Early Detection and Biomarkers in Pancreatic Cancer

Major advances in cancer control will be greatly aided by early detection for diagnosing and treating cancer in its preinvasive state before metastasis. Unfortunately, for pancreatic ductal adenocarcinoma (PDAC), which is the fourth leading cause of cancer-related death in the United States, effective early detection and screening are currently not available and tumors are typically diagnosed at a late stage, frequently after metastasis. Partly because of low sensitivity/specificity, existing biomarkers such as CA19-9 are not adequate as early detection markers of pancreatic cancer. Thus, a great need exists for new biomarkers for pancreatic cancer. This article focuses on recent developments in the identification of new serum protein biomarkers that are useful in the early detection of PDAC.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Correspondence: Diane M. Simeone, MD, Department of Surgery, University of Michigan Medical Center, 1500 East Medical Center Drive, Room TC 2922D, Ann Arbor, MI 48109-0331. E-mail: simeone@umich.edu

References

  • 1.

    JemalASiegelRWardE. Cancer statistics, 2006. CA Cancer J Clin2006;56:106130.

  • 2.

    MannDVEdwardsRHoS. Elevated tumour marker CA 19-9: clinical interpretation and influence of obstructive jaundice. Eur J Surg Oncol2000;26:474479.

    • Search Google Scholar
    • Export Citation
  • 3.

    FerroneCRFinkelsteinDMThayerSP. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol2006;24:28972902.

    • Search Google Scholar
    • Export Citation
  • 4.

    DuffyMJ. CA19-9 as a marker for gastrointestinal cancers: a review. Ann Clin Biochem1998;35:364370.

  • 5.

    NazliOBozdagADTansugT. The diagnostic importance of CEA and CA 19-9 for the early diagnosis of pancreatic carcinoma. Hepatogastroenterology2000;47:17501752.

    • Search Google Scholar
    • Export Citation
  • 6.

    BoeckSStieberPHoldenriederS. Prognostic and therapeutic significance of carbohydrate antigen 19-9 as tumor marker in patients with pancreatic cancer. Oncology2006;70:255264.

    • Search Google Scholar
    • Export Citation
  • 7.

    AllisonDCPiantadosiSHrubanRH. DNA content and other factors associated with ten-year survival after resection of pancreatic carcinoma. J Surg Oncol1998;67:151159.

    • Search Google Scholar
    • Export Citation
  • 8.

    UjikiMBTalamontiMS. Surgical management of pancreatic cancer. Semin Radiation Oncol2005;15:218225.

  • 9.

    LawrenceTSBlackstockAWMcGinnCJ. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiation Oncol2003;13:1321.

    • Search Google Scholar
    • Export Citation
  • 10.

    McGinnCJZalupskiMMShureiqiI. Phase I trial of radiation dose escalation with concurrent weekly full-dose gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol2001;19:42024208.

    • Search Google Scholar
    • Export Citation
  • 11.

    GoldhirschAColleoniMDomenighettiG. Systemic treatments for women with breast cancer: outcome with relation to screening for the disease. Ann Oncol2003;14:12121214.

    • Search Google Scholar
    • Export Citation
  • 12.

    LiebermanD. How to screen for colon cancer. Annu Rev Med1998;49:163172.

  • 13.

    FergusonJA. Early detection of unsuspected colon cancers in asymptomatic people. Dis Colon Rectum1993;36:411.

  • 14.

    MandelJBChurchJHSnoverTR. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med1993;328:13651371.

    • Search Google Scholar
    • Export Citation
  • 15.

    CatalonaWJ. Management of cancer of the prostate. N Engl J Med1995;331:9961004.

  • 16.

    JacobsenSJKatusicSKBergstralhEJ. Incidence of prostate cancer diagnosis in the eras before and after serum prostate-specific antigen testing. JAMA1995;274:14451449.

    • Search Google Scholar
    • Export Citation
  • 17.

    LyngeE. Screening for cancer of the cervix uteri. World J Surg1989;13:7178.

  • 18.

    BrichoryFMMisekDEYimAM. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S A2001;98:98249829.

    • Search Google Scholar
    • Export Citation
  • 19.

    Le NaourFMisekDKrauseM. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res2001;7:33283335.

    • Search Google Scholar
    • Export Citation
  • 20.

    GureAOAltorkiNKStockertE. Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res1998;58:10341041.

    • Search Google Scholar
    • Export Citation
  • 21.

    StockertEJagerEChenYT. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J Exp Med1998;187:13491354.

    • Search Google Scholar
    • Export Citation
  • 22.

    Ben-MahrezKSorokineIThierryD. Circulating antibodies against c-myc oncogene product in sera of colorectal cancer patients. Int J Cancer1990;46:3538.

    • Search Google Scholar
    • Export Citation
  • 23.

    PupaSMMenardSAndreolaS. Antibody response against the c-erbB-2 oncoprotein in breast carcinoma patients. Cancer Res1993;53:58645866.

    • Search Google Scholar
    • Export Citation
  • 24.

    WinterSFMinnaJDJohnsonBE. Development of antibodies against p53 in lung cancer patients appears to be dependent on the type of p53 mutation. Cancer Res1992;52:41684174.

    • Search Google Scholar
    • Export Citation
  • 25.

    RaedleJOremekGWelkerM. p53 autoantibodies in patients with pancreatitis and pancreatic carcinoma. Pancreas1996;13:241246.

  • 26.

    HamanakaYSuehiroYFukuiM. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int J Cancer2003;103:97100.

    • Search Google Scholar
    • Export Citation
  • 27.

    MaackeHHundertmarkCMiskaS. Autoantibodies in sera of pancreatic cancer patients identify recombination factor Rad51 as a tumour-associated antigen. J Cancer Res Clin Oncol2002;128:219222.

    • Search Google Scholar
    • Export Citation
  • 28.

    XiaQKongXTZhangGA. Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer. Biochem Biophys Res Commun2005;330:526532.

    • Search Google Scholar
    • Export Citation
  • 29.

    KoteraYFontenotJDPecherG. Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res1994;54:28562860.

    • Search Google Scholar
    • Export Citation
  • 30.

    MaackeHJostKOpitzS. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene2000;19:27912795.

    • Search Google Scholar
    • Export Citation
  • 31.

    HongSHMisekDEWangH. An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res2004;64:55045510.

    • Search Google Scholar
    • Export Citation
  • 32.

    HongSHMisekDEWangH. Identification of a specific vimentin isoform that induces an antibody response in pancreatic cancer. Biomarker Insights2006;2:175183.

    • Search Google Scholar
    • Export Citation
  • 33.

    Abu-ShakraMBuskilaDEhrenfeldM. Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies. Ann Rheum Dis2001;60:433441.

    • Search Google Scholar
    • Export Citation
  • 34.

    KoopmannJFedarkoNSJainA. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev2004;13:487491.

    • Search Google Scholar
    • Export Citation
  • 35.

    KoopmannJBuckhaultsPBrownDA. Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res2004;10:23862392.

    • Search Google Scholar
    • Export Citation
  • 36.

    KoopmannJRosenzweigNWZhangZ. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Cancer Res2006;12:442446.

    • Search Google Scholar
    • Export Citation
  • 37.

    HwangTLLiangYChienKY. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics2006;6:22592272.

    • Search Google Scholar
    • Export Citation
  • 38.

    SimeoneDMJiBBanerjeeM. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas2007;34:436443.

  • 39.

    KoopmannJZhangZWhiteN. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res2004;10:860868.

    • Search Google Scholar
    • Export Citation
  • 40.

    GronborgMBunkenborgJKristiansenTZ. Comprehensive proteomic analysis of human pancreatic juice. J Prot Res2004;3:10421055.

  • 41.

    ChenRPanSYiEC. Quantitative proteomic profiling of pancreatic cancer juice. Proteomics2006;6:38713879.

  • 42.

    ChenRPanSCookeK. Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas2007;34:7079.

    • Search Google Scholar
    • Export Citation
  • 43.

    ZhouLLuZYangA. Comparative proteomic analysis of human pancreatic juice: methodological study. Proteomics2007;7:13451355.

  • 44.

    RuddPMElliottTCresswellP. Glycosylation and the immune system. Science2001;291:23702376.

  • 45.

    KobataAAmanoJ. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol2005;83:429439.

    • Search Google Scholar
    • Export Citation
  • 46.

    DubeDHBertozziCR. Glycans in cancer and inflammation—potential for therapeutics and diagnostics. Nat Rev Drug Discov2005;4:477488.

    • Search Google Scholar
    • Export Citation
  • 47.

    OrntoftTFVestergaardEM. Clinical aspects of altered glycosylation of glycoproteins in cancer. Electrophoresis1999;20:362371.

  • 48.

    SemmesOJMalikGWardM. Application of mass spectrometry to the discovery of biomarkers for detection of prostate cancer. J Cell Biochem2006;98:496503.

    • Search Google Scholar
    • Export Citation
  • 49.

    Kui WongNEastonRLPanicoM. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem2003;278:2861928634.

    • Search Google Scholar
    • Export Citation
  • 50.

    PrakashSRobbinsPW. Glycotyping of prostate specific antigen. Glycobiology2000;10:173176.

  • 51.

    BlockTMComunaleMALowmanM. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A2005;102:779784.

    • Search Google Scholar
    • Export Citation
  • 52.

    PeracaulaRTabaresGRoyleL. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology2003;13:457470.

    • Search Google Scholar
    • Export Citation
  • 53.

    PeracaulaRRoyleLTabaresG. Glycosylation of human pancreatic ribonuclease: differences between normal and tumor states. Glycobiology2003;13:227244.

    • Search Google Scholar
    • Export Citation
  • 54.

    TemplinMFStollDSchwenkJM. Protein microarrays: promising tools for proteomic research. Proteomics2003;3:21552166.

  • 55.

    PalMMoffaASreekumarA. Differential phosphoprotein mapping in cancer cells using protein microarrays produced from 2-D liquid fractionation. Anal Chem2006;78:702710.

    • Search Google Scholar
    • Export Citation
  • 56.

    YanFSreekumarALaxmanB. Protein microarrays using liquid phase fractionation of cell lysates. Proteomics2003;3:12281235.

  • 57.

    OrchekowskiRHamelinckDLiL. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res2005;65:1119311202.

    • Search Google Scholar
    • Export Citation
  • 58.

    Madoz-GurpideJWangHMisekDE. Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics2001;1:12791287.

    • Search Google Scholar
    • Export Citation
  • 59.

    NamMJMadoz-GurpideJWangH. Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics2003;3:21082115.

    • Search Google Scholar
    • Export Citation
  • 60.

    BouwmanKQiuJZhouH. Microarrays of tumor cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity. Proteomics2003;3:22002207.

    • Search Google Scholar
    • Export Citation
  • 61.

    QiuJMadoz-GurpideJMisekDE. Development of natural protein microarrays for diagnosing cancer based on an antibody response to tumor antigens. J Proteome Res2004;3:261267.

    • Search Google Scholar
    • Export Citation
  • 62.

    GaoWMKuickROrchekowskiRP. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer2005;5:110.

    • Search Google Scholar
    • Export Citation
  • 63.

    PatwaTHZhaoJAndersonMA. Screening of glycosylation patterns in serum using natural glycoprotein microarrays and multilectin fluorescence detection. Anal Chem2006;78:64116421.

    • Search Google Scholar
    • Export Citation
  • 64.

    ZhaoJPatwaTHQiuW. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res2007;6:18641874.

    • Search Google Scholar
    • Export Citation

Article Information

PubMed

Google Scholar

Related Articles

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 18
PDF Downloads 17 17 6
EPUB Downloads 0 0 0