Multiple Myeloma: Most Common End-Organ Damage and Management

End-organ damage is the factor that differentiates plasma cell dyscrasia requiring therapy (active multiple myeloma [MM]) from disease that does not require therapy (monoclonal gammopathy of undetermined significance and smoldering [asymptomatic] MM). Progressive skeletal destruction is the hallmark of MM and responsible for principle morbidity in the disease. The spine is the most afflicted skeletal organ, and vertebral fractures have significantly contributed to its poor prognosis. Early mortality in MM is usually attributed to the combined effects of active disease and comorbid factors. Infection and renal failure are the main direct causes of early mortality. Using bisphosphonates to manage skeletal events mainly by preventing or slowing the destructive process has become an important adjunctive treatment in MM. Advances in minimally invasive surgical techniques, such as percutaneous vertebroplasty and kyphoplasty, offer these patients less-invasive options for treating vertebral collapse and restoring function. The aggressive management of other complications of the disease through more effective and less toxic therapy that targets the primary disease, in addition to supportive care, is resulting in patients experiencing less morbidity and probably lower mortality. This article reviews recent advances in the understanding of bone disease in MM, the role of bisphosphonates in preventing skeletal events, and available data on percutaneous vertebroplasty and kyphoplasty, and discusses the management of infection and renal failure, which seem to be responsible for high initial mortality and thereby compromise the current advances in therapy.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Mohamad A. Hussein, MD, H. lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-4, Tampa, FL 33612. E-mail: mashussein@runbox.us

References

  • 1.

    JemalAMurrayTWardE. Cancer statistics, 2005. CA Cancer J Clin2005;55:1030.

  • 2.

    AugustsonBMBegumGDunnJA. Early mortality after diagnosis of multiple myeloma: analysis of patients entered onto the United Kingdom Medical Research Council trials between 1980 and 2002—Medical Research Council Adult Leukaemia Working Party. J Clin Oncol2005;23:92199226.

    • Search Google Scholar
    • Export Citation
  • 3.

    International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol2003;121:749757.

    • Search Google Scholar
    • Export Citation
  • 4.

    KyleRAGertzMAWitzigTE. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc2003;78:2133.

  • 5.

    Combination chemotherapy versus melphalan plus prednisone as treatment for multiple myeloma: an overview of 6,633 patients from 27 randomized trials. Myeloma Trialists' Collaborative Group. J Clin Oncol1998;16:38323842.

    • Search Google Scholar
    • Export Citation
  • 6.

    KyleRA. Multiple myeloma: review of 869 cases. Mayo Clin Proc1975;50:2940.

  • 7.

    KadoDMBrownerWSPalermoL. Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med1999;159:12151220.

    • Search Google Scholar
    • Export Citation
  • 8.

    LeechJADulbergCKellieS. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis1990;141:6871.

  • 9.

    NakagawaNKinosakiMYamaguchiK. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun1998;253:395400.

    • Search Google Scholar
    • Export Citation
  • 10.

    SimonetWSLaceyDLDunstanCR. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell1997;89:309319.

    • Search Google Scholar
    • Export Citation
  • 11.

    KongYYYoshidaHSarosiI. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature1999;397:315323.

    • Search Google Scholar
    • Export Citation
  • 12.

    DougallWCGlaccumMCharrierK. RANK is essential for osteoclast and lymph node development. Genes Dev1999;13:24122424.

  • 13.

    PearseRNSordilloEMYaccobyS. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A2001;98:1158111586.

    • Search Google Scholar
    • Export Citation
  • 14.

    GiulianiNBatailleRManciniC. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood2001;98:35273533.

    • Search Google Scholar
    • Export Citation
  • 15.

    SezerOHeiderUZavrskiI. RANK ligand and osteoprotegerin in myeloma bone disease. Blood2003;101:20942098.

  • 16.

    SeidelCHjertnerOAbildgaardN. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood2001;98:22692271.

    • Search Google Scholar
    • Export Citation
  • 17.

    BodyJJGreippPColemanRE. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer2003;97:887892.

    • Search Google Scholar
    • Export Citation
  • 18.

    BoydenLMMaoJBelskyJ. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med2002;346:15131521.

  • 19.

    MukhopadhyayMShtromSRodriguez-EstebanC. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell2001;1:423434.

    • Search Google Scholar
    • Export Citation
  • 20.

    GrotewoldLRutherU. The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J2002;21:966975.

    • Search Google Scholar
    • Export Citation
  • 21.

    CadiganKMNusseR. Wnt signaling: a common theme in animal development. Genes Dev1997;11:32863305.

  • 22.

    GongYSleeRBFukaiN. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell2001;107:513523.

  • 23.

    KatoMPatelMSLevasseurR. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol2002;157:303314.

    • Search Google Scholar
    • Export Citation
  • 24.

    LittleRDCarulliJPDel MastroRG. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet2002;70:1119.

    • Search Google Scholar
    • Export Citation
  • 25.

    BerensonJRLichtensteinAPorterL. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med1996;334:488493.

    • Search Google Scholar
    • Export Citation
  • 26.

    BerensonJRLichtensteinAPorterL. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol1998;16:593602.

    • Search Google Scholar
    • Export Citation
  • 27.

    LahtinenRLaaksoMPalvaI. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet1992;340:10491052.

    • Search Google Scholar
    • Export Citation
  • 28.

    McCloskeyEVMacLennanICDraysonMT. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol1998;100:317325.

    • Search Google Scholar
    • Export Citation
  • 29.

    McCloskeyEVDunnJAKanisJA. Long-term follow-up of a prospective, double-blind, placebo-controlled randomized trial of clodronate in multiple myeloma. Br J Haematol2001;113:10351043.

    • Search Google Scholar
    • Export Citation
  • 30.

    RosenLSGordonDKaminskiM. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J2001;7:377387.

    • Search Google Scholar
    • Export Citation
  • 31.

    DjulbegovicBWheatleyKRossJ. Bisphosphonates in multiple myeloma. Cochrane Database Syst Rev2001;4:CD003188.

  • 32.

    GertzBJHollandSDKlineWF. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther1995;58:288298.

  • 33.

    BerensonJRHillnerBEKyleRA. American Society of Clinical Oncology clinical practice guidelines: the role of bisphophonates in multiple myeloma. J Clin Oncol2002;20:37193736.

    • Search Google Scholar
    • Export Citation
  • 34.

    ThakkarSGIsadaCSmithJ. Jaw complications associated with bisphosphonate use in patients with plasma cell dyscrasias. Med Oncol2006;23:5156.

    • Search Google Scholar
    • Export Citation
  • 35.

    DimopoulosMAKastritisEAnagnostopoulosA. Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica2006;91:968971.

    • Search Google Scholar
    • Export Citation
  • 36.

    ZervasAVerouETeleioudisZ. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: a single-centre experience in 303 patients. Br J Haematol2006;134:620623.

    • Search Google Scholar
    • Export Citation
  • 37.

    BostromMPLaneJM. Future directions. Augmentation of osteoporotic vertebral bodies. Spine1997;22(suppl 24):38S42S.

  • 38.

    GalibertPDeramondHRosatP. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie1987;33:166168.

    • Search Google Scholar
    • Export Citation
  • 39.

    JensenMEEvansAJMathisJM. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol1997;18:18971904.

    • Search Google Scholar
    • Export Citation
  • 40.

    BarrJDBarrMSLemleyTJ. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine2000;25:923928.

  • 41.

    CortetBCottenABoutryN. Percutaneous vertebroplasty in patients with osteolytic metastases or multiple myeloma. Rev Rhum Engl Ed1997;64:177183.

    • Search Google Scholar
    • Export Citation
  • 42.

    DudeneySLiebermanIHReinhardtMK. Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma. J Clin Oncol2002;20:23822387.

    • Search Google Scholar
    • Export Citation
  • 43.

    CottenABoutryNCortetB. Percutaneous vertebroplasty: state of the art. Radiographics1998;18:311320; discussion 320–323.

  • 44.

    CottenADewatreFCortetB. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology1996;200:525530.

    • Search Google Scholar
    • Export Citation
  • 45.

    DeramondHWrightNTBelkoffSM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone1999;25(suppl 2):17S21S.

    • Search Google Scholar
    • Export Citation
  • 46.

    EinhornTA. Vertebroplasty: an opportunity to do something really good for patients. Spine2000;25:10511052.

  • 47.

    PhillipsFMTodd WetzelFLiebermanI. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine2002;27:21732178; discussion 2178–2179.

    • Search Google Scholar
    • Export Citation
  • 48.

    DeramondHDepriesterCGalibertP. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am1998;36:533546.

    • Search Google Scholar
    • Export Citation
  • 49.

    LiebermanIHDudeneySReinhardtMK. Initial outcome and efficacy of ``kyphoplasty'' in the treatment of painful osteoporotic vertebral compression fractures. Spine2001;26:16311638.

    • Search Google Scholar
    • Export Citation
  • 50.

    LiebermanIReinhardtMK. Vertebroplasty and kyphoplasty for osteolytic vertebral collapse. Clin Orthop Relat Res2003:415(suppl):S176S186.

    • Search Google Scholar
    • Export Citation
  • 51.

    ChapelHMLeeMHargreavesR. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin Replacement Therapy in Multiple Myeloma. Lancet1994;343:10591063.

    • Search Google Scholar
    • Export Citation
  • 52.

    OkenMMPomeroyCWeisdorfD. Prophylactic antibiotics for the prevention of early infection in multiple myeloma. Am J Med1996;100:624628.

    • Search Google Scholar
    • Export Citation
  • 53.

    SakhujaVJhaVVarmaS. Renal involvement in multiple myeloma: a 10-year study. Ren Fail2000;22:465477.

  • 54.

    KumarSKSohalPMKohliHS. Acute renal failure due to cast nephropathy in nonsecretory myeloma: a case report and review of the literature. Int Urol Nephrol2005;37:351353.

    • Search Google Scholar
    • Export Citation
  • 55.

    El-AchkarTMSharfuddinAADominguezJ. Approach to acute renal failure with multiple myeloma: role of plasmapheresis. Ther Apher Dial2005;9:417422.

    • Search Google Scholar
    • Export Citation
  • 56.

    BladeJRosinolL. Renal, hematologic and infectious complications in multiple myeloma. Best Pract Res Clin Haematol2005;18:635652.

Article Information

PubMed

Google Scholar

Related Articles

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 31 6
PDF Downloads 6 6 2
EPUB Downloads 0 0 0