Bone Cancer, Version 2.2025, NCCN Clinical Practice Guidelines In Oncology

Authors:
J. Sybil Biermann University of Michigan Rogel Cancer Center

Search for other papers by J. Sybil Biermann in
Current site
Google Scholar
PubMed
Close
 MD
,
Angela Hirbe Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Search for other papers by Angela Hirbe in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Shivani Ahlawat Johns Hopkins Kimmel Cancer Center

Search for other papers by Shivani Ahlawat in
Current site
Google Scholar
PubMed
Close
 MD
,
Nicholas M. Bernthal UCLA Jonsson Comprehensive Cancer Center

Search for other papers by Nicholas M. Bernthal in
Current site
Google Scholar
PubMed
Close
 MD
,
Odion Binitie Moffitt Cancer Center

Search for other papers by Odion Binitie in
Current site
Google Scholar
PubMed
Close
 MD
,
Sarah Boles UC San Diego Moores Cancer Center

Search for other papers by Sarah Boles in
Current site
Google Scholar
PubMed
Close
 MD
,
Brian Brigman Duke Cancer Institute

Search for other papers by Brian Brigman in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Alexandra K. Callan UT Southwestern Simmons Comprehensive Cancer Center

Search for other papers by Alexandra K. Callan in
Current site
Google Scholar
PubMed
Close
 MD
,
Cara Cipriano Abramson Cancer Center at the University of Pennsylvania

Search for other papers by Cara Cipriano in
Current site
Google Scholar
PubMed
Close
 MD, MSc
,
Lee D. Cranmer Fred Hutchinson Cancer Center

Search for other papers by Lee D. Cranmer in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jessica Davis Indiana University Melvin and Bren Simon Comprehensive Cancer Center

Search for other papers by Jessica Davis in
Current site
Google Scholar
PubMed
Close
 MD
,
Eric Donnelly Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Search for other papers by Eric Donnelly in
Current site
Google Scholar
PubMed
Close
 MD
,
Michael Ferguson Indiana University Melvin and Bren Simon Comprehensive Cancer Center

Search for other papers by Michael Ferguson in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Ann Graham MIB Agents Osteosarcoma Alliance

Search for other papers by Ann Graham in
Current site
Google Scholar
PubMed
Close
,
John Groundland Huntsman Cancer Institute at the University of Utah

Search for other papers by John Groundland in
Current site
Google Scholar
PubMed
Close
 MD
,
Matthew Hess O’Neal Comprenensive Cancer Center at UAB

Search for other papers by Matthew Hess in
Current site
Google Scholar
PubMed
Close
 MD
,
Susan M. Hiniker Stanford Cancer Institute

Search for other papers by Susan M. Hiniker in
Current site
Google Scholar
PubMed
Close
 MD
,
Margo L. Hoover-Regan University of Wisconsin Carbone Cancer Center

Search for other papers by Margo L. Hoover-Regan in
Current site
Google Scholar
PubMed
Close
 MD
,
Jason L. Hornick Dana-Farber/Brigham and Women’s Cancer Center

Search for other papers by Jason L. Hornick in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Brandon Jonard Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Search for other papers by Brandon Jonard in
Current site
Google Scholar
PubMed
Close
 MD
,
Joseph B. Kuechle Roswell Park Comprehensive Cancer Center

Search for other papers by Joseph B. Kuechle in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Dieter Lindskog Yale Cancer Center/Smilow Cancer Hospital

Search for other papers by Dieter Lindskog in
Current site
Google Scholar
PubMed
Close
 MD
,
Joel L. Mayerson The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Search for other papers by Joel L. Mayerson in
Current site
Google Scholar
PubMed
Close
 MD
,
Sean V. McGarry Fred & Pamela Buffett Cancer Center

Search for other papers by Sean V. McGarry in
Current site
Google Scholar
PubMed
Close
 MD
,
Carol D. Morris Memorial Sloan Kettering Cancer Center

Search for other papers by Carol D. Morris in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Daniel Olson The UChicago Medicine Comprehensive Cancer Center

Search for other papers by Daniel Olson in
Current site
Google Scholar
PubMed
Close
 MD
,
Peter S. Rose Mayo Clinic Comprehensive Cancer Center

Search for other papers by Peter S. Rose in
Current site
Google Scholar
PubMed
Close
 MD
,
Victor M. Santana St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center

Search for other papers by Victor M. Santana in
Current site
Google Scholar
PubMed
Close
 MD
,
Robert L. Satcher The University of Texas MD Anderson Cancer Center

Search for other papers by Robert L. Satcher in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Herbert Schwartz Vanderbilt-Ingram Cancer Center

Search for other papers by Herbert Schwartz in
Current site
Google Scholar
PubMed
Close
 MD
,
Rebecca M. Shulman Fox Chase Cancer Center

Search for other papers by Rebecca M. Shulman in
Current site
Google Scholar
PubMed
Close
 MD
,
Steven W. Thorpe UC Davis Comprehensive Cancer Center

Search for other papers by Steven W. Thorpe in
Current site
Google Scholar
PubMed
Close
 MD
,
Breelyn A. Wilky University of Colorado Cancer Center

Search for other papers by Breelyn A. Wilky in
Current site
Google Scholar
PubMed
Close
 MD
,
Rosanna L. Wustrack UCSF Helen Diller Family Comprehensive Cancer Center

Search for other papers by Rosanna L. Wustrack in
Current site
Google Scholar
PubMed
Close
 MD
,
Janet Yoon City of Hope National Medical Center

Search for other papers by Janet Yoon in
Current site
Google Scholar
PubMed
Close
 MD
,
Lisa E. Hang National Comprehensive Cancer Network

Search for other papers by Lisa E. Hang in
Current site
Google Scholar
PubMed
Close
 PhD
,
Frankie Jones National Comprehensive Cancer Network

Search for other papers by Frankie Jones in
Current site
Google Scholar
PubMed
Close
,
Nicholas Sansone National Comprehensive Cancer Network

Search for other papers by Nicholas Sansone in
Current site
Google Scholar
PubMed
Close
, and
Megan Lyons National Comprehensive Cancer Network

Search for other papers by Megan Lyons in
Current site
Google Scholar
PubMed
Close
 MS
Restricted access

Ewing sarcoma and osteosarcoma constitute 36% of all primary bone cancers. However, these 2 subtypes represent the most commonly diagnosed bone cancer types in the pediatric and adolescent population. Although still largely unknown, certain genetic mutations, rearrangements, and/or predisposition syndromes likely play a role in the pathogenesis of bone cancer. Osteosarcoma may also develop as a direct result of the long-term side effects of radiation therapy. With the implementation of a multimodality approach to treatment, including multiagent neoadjuvant and adjuvant chemotherapy regimens, targeted therapy options, surgery, and radiation, individuals with Ewing sarcoma and osteosarcoma are showing higher cure rates and improved overall survival. The NCCN Guidelines for Bone Cancer provide a consensus and evidence-based framework for the workup, management, and surveillance of local and recurrent/metastatic disease.

Discussion Writing Committee Members:

J. Sybil Biermann, Angela Hirbe, Shivani Ahlawat, Odion Binitie, Brian Brigman, Alexandra K. Callan, Cara Cipriano, Lee D. Cranmer, Jessica Davis, Ann Graham, Matthew Hess, Margo L. Hoover-Regan, Jason L. Hornick, Joseph B. Kuechle, Dieter Lindskog, Joel L. Mayerson, Sean V. McGarry, Carol D. Morris, Peter S. Rose, Robert L. Satcher, Herbert Schwartz, Rosanna L. Wustrack, Janet Yoon, Lisa E. Hang, Frankie Jones, Nicholas Sansone, and Megan Lyons

To view disclosures of external relationships for the NCCN Guidelines panel, go to https://www.nccn.org/guidelines/guidelines-panels-and-disclosure/disclosure-panels

The full NCCN Guidelines for Bone Cancer are not printed in this issue of JNCCN. The complete and most recent version of these guidelines is available free of charge at NCCN.org.

NCCN CATEGORIES OF EVIDENCE AND CONSENSUS

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

NCCN CATEGORIES OF PREFERENCE

Preferred intervention: Interventions that are based on superior efficacy, safety, and evidence; and, when appropriate, affordability.

Other recommended intervention: Other interventions that may be somewhat less efficacious, more toxic, or based on less mature data; or significantly less affordable for similar outcomes.

Useful in certain circumstances: Other interventions that may be used for selected patient populations (defined with recommendation).

All recommendations are considered appropriate.

NCCN recognizes the importance of clinical trials and encourages participation when applicable and available.

Trials should be designed to maximize inclusiveness and broad representative enrollment.

PLEASE NOTE

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their application or use in any way.

  • Collapse
  • Expand
  • 1.

    National Cancer Institute. SEER cancer statistics fact sheets: bone and joint cancer. Accessed July 10, 2024. Available at: https://seer.cancer.gov/statfacts/html/bones.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA Cancer J Clin 2025;75:1045.

  • 3.

    MD Anderson Cancer Center. Bone cancer. Accessed January 16, 2025. Available at: https://www.mdanderson.org/cancer-types/bone-cancer.html#:∼:text=In%20the%20United%20States%2C%20more,all% 20cancers%20in%20this%20country

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    National Cancer Institute. Primary bone cancer. Accessed January 16, 2025. Available at: https://www.cancer.gov/types/bone/bone-fact-sheet

  • 5.

    WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Soft Tissue and Bone Tumours, 5th ed. IARC Press; 2020.

    • PubMed
    • Export Citation
  • 6.

    Limaiem F, Davis DD, Sticco KL. Chondrosarcoma. Accessed January 16, 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK538132/

  • 7.

    McMaster ML, Goldstein AM, Bromley CM, et al. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 2001;12:111.

  • 8.

    Walcott BP, Nahed BV, Mohyeldin A, et al. Chordoma: current concepts, management, and future directions. Lancet Oncol 2012;13:e6976.

  • 9.

    Wedekind MF, Widemann BC, Cote G. Chordoma: Current status, problems, and future directions. Curr Probl Cancer 2021;45:100771.

  • 10.

    de Alava E, Gerald WL. Molecular biology of the Ewing’s sarcoma/ primitive neuroectodermal tumor family. J Clin Oncol 2000;18:204213.

  • 11.

    Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994;331:294299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Denny CT. Gene rearrangements in Ewing’s sarcoma. Cancer Invest 1996;14:8388.

  • 13.

    Burchill SA. Molecular abnormalities in Ewing’s sarcoma. Expert Rev Anticancer Ther 2008;8:16751687.

  • 14.

    Apfelbaum AA, Wrenn ED, Lawlor ER. The importance of fusion protein activity in Ewing sarcoma and the cell intrinsic and extrinsic factors that regulate it: a review. Front Oncol 2022;12:1044707.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mirabello L, Zhu B, Koster R, et al. Frequency of pathogenic germline variants in cancer-susceptibility genes in patients with osteosarcoma. JAMA Oncol 2020;6:724734.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:12331238.

  • 17.

    McIntyre JF, Smith-Sorensen B, Friend SH, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 1994;12:925930.

  • 18.

    Ognjanovic S, Olivier M, Bergemann TL, Hainaut P. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 2012;118:13871396.

  • 19.

    Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat Res 2009;152:1532.

  • 20.

    MacCarthy A, Bayne AM, Draper GJ, et al. Non-ocular tumours following retinoblastoma in Great Britain 1951 to 2004. Br J Ophthalmol 2009;93:11591162.

  • 21.

    Calvert GT, Randall RL, Jones KB, et al. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma 2012;2012:152382.

  • 22.

    Kalra S, Grimer RJ, Spooner D, et al. Radiation-induced sarcomas of bone: factors that affect outcome. J Bone Joint Surg Br 2007;89:808813.

  • 23.

    Mavrogenis AF, Pala E, Guerra G, Ruggieri P. Post-radiation sarcomas. Clinical outcome of 52 Patients. J Surg Oncol 2012;105:570576.

  • 24.

    Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist 2006;11:503519.

  • 25.

    Subbiah V, Anderson P, Lazar AJ, et al. Ewing’s sarcoma: standard and experimental treatment options. Curr Treat Options Oncol 2009;10:126140.

  • 26.

    Rathore R, Van Tine BA. Pathogenesis and current treatment of osteosarcoma: perspectives for future therapies. J Clin Med 2021;10:1182.

  • 27.

    Federman N, Bernthal N, Eilber FC, Tap WD. The multidisciplinary management of osteosarcoma. Curr Treat Options Oncol 2009;10:8293.

  • 28.

    Xu M, Wang Z, Yu XC, et al. Guideline for limb-salvage treatment of osteosarcoma. Orthop Surg 2020;12:10211029.

  • 29.

    American Cancer Society. Early detection, diagnosis, and staging of Ewing tumors. Accessed July 18, 2024. Available at: https://www.cancer.org/content/dam/CRC/PDF/Public/8621.00.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 2000;18:31083114.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kager L, Zoubek A, Potschger U, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol 2003;21:20112018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Amin MB, Edge SB, Greene FL, et al. AJCC Cancer Staging Manual, 8th ed. New York, NY: Springer; 2017.

  • 33.

    Lee SJ, Schover LR, Partridge AH, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006;24:29172931.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rougraff BT, Kneisl JS, Simon MA. Skeletal metastases of unknown origin. A prospective study of a diagnostic strategy. J Bone Joint Surg Am 1993;75:12761281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schuetze SM. Utility of positron emission tomography in sarcomas. Curr Opin Oncol 2006;18:369373.

  • 36.

    Volker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007;25:54355441.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Heck RK, Peabody TD, Simon MA. Staging of primary malignancies of bone. CA Cancer J Clin 2006;56:366375.

  • 38.

    Chambers M, O’Hern K, Kerr DA. Fine-needle aspiration biopsy for the diagnosis of bone and soft tissue lesions: a systematic review and meta-analysis. J Am Soc Cytopathol 2020;9:429441.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Dirks M, Ewerbeck NK, Ballhause TM, et al. The diagnostic accuracy of 332 incisional biopsies in patients with malignant tumors in the musculoskeletal system. World J Surg Oncol 2023;21:4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ashford RU, McCarthy SW, Scolyer RA, et al. Surgical biopsy with intra-operative frozen section. An accurate and cost-effective method for diagnosis of musculoskeletal sarcomas. J Bone Joint Surg Br 2006;88:12071211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Skrzynski MC, Biermann JS, Montag A, Simon MA. Diagnostic accuracy and charge-savings of outpatient core needle biopsy compared with open biopsy of musculoskeletal tumors. J Bone Joint Surg Am 1996;78:644649.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Welker JA, Henshaw RM, Jelinek J, et al. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer 2000;89:26772686.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Mitsuyoshi G, Naito N, Kawai A, et al. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol 2006;94:2127.

  • 44.

    Adams SC, Potter BK, Pitcher DJ, Temple HT. Office-based core needle biopsy of bone and soft tissue malignancies: an accurate alternative to open biopsy with infrequent complications. Clin Orthop Relat Res 2010;468:27742780.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rimondi E, Rossi G, Bartalena T, et al. Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol 2011;77:3442.

  • 46.

    Gogna A, Peh WC, Munk PL. Image-guided musculoskeletal biopsy. Radiol Clin North Am 2008;46:455473.

  • 47.

    Mankin HJ, Mankin CJ, Simon MA. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am 1996;78:656663.

  • 48.

    Liu PT, Valadez SD, Chivers FS, et al. Anatomically based guidelines for core needle biopsy of bone tumors: implications for limb-sparing surgery. Radiographics 2007;27:189205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Huang AJ, Kattapuram SV. Musculoskeletal neoplasms: biopsy and intervention. Radiol Clin North Am 2011;49:12871305.

  • 50.

    Davies NM, Livesley PJ, Cannon SR. Recurrence of an osteosarcoma in a needle biopsy track. J Bone Joint Surg Br 1993;75:977978.

  • 51.

    Saghieh S, Masrouha KZ, Musallam KM, et al. The risk of local recurrence along the core-needle biopsy tract in patients with bone sarcomas. Iowa Orthop J 2010;30:8083.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Seeger LL. Revisiting tract seeding and compartmental anatomy for percutaneous image-guided musculoskeletal biopsies. Skeletal Radiol 2019;48:499501.

  • 53.

    Yang YJ, Damron TA. Comparison of needle core biopsy and fine- needle aspiration for diagnostic accuracy in musculoskeletal lesions. Arch Pathol Lab Med 2004;128:759764.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Patel S, DeLaney TF. Advanced-technology radiation therapy for bone sarcomas. Cancer Control 2008;15:2137.

  • 55.

    McGovern SL, Mahajan A. Progress in radiotherapy for pediatric sarcomas. Curr Oncol Rep 2012;14:320326.

  • 56.

    Shing DC, McMullan DJ, Roberts P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res 2003;63:45684576.

  • 57.

    Ng TL, O’Sullivan MJ, Pallen CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 2007;9:459463.

  • 58.

    Ambros IM, Ambros PF, Strehl S, et al. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 1991;67:18861893.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Perlman EJ, Dickman PS, Askin FB, et al. Ewing’s sarcoma–routine diagnostic utilization of MIC2 analysis: a Pediatric Oncology Group/Children’s Cancer Group Intergroup Study. Hum Pathol 1994;25:304307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Olsen SH, Thomas DG, Lucas DR. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol 2006;19:659668.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Machado I, Navarro S, Llombart-Bosch A. Ewing sarcoma and the new emerging Ewing-like sarcomas: (CIC and BCOR-rearranged-sarcomas). A systematic review. Histol Histopathol 2016;31:11691181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Sbaraglia M, Righi A, Gambarotti M, Dei Tos AP. Ewing sarcoma and Ewing-like tumors. Virchows Arch 2020;476:109119.

  • 63.

    Riggi N, Suva ML, Stamenkovic I. Ewing’s Sarcoma. N Engl J Med 2021;384:154164.

  • 64.

    Glaubiger DL, Makuch R, Schwarz J, et al. Determination of prognostic factors and their influence on therapeutic results in patients with Ewing’s sarcoma. Cancer 1980;45:22132219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Gobel V, Jurgens H, Etspuler G, et al. Prognostic significance of tumor volume in localized Ewing’s sarcoma of bone in children and adolescents. J Cancer Res Clin Oncol 1987;113:187191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Ahrens S, Hoffmann C, Jabar S, et al. Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study. Med Pediatr Oncol 1999;32:186195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Bacci G, Longhi A, Ferrari S, et al. Prognostic factors in non-metastatic Ewing’s sarcoma tumor of bone: an analysis of 579 patients treated at a single institution with adjuvant or neoadjuvant chemotherapy between 1972 and 1998. Acta Oncol 2006;45:469475.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Rodríguez-Galindo C, Liu T, Krasin MJ, et al. Analysis of prognostic factors in ewing sarcoma family of tumors: review of St. Jude Children’s Research Hospital studies. Cancer 2007;110:375384.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Serlo J, Helenius I, Vettenranta K, et al. Surgically treated patients with axial and peripheral Ewing’s sarcoma family of tumours: a population based study in Finland during 1990–2009. Eur J Surg Oncol 2015;41:893898.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Grevener K, Haveman LM, Ranft A, et al. Management and outcome of Ewing sarcoma of the head and neck. Pediatr Blood Cancer 2016;63:604610.

  • 71.

    American Cancer Society. Survival rates for Ewing tumors. Accessed September 12, 2024. Available at: https://www.cancer.org/cancer/types/ewing-tumor/detection-diagnosis-staging/survival-rates.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Bacci G, Boriani S, Balladelli A, et al. Treatment of nonmetastatic Ewing’s sarcoma family tumors of the spine and sacrum: the experience from a single institution. Eur Spine J 2009;18:10911095.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Bosma SE, Ayu O, Fiocco M, et al. Prognostic factors for survival in Ewing sarcoma: a systematic review. Surg Oncol 2018;27:603610.

  • 74.

    Cangir A, Vietti TJ, Gehan EA, et al. Ewing’s sarcoma metastatic at diagnosis. Results and comparisons of two intergroup Ewing’s sarcoma studies. Cancer 1990;66:887893.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Dang A, Feng X, Hamm J, et al. Survival outcomes in metastatic Ewing sarcoma treated with whole-lung radiation. Cureus 2022;14:e26750.

  • 76.

    Paulino AC, Mai WY, Teh BS. Radiotherapy in metastatic ewing sarcoma. Am J Clin Oncol 2013;36:283286.

  • 77.

    Oberlin O, Deley MC, Bui BN, et al. Prognostic factors in localized Ewing’s tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study). Br J Cancer 2001;85:16461654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Paulussen M, Ahrens S, Dunst J, et al. Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol 2001;19:18181829.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Pan HY, Morani A, Wang WL, et al. Prognostic factors and patterns of relapse in ewing sarcoma patients treated with chemotherapy and r0 resection. Int J Radiat Oncol Biol Phys 2015;92:349357.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Kissane JM, Askin FB, Foulkes M, et al. Ewing’s sarcoma of bone: clinicopathologic aspects of 303 cases from the Intergroup Ewing’s Sarcoma Study. Hum Pathol 1983;14:773779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Gupta AA, Pappo A, Saunders N, et al. Clinical outcome of children and adults with localized Ewing sarcoma: impact of chemotherapy dose and timing of local therapy. Cancer 2010;116:31893194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Lee J, Hoang BH, Ziogas A, Zell JA. Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry. Cancer 2010;116:19641973.

  • 83.

    Treglia G, Salsano M, Stefanelli A, et al. Diagnostic accuracy of (1)(8)F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 2012;41:249256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Campbell KM, Shulman DS, Grier HE, DuBois SG. Role of bone marrow biopsy for staging new patients with Ewing sarcoma: a systematic review. Pediatr Blood Cancer 2021;68:e28807.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Siegel MJ, Acharyya S, Hoffer FA, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology 2013;266:599609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Boddu S, Walko CM, Bienasz S, et al. Clinical utility of genomic profiling in the treatment of advanced sarcomas: a single-center experience. JCO Precis Oncol 2018;2:18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Laetsch TW, Roy A, Xu L, et al. Undifferentiated sarcomas in children harbor clinically relevant oncogenic fusions and gene copy-number alterations: a report from the Children’s Oncology Group. Clin Cancer Res 2018;24:38883897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Avigad S, Cohen IJ, Zilberstein J, et al. The predictive potential of molecular detection in the nonmetastatic Ewing family of tumors. Cancer 2004;100:10531058.

  • 89.

    de Alava E, Kawai A, Healey JH, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 1998;16:12481255.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 1996;14:12451251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Le Deley MC, Delattre O, Schaefer KL, et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 2010;28:19821988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    van Doorninck JA, Ji L, Schaub B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2010;28:19891994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Lambertini M, Del Mastro L, Pescio MC, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med 2016;14:1.

  • 94.

    Practice Committee of the American Society for Reproductive Medicine. Electronic address aao. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril 2019;112:10221033.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Burgert EO, Nesbit ME, Garnsey LA, et al. Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: intergroup study IESS-II. J Clin Oncol 1990;8:15141524.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Nesbit ME, Gehan EA, Burgert EO, et al. Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup study. J Clin Oncol 1990;8:16641674.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003;348:694701.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Shamberger RC, LaQuaglia MP, Gebhardt MC, et al. Ewing sarcoma/primitive neuroectodermal tumor of the chest wall: impact of initial versus delayed resection on tumor margins, survival, and use of radiation therapy. Ann Surg 2003;238:563567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Krasin MJ, Davidoff AM, Rodriguez-Galindo C, et al. Definitive surgery and multiagent systemic therapy for patients with localized Ewing sarcoma family of tumors: local outcome and prognostic factors. Cancer 2005;104:367373.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Wexler LH, DeLaney TF, Tsokos M, et al. Ifosfamide and etoposide plus vincristine, doxorubicin, and cyclophosphamide for newly diagnosed Ewing’s sarcoma family of tumors. Cancer 1996;78:901911.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Rosito P, Mancini AF, Rondelli R, et al. Italian Cooperative Study for the treatment of children and young adults with localized Ewing sarcoma of bone: a preliminary report of 6 years of experience. Cancer 1999;86:421428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Kolb EA, Kushner BH, Gorlick R, et al. Long-term event-free survival after intensive chemotherapy for Ewing’s family of tumors in children and young adults. J Clin Oncol 2003;21:34233430.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Oberlin O, Habrand JL, Zucker JM, et al. No benefit of ifosfamide in Ewing’s sarcoma: a nonrandomized study of the French Society of Pediatric Oncology. J Clin Oncol 1992;10:14071412.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Bacci G, Picci P, Ferrari S, et al. Neoadjuvant chemotherapy for Ewing’s sarcoma of bone: no benefit observed after adding ifosfamide and etoposide to vincristine, actinomycin, cyclophosphamide, and doxorubicin in the maintenance phase–results of two sequential studies. Cancer 1998;82:11741183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Yock TI, Krailo M, Fryer CJ, et al. Local control in pelvic Ewing sarcoma: analysis from INT-0091–a report from the Children’s Oncology Group. J Clin Oncol 2006;24:38383843.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Granowetter L, Womer R, Devidas M, et al. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children’s Oncology Group Study. J Clin Oncol 2009;27:25362541.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Womer RB, West DC, Krailo MD, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2012;30:41484154.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Brennan B, Kirton L, Marec-Berard P, et al. Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial. Lancet 2022;400:15131521.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Miser JS, Krailo MD, Tarbell NJ, et al. Treatment of metastatic Ewing’s sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide–a Children’s Cancer Group and Pediatric Oncology Group study. J Clin Oncol 2004;22:28732876.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Paulussen M, Craft AW, Lewis I, et al. Results of the EICESS-92 Study: two randomized trials of Ewing’s sarcoma treatment–cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 2008;26:43854393.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Le Deley MC, Paulussen M, Lewis I, et al. Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol 2014;32:24402448.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Ferrari S, Sundby Hall K, Luksch R, et al. Nonmetastatic Ewing family tumors: high-dose chemotherapy with stem cell rescue in poor responder patients. Results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III protocol. Ann Oncol 2011;22:12211227.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Gaspar N, Rey A, Berard PM, et al. Risk adapted chemotherapy for localised Ewing’s sarcoma of bone: the French EW93 study. Eur J Cancer 2012;48:13761385.

  • 114.

    Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan-Kettering experience and a literature review. J Clin Oncol 2001;19:870880.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Juergens C, Weston C, Lewis I, et al. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer 2006;47:2229.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Oberlin O, Rey A, Desfachelles AS, et al. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Societe Francaise des Cancers de l’Enfant. J Clin Oncol 2006;24:39974002.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Rosenthal J, Bolotin E, Shakhnovits M, et al. High-dose therapy with hematopoietic stem cell rescue in patients with poor prognosis Ewing family tumors. Bone Marrow Transplant 2008;42:311318.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Burdach S, Thiel U, Schoniger M, et al. Total body MRI-governed involved compartment irradiation combined with high-dose chemotherapy and stem cell rescue improves long-term survival in Ewing tumor patients with multiple primary bone metastases. Bone Marrow Transplant 2010;45:483489.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Ladenstein R, Potschger U, Le Deley MC, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 2010;28:32843291.

  • 120.

    Whelan J, Le Deley MC, Dirksen U, et al. High-dose chemotherapy and blood autologous stem-cell rescue compared with standard chemotherapy in localized high-risk Ewing sarcoma: results of Euro-E.W.I.N.G.99 and Ewing-2008. J Clin Oncol 2018;36:JCO2018782516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Dunst J, Jurgens H, Sauer R, et al. Radiation therapy in Ewing’s sarcoma: an update of the CESS 86 trial. Int J Radiat Oncol Biol Phys 1995;32:919930.

  • 122.

    Schuck A, Ahrens S, Paulussen M, et al. Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. Int J Radiat Oncol Biol Phys 2003;55:168177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    DuBois SG, Krailo MD, Gebhardt MC, et al. Comparative evaluation of local control strategies in localized Ewing sarcoma of bone: a report from the Children’s Oncology Group. Cancer 2015;121:467475.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Ahmed SK, Witten BG, Harmsen WS, et al. Analysis of local control outcomes and clinical prognostic factors in localized pelvic Ewing sarcoma patients treated with radiation therapy: a report from the Children’s Oncology Group. Int J Radiat Oncol Biol Phys 2023;115:337346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Schuck A, Ahrens S, von Schorlemer I, et al. Radiotherapy in Ewing tumors of the vertebrae: treatment results and local relapse analysis of the CESS 81/86 and EICESS 92 trials. Int J Radiat Oncol Biol Phys 2005;63:15621567.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Indelicato DJ, Keole SR, Shahlaee AH, et al. Definitive radiotherapy for ewing tumors of extremities and pelvis: long-term disease control, limb function, and treatment toxicity. Int J Radiat Oncol Biol Phys 2008;72:871877.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Krasin MJ, Rodriguez-Galindo C, Billups CA, et al. Definitive irradiation in multidisciplinary management of localized Ewing sarcoma family of tumors in pediatric patients: outcome and prognostic factors. Int J Radiat Oncol Biol Phys 2004;60:830838.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Paulino AC, Nguyen TX, Mai WY, et al. Dose response and local control using radiotherapy in non-metastatic Ewing sarcoma. Pediatr Blood Cancer 2007;49:145148.

  • 129.

    Haeusler J, Ranft A, Boelling T, et al. The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 2010;116:443450.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Paulussen M, Ahrens S, Burdach S, et al. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann Oncol 1998;9:275281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Casey DL, Wexler LH, Meyers PA, et al. Radiation for bone metastases in Ewing sarcoma and rhabdomyosarcoma. Pediatr Blood Cancer 2015;62:445449.

  • 132.

    Bedetti B, Wiebe K, Ranft A, et al. Local control in Ewing sarcoma of the chest wall: results of the EURO-EWING 99 trial. Ann Surg Oncol 2015;22:28532859.

  • 133.

    Denbo JW, Shannon Orr W, Wu Y, et al. Timing of surgery and the role of adjuvant radiotherapy in ewing sarcoma of the chest wall: a single- institution experience. Ann Surg Oncol 2012;19:38093815.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Baumann BC, Nagda SN, Kolker JD, et al. Efficacy and safety of stereotactic body radiation therapy for the treatment of pulmonary metastases from sarcoma: a potential alternative to resection. J Surg Oncol 2016;114:6569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Mehta N, Selch M, Wang PC, et al. Safety and efficacy of stereotactic body radiation therapy in the treatment of pulmonary metastases from high grade sarcoma. Sarcoma 2013;2013:360214.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Brown LC, Lester RA, Grams MP, et al. Stereotactic body radiotherapy for metastatic and recurrent ewing sarcoma and osteosarcoma. Sarcoma 2014;2014:418270.

  • 137.

    Tanguturi SK, George S, Marcus KJ, et al. Whole lung irradiation in adults with metastatic Ewing sarcoma: practice patterns and implications for treatment. Sarcoma 2015;2015:591698.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Burgers JM, van Glabbeke M, Busson A, et al. Osteosarcoma of the limbs. Report of the EORTC-SIOP 03 trial 20781 investigating the value of adjuvant treatment with chemotherapy and/or prophylactic lung irradiation. Cancer 1988;61:10241031.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Ronchi L, Buwenge M, Cortesi A, et al. Whole lung irradiation in patients with osteosarcoma and Ewing sarcoma. Anticancer Res 2018;38:49774985.

  • 140.

    Bolling T, Schuck A, Paulussen M, et al. Whole lung irradiation in patients with exclusively pulmonary metastases of Ewing tumors. Toxicity analysis and treatment results of the EICESS-92 trial. Strahlenther Onkol 2008;184:193197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Bacci G, Forni C, Longhi A, et al. Long-term outcome for patients with non-metastatic Ewing’s sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. Eur J Cancer 2004;40:7383.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Stahl M, Ranft A, Paulussen M, et al. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 2011;57:549553.

  • 143.

    Rodriguez-Galindo C, Billups CA, Kun LE, et al. Survival after recurrence of Ewing tumors: the St Jude Children’s Research Hospital experience, 1979-1999. Cancer 2002;94:561569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Bacci G, Ferrari S, Longhi A, et al. Therapy and survival after recurrence of Ewing’s tumors: the Rizzoli experience in 195 patients treated with adjuvant and neoadjuvant chemotherapy from 1979 to 1997. Ann Oncol 2003;14:16541659.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Leavey PJ, Mascarenhas L, Marina N, et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2008;51:334338.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Ferrari S, Luksch R, Hall KS, et al. Post-relapse survival in patients with Ewing sarcoma. Pediatr Blood Cancer 2015;62:994999.

  • 147.

    Robinson SI, Ahmed SK, Okuno SH, et al. Clinical outcomes of adult patients with relapsed Ewing sarcoma: a 30-year single-institution experience. Am J Clin Oncol 2014;37:585591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Van Mater D, Wagner L. Management of recurrent Ewing sarcoma: challenges and approaches. Onco Targets Ther 2019;12:22792288.

  • 149.

    Bernstein ML, Devidas M, Lafreniere D, et al. Intensive therapy with growth factor support for patients with Ewing tumor metastatic at diagnosis: Pediatric Oncology Group/Children’s Cancer Group phase II study 9457–a report from the Children’s Oncology Group. J Clin Oncol 2006;24:152159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Hunold A, Weddeling N, Paulussen M, et al. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 2006;47:795800.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Kushner BH, Kramer K, Meyers PA, et al. Pilot study of topotecan and high-dose cyclophosphamide for resistant pediatric solid tumors. Med Pediatr Oncol 2000;35:468474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Saylors RL, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol 2001;19:34633469.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Casey DA, Wexler LH, Merchant MS, et al. Irinotecan and temozolomide for Ewing sarcoma: the Memorial Sloan-Kettering experience. Pediatr Blood Cancer 2009;53:10291034.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Wagner LM, Crews KR, Iacono LC, et al. Phase I trial of temozolomide and protracted irinotecan in pediatric patients with refractory solid tumors. Clin Cancer Res 2004;10:840848.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Wagner LM, McAllister N, Goldsby RE, et al. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 2007;48:132139.

  • 156.

    Raciborska A, Bilska K, Drabko K, et al. Vincristine, irinotecan, and temozolomide in patients with relapsed and refractory Ewing sarcoma. Pediatr Blood Cancer 2013;60:16211625.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    van Maldegem AM, Benson C, Rutkowski P, et al. Etoposide and carbo-or cisplatin combination therapy in refractory or relapsed Ewing sarcoma: a large retrospective study. Pediatr Blood Cancer 2015;62:4044.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Burdach S, Jurgens H, Peters C, et al. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. J Clin Oncol 1993;11:14821488.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Barker LM, Pendergrass TW, Sanders JE, Hawkins DS. Survival after recurrence of Ewing’s sarcoma family of tumors. J Clin Oncol 2005;23:43544362.

  • 160.

    McTiernan A, Driver D, Michelagnoli MP, et al. High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing’s sarcoma family of tumours. Ann Oncol 2006;17:13011305.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Italiano A, Mir O, Mathoulin-Pelissier S, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2020;21:446455.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Attia S, Bolejack V, Ganjoo KN, et al. A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results. Cancer Med 2023;12:15321539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    McCabe M, Kirton L, Khan M, et al. Phase III assessment of topotecan and cyclophosphamide and high-dose ifosfamide in rEECur: an international randomized controlled trial of chemotherapy for the treatment of recurrent and primary refractory Ewing sarcoma (RR-ES). J Clin Oncol 2022;40(Suppl):Abstract LBA2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Navid F, Willert JR, McCarville MB, et al. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer 2008;113:419425.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Van Winkle P, Angiolillo A, Krailo M, et al. Ifosfamide, carboplatin, and etoposide (ICE) reinduction chemotherapy in a large cohort of children and adolescents with recurrent/refractory sarcoma: the Children’s Cancer Group (CCG) experience. Pediatr Blood Cancer 2005;44:338347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Subbiah V, Brana I, Longhi A, et al. Antitumor activity of lurbinectedin, a selective inhibitor of oncogene transcription, in patients with relapsed Ewing sarcoma: results of a basket phase II study. Clin Cancer Res 2022;28:27622770.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Xue R, Lewis VO, Moon BS, Lin PP. Local recurrence of Ewing sarcoma: is wide excision an acceptable treatment? J Surg Oncol 2019;120: 746752.

  • 168.

    Kim C, Davis LE, Albert CM, et al. Osteosarcoma in pediatric and adult populations: are adults just big kids? Cancers (Basel) 2023;15:5044.

  • 169.

    Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol 2006;125:555581.

  • 170.

    Antonescu CR, Huvos AG. Low-grade osteogenic sarcoma arising in medullary and surface osseous locations. Am J Clin Pathol 2000;114(Suppl):S90103.

  • 171.

    Sheth DS, Yasko AW, Raymond AK, et al. Conventional and dedifferentiated parosteal osteosarcoma. Diagnosis, treatment, and outcome. Cancer 1996;78:21362145.

  • 172.

    Bertoni F, Bacchini P, Staals EL, Davidovitz P. Dedifferentiated parosteal osteosarcoma: the experience of the Rizzoli Institute. Cancer 2005;103:23732382.

  • 173.

    Okada K, Unni KK, Swee RG, Sim FH. High grade surface osteosarcoma: a clinicopathologic study of 46 cases. Cancer 1999;85:10441054.

  • 174.

    Staals EL, Bacchini P, Bertoni F. High-grade surface osteosarcoma: a review of 25 cases from the Rizzoli Institute. Cancer 2008;112:15921599.

  • 175.

    Davis AM, Bell RS, Goodwin PJ. Prognostic factors in osteosarcoma: a critical review. J Clin Oncol 1994;12:423431.

  • 176.

    Ferrari S, Bertoni F, Mercuri M, et al. Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol 2001;12:11451150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 2002;20:776790.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Bacci G, Longhi A, Ferrari S, et al. Prognostic significance of serum lactate dehydrogenase in osteosarcoma of the extremity: experience at Rizzoli on 1421 patients treated over the last 30 years. Tumori 2004;90:478484.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Bacci G, Longhi A, Versari M, et al. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer 2006;106:11541161.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Whelan JS, Jinks RC, McTiernan A, et al. Survival from high-grade localised extremity osteosarcoma: combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann Oncol 2012;23:16071616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 181.

    Ogura K, Fujiwara T, Yasunaga H, et al. Development and external validation of nomograms predicting distant metastases and overall survival after neoadjuvant chemotherapy and surgery for patients with nonmetastatic osteosarcoma: a multi-institutional study. Cancer 2015;121:38443852.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Bertrand TE, Cruz A, Binitie O, et al. Do surgical margins affect local recurrence and survival in extremity, nonmetastatic, high-grade osteosarcoma? Clin Orthop Relat Res 2016;474:677683.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Lee RJ, Arshi A, Schwartz HC, Christensen RE. Characteristics and prognostic factors of osteosarcoma of the jaws: a retrospective cohort study. JAMA Otolaryngol Head Neck Surg 2015;141:470477.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 184.

    Xin S, Wei G. Prognostic factors in osteosarcoma: a study level meta-analysis and systematic review of current practice. J Bone Oncol 2020;21:100281.

  • 185.

    Collins M, Wilhelm M, Conyers R, et al. Benefits and adverse events in younger versus older patients receiving neoadjuvant chemotherapy for osteosarcoma: findings from a meta-analysis. J Clin Oncol 2013;31:23032312.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 186.

    Altaf S, Enders F, Jeavons E, et al. High-BMI at diagnosis is associated with inferior survival in patients with osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 2013;60:20422046.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 187.

    Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with synchronous lung metastases: treatment with cisplatin, adriamycin and high dose of methotrexate and ifosfamide. Oncol Rep 2000;7:339346.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 188.

    Daw NC, Billups CA, Rodriguez-Galindo C, et al. Metastatic osteosarcoma. Cancer 2006;106:403412.

  • 189.

    Fu Y, Lan T, Cai H, et al. Meta-analysis of serum lactate dehydrogenase and prognosis for osteosarcoma. Medicine (Baltimore) 2018;97:e0741.

  • 190.

    Gu R, Sun Y. Does serum alkaline phosphatase level really indicate the prognosis in patients with osteosarcoma? A meta-analysis. J Cancer Res Ther 2018;14:S468472.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 191.

    Sun J, Xu H, Qi M, et al. Identification of key genes in osteosarcoma by meta-analysis of gene expression microarray. Mol Med Rep 2019;20:30753084.

  • 192.

    Marulanda GA, Henderson ER, Johnson DA, et al. Orthopedic surgery options for the treatment of primary osteosarcoma. Cancer Control 2008;15:1320.

  • 193.

    Bacci G, Ferrari S, Lari S, et al. Osteosarcoma of the limb. Amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg Br 2002;84:8892.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 194.

    Mavrogenis AF, Abati CN, Romagnoli C, Ruggieri P. Similar survival but better function for patients after limb salvage versus amputation for distal tibia osteosarcoma. Clin Orthop Relat Res 2012;470:17351748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 195.

    Simon MA, Aschliman MA, Thomas N, Mankin HJ. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg Am 2005;87:2822.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 196.

    Aksnes LH, Bauer HCF, Jebsen NL, et al. Limb-sparing surgery preserves more function than amputation: a Scandinavian sarcoma group study of 118 patients. J Bone Joint Surg Br 2008;90:786794.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 197.

    Nagarajan R, Neglia JP, Clohisy DR, Robison LL. Limb salvage and amputation in survivors of pediatric lower-extremity bone tumors: what are the long-term implications? J Clin Oncol 2002;20:44934501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 198.

    Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma. Int Orthop 2006;30:445451.

  • 199.

    Winkler K, Beron G, Kotz R, et al. Neoadjuvant chemotherapy for osteogenic sarcoma: results of a Cooperative German/Austrian study. J Clin Oncol 1984;2:617624.

  • 200.

    Link MP, Goorin AM, Miser AW, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986;314:16001606.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 201.

    Eilber F, Giuliano A, Eckardt J, et al. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol 1987;5:2126.

  • 202.

    Link MP, Goorin AM, Horowitz M, et al. Adjuvant chemotherapy of high-grade osteosarcoma of the extremity. Clin Orthop Relat Res 1991:814.

  • 203.

    Meyers PA, Heller G, Healey J, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992;10:515.

  • 204.

    Goorin AM, Schwartzentruber DJ, Devidas M, et al. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J Clin Oncol 2003;21:15741580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 205.

    Bramwell VH, Burgers M, Sneath R, et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol 1992;10:15791591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 206.

    Souhami RL, Craft AW, Van der Eijken JW, et al. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet 1997;350:911917.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 207.

    Fuchs N, Bielack SS, Epler D, et al. Long-term results of the co-operative German-Austrian-Swiss osteosarcoma study group’s protocol COSS-86 of intensive multidrug chemotherapy and surgery for osteosarcoma of the limbs. Ann Oncol 1998;9:893899.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 208.

    Bacci G, Ferrari S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol 2000;18:40164027.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 209.

    Bacci G, Briccoli A, Ferrari S, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremity: long-term results of the Rizzoli’s 4th protocol. Eur J Cancer 2001;37:20302039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 210.

    Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma Groups. J Clin Oncol 2005;23:88458852.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 211.

    Lewis IJ, Nooij MA, Whelan J, et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst 2007;99:112128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 212.

    Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children’s Oncology Group. J Clin Oncol 2008;26:633638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 213.

    Winkler K, Beron G, Delling G, et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 1988;6:329337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 214.

    Li Z, Ma X, Wang Z, et al. A meta-analysis of the efficacy and safety of first-line chemotherapeutic agents for osteosarcoma. Adv Clin Exp Med 2024;33:445454.

  • 215.

    Basaran M, Bavbek ES, Saglam S, et al. A phase II study of cisplatin, ifosfamide and epirubicin combination chemotherapy in adults with nonmetastatic and extremity osteosarcomas. Oncology 2007;72:255260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 216.

    Le Deley MC, Guinebretiere JM, Gentet JC, et al. SFOP OS94: a randomised trial comparing preoperative high-dose methotrexate plus doxorubicin to high-dose methotrexate plus etoposide and ifosfamide in osteosarcoma patients. Eur J Cancer 2007;43:752761.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 217.

    Provisor AJ, Ettinger LJ, Nachman JB, et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children’s Cancer Group. J Clin Oncol 1997;15:7684.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 218.

    Bernthal NM, Federman N, Eilber FR, et al. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer 2012;118:58885893.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 219.

    Bacci G, Mercuri M, Longhi A, et al. Grade of chemotherapy-induced necrosis as a predictor of local and systemic control in 881 patients with non-metastatic osteosarcoma of the extremities treated with neoadjuvant chemotherapy in a single institution. Eur J Cancer 2005;41:20792085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 220.

    Cesari M, Alberghini M, Vanel D, et al. Periosteal osteosarcoma: a single-institution experience. Cancer 2011;117:17311735.

  • 221.

    Grimer RJ, Bielack S, Flege S, et al. Periosteal osteosarcoma–a European review of outcome. Eur J Cancer 2005;41:28062811.

  • 222.

    Tsukamoto S, Righi A, Kido A, et al. Effect of adjuvant chemotherapy on periosteal osteosarcoma: a systematic review. Jpn J Clin Oncol 2022;52:896904.

  • 223.

    Bacci G, Ferrari S, Tienghi A, et al. A comparison of methods of loco- regional chemotherapy combined with systemic chemotherapy as neo-adjuvant treatment of osteosarcoma of the extremity. Eur J Surg Oncol 2001;27:98104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 224.

    Guadagnolo BA, Zagars GK, Raymond AK, et al. Osteosarcoma of the jaw/craniofacial region: outcomes after multimodality treatment. Cancer 2009;115:32623270.

  • 225.

    Ciernik IF, Niemierko A, Harmon DC, et al. Proton-based radiotherapy for unresectable or incompletely resected osteosarcoma. Cancer 2011;117:45224530.

  • 226.

    DeLaney TF, Park L, Goldberg SI, et al. Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys 2005;61:492498.

  • 227.

    Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open- label, international, randomised controlled trial. Lancet Oncol 2016;17:13961408.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 228.

    Smeland S, Muller C, Alvegard TA, et al. Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII: prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histological responders. Eur J Cancer 2003;39:488494.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 229.

    Smeland S, Bruland OS, Hjorth L, et al. Results of the Scandinavian Sarcoma Group XIV protocol for classical osteosarcoma: 63 patients with a minimum follow-up of 4 years. Acta Orthop 2011;82:211216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 230.

    Ferrari S, Ruggieri P, Cefalo G, et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian Sarcoma Group trial ISG/OS-1. J Clin Oncol 2012;30:21122118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 231.

    Bielack SS, Smeland S, Whelan JS, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 good response randomized controlled trial. J Clin Oncol 2015;33:22792287.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 232.

    Meyers PA, Heller G, Healey JH, et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol 1993;11:449453.

  • 233.

    Sheng G, Gao Y, Yang Y, Wu H. Osteosarcoma and metastasis. Front Oncol 2021;11:780264.

  • 234.

    Bacci G, Briccoli A, Mercuri M, et al. Osteosarcoma of the extremities with synchronous lung metastases: long-term results in 44 patients treated with neoadjuvant chemotherapy. J Chemother 1998;10:6976.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 235.

    Bacci G, Briccoli A, Rocca M, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol 2003;14:11261134.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 236.

    Smeland S, Bielack SS, Whelan J, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer 2019;109:3650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 237.

    Goorin AM, Harris MB, Bernstein M, et al. Phase II/III trial of etoposide and high-dose ifosfamide in newly diagnosed metastatic osteosarcoma: a pediatric oncology group trial. J Clin Oncol 2002;20:426433.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 238.

    Winkler K, Torggler S, Beron G, et al. [Results of treatment in primary disseminated osteosarcoma. Analysis of the follow-up of patients in the cooperative osteosarcoma studies COSS-80 and COSS-82]. Onkologie 1989;12:9296.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 239.

    Bacci G, Mercuri M, Briccoli A, et al. Osteogenic sarcoma of the extremity with detectable lung metastases at presentation. Results of treatment of 23 patients with chemotherapy followed by simultaneous resection of primary and metastatic lesions. Cancer 1997;79:245254.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 240.

    Mettmann VL, Blattmann C, Friedel G, et al. Primary multi-systemic metastases in osteosarcoma: presentation, treatment, and survival of 83 patients of the Cooperative Osteosarcoma Study Group. Cancers (Basel) 2024;16:275.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 241.

    Daw NC, Chou AJ, Jaffe N, et al. Recurrent osteosarcoma with a single pulmonary metastasis: a multi-institutional review. Br J Cancer 2015;112:278282.

  • 242.

    Tabone MD, Kalifa C, Rodary C, et al. Osteosarcoma recurrences in pediatric patients previously treated with intensive chemotherapy. J Clin Oncol 1994;12:26142620.

  • 243.

    Saeter G, Hoie J, Stenwig AE, et al. Systemic relapse of patients with osteogenic sarcoma. Prognostic factors for long term survival. Cancer 1995;75:10841093.

  • 244.

    Ferrari S, Briccoli A, Mercuri M, et al. Postrelapse survival in osteosarcoma of the extremities: prognostic factors for long-term survival. J Clin Oncol 2003;21:710715.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 245.

    Buddingh EP, Anninga JK, Versteegh MI, et al. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr Blood Cancer 2010;54:216221.

  • 246.

    Briccoli A, Rocca M, Salone M, et al. High grade osteosarcoma of the extremities metastatic to the lung: long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg Oncol 2010;19:193199.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 247.

    Bielack SS, Kempf-Bielack B, Branscheid D, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol 2009;27:557565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 248.

    Berger M, Grignani G, Ferrari S, et al. Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer 2009;115:29802987.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 249.

    Gentet JC, Brunat-Mentigny M, Demaille MC, et al. Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur J Cancer 1997;33:232237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 250.

    Miser JS, Kinsella TJ, Triche TJ, et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J Clin Oncol 1987;5:11911198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 251.

    Duffaud F, Mir O, Boudou-Rouquette P, et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: a non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol 2019;20:120133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 252.

    Davis LE, Bolejack V, Ryan CW, et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J Clin Oncol 2019;37:14241431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 253.

    Merimsky O, Meller I, Flusser G, et al. Gemcitabine in soft tissue or bone sarcoma resistant to standard chemotherapy: a phase II study. Cancer Chemother Pharmacol 2000;45:177181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 254.

    Palmerini E, Jones RL, Marchesi E, et al. Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone. BMC Cancer 2016;16:280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 255.

    Magnan H, Goodbody CM, Riedel E, et al. Ifosfamide dose-intensification for patients with metastatic Ewing sarcoma. Pediatr Blood Cancer 2015;62:594597.

  • 256.

    Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol 2007;25:27552763.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 257.

    Low K, Foulkes P, Hills F, et al. The efficacy of gemcitabine and docetaxel chemotherapy for the treatment of relapsed and refractory osteosarcoma: a systematic review and pre-clinical study. Cancer Med 2024;13:e70248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 258.

    Subbiah V, Anderson PM, Kairemo K, et al. Alpha particle radium 223 dichloride in high-risk osteosarcoma: a phase I dose escalation trial. Clin Cancer Res 2019;25:38023810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 259.

    Anderson PM, Wiseman GA, Dispenzieri A, et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol 2002;20:189196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 260.

    Loeb DM, Garrett-Mayer E, Hobbs RF, et al. Dose-finding study of 153Sm-EDTMP in patients with poor-prognosis osteosarcoma. Cancer 2009;115:25142522.

  • 261.

    Grignani G, Palmerini E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 2012;23:508516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 262.

    Grignani G, Palmerini E, Ferraresi V, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 2015;16:98107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 263.

    Lashkari A, Chow WA, Valdes F, et al. Tandem high-dose chemotherapy followed by autologous transplantation in patients with locally advanced or metastatic sarcoma. Anticancer Res 2009;29:32813288.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 264.

    Fagioli F, Aglietta M, Tienghi A, et al. High-dose chemotherapy in the treatment of relapsed osteosarcoma: an Italian sarcoma group study. J Clin Oncol 2002;20:21502156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 265.

    Elledge CR, Krasin MJ, Ladra MM, et al. A multi-institutional phase 2 trial of stereotactic body radiotherapy in the treatment of bone metastases in pediatric and young adult patients with sarcoma. Cancer 2021;127:739747.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7057 7057 7057
PDF Downloads 1022 1022 1022
EPUB Downloads 0 0 0