-F]-Fluorodeoxyglucose positron emission tomography in patients with suspected recurrent of breast cancer. J Cancer Res Clin Oncol 2003;129:147153.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Eubank WB, Mankoff DA, Takasugi J, et al. 18fluorodeoxyglucose positron emission tomography to detect mediastinal or internal mammary metastases in breast cancer. J Clin Oncol 2001;19:35163523.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cook GJ, Houston S, Rubens R, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:33753379.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Abe K, Sasaki M, Kuwabara Y, et al. Comparison of 18 FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 2005;19:573579.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Fujimoto R, Higashi T, Nakamoto Y, et al. Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 2006;20:399408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F] fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:16891695.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Smith IC, Welch AE, Hutcheon AW, et al. Positron emission tomography using [(18)F] fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:16761688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Mankoff DA, Dunnwald LK. Changes in glucose metabolism and blood flow following chemotherapy for breast cancer. PET Clinics 2005;1:7182.

  • 39.

    Mankoff DA, Dunnwald LK, Gralow JR, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 2003;44:18151817.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kim SJ, Kim SK, Lee ES, et al. Predictive value of [18F]FDG PET for pathological response of breast cancer to neoadjuvant chemotherapy. Ann Oncol 2004;15:13521357.

  • 41.

    Gennari A, Donatis S, Salvadori B, et al. Role of 2-[18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer 2000;1:156161.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dose Schwarz J, Bader M, Jenicke L, et al. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med 2005;46: 11441150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Stafford SE, Gralow JR, Schubert EK, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 2002;9:913921.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Agress H Jr, Cooper BZ. Detection of clinically unexpected malignant and premalignant tumors with whole-body FDG PET: histopathologic comparison. Radiology 2004;230:417422.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Yasuda S, Fujii H, Nakahara T, et al. 18F-FDG PET detection of colonic adenomas. J Nucl Med 2001;42:989992.

  • 46.

    Llamas-Elvira JM, Rodriguez-Fernandez A, Gutierrez-Sainz J, et al. Fluorine-18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nucl Med Mol Imaging 2006;Dec 29 [Epub ahead of print].

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kantorova I, Lipska L, Belohlavek O, et al. Routine (18)FFDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J Nucl Med 2003;44:17841788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Abdel-Nabi H, Doerr RJ, Lamonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 1998;206:755760.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Mukai M, Sadahiro S, Yasuda S, et al. Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer. Oncol Rep 2000;7:8587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Desch CE, Benson AB III, Somerfield MR, et al. Colorectal cancer surveillance: 2005 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 2005;23:85128519. Erratum in J Clin Oncol 2006;24:1224.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000;41:11771189.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Schiepers C, Penninckx F, De Vadder N, et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol 1995;21:517522.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Kinkel K, Lu Y, Both M, et al. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 2002;224:748756.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis— meta-analysis. Radiology 2005;237:123131.

  • 55.

    Valk PE, Abella-Columna E, Haseman MK, et al. Wholebody PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch Surg 1999;134:503511.

  • 56.

    Flamen P, Hoekstra OS, Homans F, et al. Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer 2001;37:862869.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Maldonado A, Sancho F, Cerdan J, et al. 16. FDG-PET in the detection of recurrence in colorectal cancer based on rising CEA level. Experience in 72 Patients. Clin Positron Imaging 2000;3:170.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Flanagan FL, Dehdashti F, Ogunbiyi OA, et al. Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg 1998;227:319323.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Wiering B, Krabbe PF, Jager GJ, et al. The impact of fluor18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 2005;104:26582670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Delbeke D, Vitola JV, Sandler MP, et al. Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 1997;38:11961201.

  • 61.

    Strasberg SM, Dehdashti F, Siegel BA, et al. Survival of patients evaluated by FDG-PET before hepatic resection for metastatic colorectal carcinoma: a prospective database study. Ann Surg 2001;233:293299.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Fernandez FG, Drebin JA, Linehan DC, et al. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg 2004;240:438447.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996;14:700708.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Guillem JG, Puig-La Calle J Jr, Akhurst T, et al. Prospective assessment of primary rectal cancer response to preoperative radiation and chemotherapy using 18-fluorodeoxyglucose positron emission tomography. Dis Colon Rectum 2000;43:1824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Donckier V, Van Laethem JL, Goldman S, et al. [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol 2003;84:215223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Wong CY, Qing F, Savin M, et al. Reduction of metastatic load to liver after intraarterial hepatic yttrium-90 radioembolization as evaluated by [18F]fluorodeoxyglucose positron emission tomographic imaging. J Vasc Interv Radiol 2005;16:11011106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Wong CY, Salem R, Qing F, et al. Metabolic response after intraarterial 90Y-glass microsphere treatment for colorectal liver metastases: comparison of quantitative and visual analyses by 18F-FDG PET. J Nucl Med 2004;45:18921897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Barker DW, Zagoria RJ, Morton Ka, et al. Evaluation of liver metastases after radiofrequency ablation: utility of 18FFDG PET and PET/CT. AJR Am J Roentgenol 2005;184:10961102.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Schoder H, Noy A, Gonen M, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2005;23:46434651.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Bangerter M, Moog F, Buchmann I, et al. Whole-body 2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 1998;9:11171122.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Young CS, Young BL, Smith SM. Staging Hodgkin’s disease with 18-FDG PET. Comparison with CT and surgery. Clin Positron Imaging 1998;1:161164.

  • 72.

    Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med 2005;46:958963.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Bruzzi JF, Macapinlac H, Tsimberidou AM, et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med 2006;47:12671273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored International Working Group. J Clin Oncol 1999;17:1244. Erratum in J Clin Oncol 2000;18:2351.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Reske SN. PET and restaging of malignant lymphoma including residual masses and relapse. Eur J Nucl Med Mol Imaging 2003;30(suppl 1):S89S96.

  • 76.

    Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001;19:414419.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood 2001;98:29302934.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Naumann R, Vaic A, Beuthien-Baumann B, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol 2001;115:793800.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop criteria and fluorine18-fluorodeoxxyglucose positron emission tomography. J Clin Oncol 2005;23:46524661.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in lymphoma. J Clin Oncol 2007;25:571578.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25: 579586.

  • 82.

    Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 2006;107:5259.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Mikhaeel NG, Hutchings M, Fields PA, et al. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 2005;16:15141523.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Haioun C, Itti E, Rahmouni A, et al. [18F]fluoro-2-deoxyD-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood 2005;106:13761381.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Patterson GA, Ginsberg RJ, Poon PY, et al. A prospective evaluation of magnetic resonance imaging, computed tomography, and mediastinoscopy in the preoperative assessment of mediastinal node status in bronchogenic carcinoma. J Thorac Cardiovasc Surg 1987;94:679684.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Alongi F, Ragusa P, Montemaggi P, Bona CM. Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non small cell lung cancer. Tumori 2006;92:327333.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Herder GJ, Kramer H, Hoekstra OS, et al. Traditional versus up-front [18F] fluorodeoxyglucose-positron emission tomography staging of non-small-cell lung cancer: a Dutch cooperative randomized study. J Clin Oncol 2006;24: 18001806.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Bruzzi JF, Munden RF. PET/CT imaging of lung cancer. J Thoracic Imaging 2006;21:123126.

  • 89.

    Allen-Auerbach M, Yeom K, Park J, et al. Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 2006;47: 298301.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Gilman MD, Fischman AJ, Krishnasetty V, et al. Optimal CT breathing protocol for combined thoracic PET/CT. AJR Am J Roentgenol 2006;187:13571360.

  • 91.

    Nehmeh SA, Erdi YE, Meirelles GS, et al. Deep-inspiration on breath-hold of PET/CT of the thorax. J Nucl Med 2007;48:2226.

  • 92.

    Cerfolio RJ, Bryant AS, Ojha B. Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemoradiotherapy: a prospective study. J Thorac Cardiovasc Surg 2006;131:12291235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Granome P, van Schil P, Cesario A. Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemoradiotherapy: a closer look at redo mediastinoscopy. Letter to the Editor. J Thorac Cardiovasc Surg 2007;133: 275276.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Pottgen C, Levegrun S, Theegarten D, et al. Value of 18F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography in non-small-cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 2006;12:97106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Cerfolio RJ, Bryant AS, Winokur TS, et al. Repeat FDGPET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 2004;78:19031909.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantita-tive assessment of glucose use. J Clin Oncol 2003;21:26512657.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6339 4056 369
PDF Downloads 846 207 16
EPUB Downloads 0 0 0