Pediatric Central Nervous System Cancers, Version 2.2025, NCCN Clinical Practice Guidelines In Oncology

Authors:
Amar Gajjar St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center

Search for other papers by Amar Gajjar in
Current site
Google Scholar
PubMed
Close
 MD
,
Anita Mahajan Mayo Clinic Comprehensive Cancer Center

Search for other papers by Anita Mahajan in
Current site
Google Scholar
PubMed
Close
 MD
,
Tejus Bale Memorial Sloan Kettering Cancer Center

Search for other papers by Tejus Bale in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Daniel C. Bowers UT Southwestern Simmons Comprehensive Cancer Center/Children’s Medical Center Dallas

Search for other papers by Daniel C. Bowers in
Current site
Google Scholar
PubMed
Close
 MD
,
Liz Canan Mayo Clinic Comprehensive Cancer Center

Search for other papers by Liz Canan in
Current site
Google Scholar
PubMed
Close
 MHA
,
Susan Chi Dana-Farber/Boston Children’s Cancer and Blood Disorders Center

Search for other papers by Susan Chi in
Current site
Google Scholar
PubMed
Close
 MD
,
Andrew Cluster Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Search for other papers by Andrew Cluster in
Current site
Google Scholar
PubMed
Close
 MD
,
Kenneth Cohen Johns Hopkins Kimmel Cancer Center/Johns Hopkins Children’s Center

Search for other papers by Kenneth Cohen in
Current site
Google Scholar
PubMed
Close
 MD, MBA
,
Bonnie Cole Fred Hutchinson Cancer Center/Seattle Children’s Hospital

Search for other papers by Bonnie Cole in
Current site
Google Scholar
PubMed
Close
 MD
,
Scott Coven Indiana University Melvin and Bren Simon Comprehensive Cancer Center/ Riley Children’s Health

Search for other papers by Scott Coven in
Current site
Google Scholar
PubMed
Close
 DO, MPH
,
Wendy Darlington The UChicago Medicine Comprehensive Cancer Center/UChicago Medicine Comer Children’s Hospital

Search for other papers by Wendy Darlington in
Current site
Google Scholar
PubMed
Close
 MD, MAPP
,
Kathleen Dorris University of Colorado Cancer Center/Children’s Hospital Colorado

Search for other papers by Kathleen Dorris in
Current site
Google Scholar
PubMed
Close
 MD
,
Jennifer Elster UC San Diego Moores Cancer Center/Rady Children’s Hospital-San Diego

Search for other papers by Jennifer Elster in
Current site
Google Scholar
PubMed
Close
 MD
,
Ralph Ermoian Fred Hutchinson Cancer Center/Seattle Children’s Hospital

Search for other papers by Ralph Ermoian in
Current site
Google Scholar
PubMed
Close
 MD
,
Andrea Franson University of Michigan Rogel Cancer Center/C.S. Mott Children’s Hospital

Search for other papers by Andrea Franson in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Elizabeth George UCSF Helen Diller Family Comprehensive Cancer Center/UCSF Benioff Children’s Hospital

Search for other papers by Elizabeth George in
Current site
Google Scholar
PubMed
Close
 MBBS
,
Jeffrey Helgager University of Wisconsin Carbone Cancer Center/American Family Children’s Hospital

Search for other papers by Jeffrey Helgager in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Daniel Landi Duke Cancer Institute/Duke Children’s Hospital & Health Center

Search for other papers by Daniel Landi in
Current site
Google Scholar
PubMed
Close
 MD
,
Chi Lin Fred & Pamela Buffett Cancer Center/Children’s Hospital & Medical Center

Search for other papers by Chi Lin in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Laura Metrock O’Neal Comprehensive Cancer Center at UAB/Children’s of Alabama

Search for other papers by Laura Metrock in
Current site
Google Scholar
PubMed
Close
 MD
,
Ronica Nanda Moffitt Cancer Center

Search for other papers by Ronica Nanda in
Current site
Google Scholar
PubMed
Close
 MD
,
Joshua Palmer The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute/Nationwide Children’s Hospital

Search for other papers by Joshua Palmer in
Current site
Google Scholar
PubMed
Close
 MD
,
Sonia Partap Stanford Cancer Institute/Lucile Packard Children’s Hospital

Search for other papers by Sonia Partap in
Current site
Google Scholar
PubMed
Close
 MD
,
Ashley Plant Robert H. Lurie Comprehensive Cancer Center of Northwestern University/Ann & Robert H. Lurie Children’s Hospital of Chicago

Search for other papers by Ashley Plant in
Current site
Google Scholar
PubMed
Close
 MD
,
Sumit Pruthi Vanderbilt-Ingram Cancer Center/Monroe Carrell Jr. Children’s Hospital at Vanderbilt

Search for other papers by Sumit Pruthi in
Current site
Google Scholar
PubMed
Close
 MD
,
Renee Reynolds Roswell Park Comprehensive Cancer Center/Roswell Park Oishei Children’s Cancer and Blood Disorders Program

Search for other papers by Renee Reynolds in
Current site
Google Scholar
PubMed
Close
 MD
,
Duncan Stearns Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute/University Hospitals Rainbow Babies & Children’s Hospital

Search for other papers by Duncan Stearns in
Current site
Google Scholar
PubMed
Close
 MD
,
Phillip Storm Abramson Cancer Center at the University of Pennsylvania/Children’s Hospital of Philadelphia

Search for other papers by Phillip Storm in
Current site
Google Scholar
PubMed
Close
 MD
,
Anthony Wang UCLA Jonsson Comprehensive Cancer Center/UCLA Mattel Children’s Hospital

Search for other papers by Anthony Wang in
Current site
Google Scholar
PubMed
Close
 MD
,
Leo D. Wang City of Hope National Medical Center

Search for other papers by Leo D. Wang in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Nicholas Whipple Huntsman Cancer Institute at the University of Utah/Primary Children’s Hospital

Search for other papers by Nicholas Whipple in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
Wafik Zaky The University of Texas MD Anderson Cancer Center

Search for other papers by Wafik Zaky in
Current site
Google Scholar
PubMed
Close
 MBBCh
,
Nicole McMillian National Comprehensive Cancer Network

Search for other papers by Nicole McMillian in
Current site
Google Scholar
PubMed
Close
 MS
, and
Swathi Ramakrishnan National Comprehensive Cancer Network

Search for other papers by Swathi Ramakrishnan in
Current site
Google Scholar
PubMed
Close
 PhD
Restricted access

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Pediatric Central Nervous System Cancers provide multidisciplinary diagnostic workup, staging, and treatment recommendations for diffuse high-grade gliomas and medulloblastomas in children and adolescents. This article summarizes the studies and panel discussion that serve as the rationale for comprehensive care recommendations included in the NCCN Guidelines for Pediatric Central Nervous System Cancers.

Discussion Writing Committee Members:

Amar Gajjar, Anita Mahajan, Tejus Bale, Ralph Ermoian, Andrea Franson, Jeffrey Helgager, Chi Lin, Joshua Palmer, Ashley Plant, Sumit Pruthi, Anthony Wang, Nicholas Whipple, Nicole McMillian, and Swathi Ramakrishnan

To view disclosures of external relationships for the NCCN Guidelines panel, go to https://www.nccn.org/guidelines/guidelines-panels-and-disclosure/disclosure-panels

The full NCCN Guidelines for Pediatric Central Nervous System Cancers are not printed in this issue of JNCCN. The complete and most recent version of these guidelines is available free of charge at NCCN.org.

NCCN CATEGORIES OF EVIDENCE AND CONSENSUS

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

NCCN CATEGORIES OF PREFERENCE

Preferred intervention: Interventions that are based on superior efficacy, safety, and evidence; and, when appropriate, affordability.

Other recommended intervention: Other interventions that may be somewhat less efficacious, more toxic, or based on less mature data; or significantly less affordable for similar outcomes.

Useful in certain circumstances: Other interventions that may be used for selected patient populations (defined with recommendation).

All recommendations are considered appropriate.

NCCN recognizes the importance of clinical trials and encourages participation when applicable and available.

Trials should be designed to maximize inclusiveness and broad representative enrollment.

PLEASE NOTE

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their application or use in any way.

  • Collapse
  • Expand
  • 1.

    American Cancer Society. Key statistics for brain and spinal cord tumors in children. Accessed April 26, 2022. Available at: https://www.cancer.org/cancer/brain-spinal-cord-tumors-children/about/key-statistics.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    American Cancer Society. Risk of dying from cancer continues to drop at an accelerated pace. Accessed April 26, 2022. Available at: https://www.cancer.org/latest-news/facts-and-figures-2022.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ostrom QT, Price M, Ryan K, et al. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro Oncol 2022;24(Suppl 3):iii138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:12311251.

  • 5.

    Pfister SM, Reyes-Mugica M, Chan JKC, et al. A summary of the inaugural WHO Classification of Pediatric Tumors: transitioning from the optical into the molecular era. Cancer Discov 2022;12:331355.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Coleman C, Stoller S, Grotzer M, et al. Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev 2020;39:245260.

  • 7.

    Subramanian S, Ahmad T. Childhood Brain Tumors. Treasure Island, Florida: StatPearls Publishing; 2024.

  • 8.

    Ostrom QT, Patil N, Cioffi G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro Oncol 2020;22(Suppl 2):iv196.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 2014;23:27162736.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hottinger AF, Khakoo Y. Neurooncology of familial cancer syndromes. J Child Neurol 2009;24:15261535.

  • 11.

    Stefanaki K, Alexiou GA, Stefanaki C, Prodromou N. Tumors of central and peripheral nervous system associated with inherited genetic syndromes. Pediatr Neurosurg 2012;48:271285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Das A, MacFarland SP, Meade J, et al. Clinical updates and surveillance recommendations for DNA replication repair deficiency syndromes in children and young adults. Clin Cancer Res 2024;30:33783387.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Braganza MZ, Kitahara CM, Berrington de Gonzalez A, et al. Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol 2012;14:13161324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ostrom QT, Adel Fahmideh M, Cote DJ, et al. Risk factors for childhood and adult primary brain tumors. Neuro Oncol 2019;21:13571375.

  • 15.

    Udaka YT, Packer RJ. Pediatric brain tumors. Neurol Clin 2018;36:533556.

  • 16.

    Vern-Gross TZ, Schreiber JE, Broniscer A, et al. Prospective evaluation of local control and late effects of conformal radiation therapy in children, adolescents, and young adults with high-grade glioma. Neuro Oncol 2014;16:16521660.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pollack IF, Agnihotri S, Broniscer A. Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 2019;23:261273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Goncalves FG, Viaene AN, Vossough A. Advanced magnetic resonance imaging in pediatric glioblastomas. Front Neurol 2021;12:733323.

  • 19.

    Erker C, Tamrazi B, Poussaint TY, et al. Response assessment in paediatric high-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2020;21:e317329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cooney TM, Cohen KJ, Guimaraes CV, et al. Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2020;21:e330336.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jaspan T, Morgan PS, Warmuth-Metz M, et al. Response Assessment in Pediatric Neuro-Oncology: implementation and expansion of the RANO criteria in a randomized phase II trial of pediatric patients with newly diagnosed high-grade gliomas. AJNR Am J Neuroradiol 2016;37:15811587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ellingson BM, Bendszus M, Boxerman J, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 2015;17:11881198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Barajas RF, Jr, Chang JS, Segal MR, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009;253:486496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wan B, Wang S, Tu M, et al. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: a meta-analysis. Medicine (Baltimore) 2017;96:e6333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol 2017;27:41294144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dallery F, Bouzerar R, Michel D, et al. Perfusion magnetic resonance imaging in pediatric brain tumors. Neuroradiology 2017;59:11431153.

  • 27.

    Vajapeyam S, Stamoulis C, Ricci K, et al. Automated processing of dynamic contrast-enhanced MRI: correlation of advanced pharmacokinetic metrics with tumor grade in pediatric brain tumors. AJNR Am J Neuroradiol 2017;38:170175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Miyazaki K, Jerome NP, Collins DJ, et al. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. Eur Radiol 2015;25:26412650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Heye AK, Culling RD, Valdés Hernández MDC, et al. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin 2014;6:262274.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Anzalone N, Castellano A, Cadioli M, et al. Brain gliomas: multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Radiology 2018;287:933943.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dangouloff-Ros V, Deroulers C, Foissac F, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology 2016;281:553566.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hales PW, d’Arco F, Cooper J, et al. Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours. Neuroimage Clin 2019;22:101696.

  • 33.

    Yeom KW, Mitchell LA, Lober RM, et al. Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 2014;35:395401.

  • 34.

    Deibler AR, Pollock JM, Kraft RA, et al. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 2008;29:12281234.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gupta PK, Saini J, Sahoo P, et al. Role of dynamic contrast-enhanced perfusion magnetic resonance imaging in grading of pediatric brain tumors on 3T. Pediatr Neurosurg 2017;52:298305.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Zhang H, Ma L, Wang Q, et al. Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol 2014;83:21812189.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    American Cancer Society. Tests for brain and spinal cord tumors in children. Accessed July 25, 2022. Available at: https://www.cancer.org/cancer/brain-spinal-cord-tumors-children/detection-diagnosis-staging/how-diagnosed.html

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ryall S, Zapotocky M, Fukuoka K, et al. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 2020;37:569583.e5.

  • 39.

    Clarke M, Mackay A, Ismer B, et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov 2020;10:942963.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Guerreiro Stucklin AS, Ryall S, Fukuoka K, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019;10:4343.

  • 41.

    Johnson A, Severson E, Gay L, et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 2017;22:14781490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ellison DW, Hawkins C, Jones DTW, et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol 2019;137:683687.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Louis DN, Wesseling P, Aldape K, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 2020;30:844856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Zhang J, Walsh MF, Wu G, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 2015;373:23362346.

  • 45.

    Akhavanfard S, Padmanabhan R, Yehia L, et al. Comprehensive germline genomic profiles of children, adolescents and young adults with solid tumors. Nat Commun 2020;11:2206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Balogun JA, Rutka JT. Surgery of intracranial gliomas in children. Prog Neurol Surg 2018;30:204217.

  • 47.

    Pollack IF, Boyett JM, Yates AJ, et al. The influence of central review on outcome associations in childhood malignant gliomas: results from the CCG-945 experience. Neuro Oncol 2003;5:197207.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Finlay JL, Boyett JM, Yates AJ, et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol 1995;13:112123.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Silva da Costa MD, Camargo NC, Dastoli PA, et al. High-grade gliomas in children and adolescents: is there a role for reoperation? J Neurosurg Pediatr 2021;27:160169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    McCrea HJ, Bander ED, Venn RA, et al. Sex, age, anatomic location, and extent of resection influence outcomes in children with high-grade glioma. Neurosurgery 2015;77:443452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Napieralska A, Krzywon A, Mizia-Malarz A, et al. High-grade gliomas in children-a multi-institutional polish study. Cancers (Basel) 2021;13:2062.

  • 52.

    Wolff JE, Driever PH, Erdlenbruch B, et al. Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer 2010;116:705712.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Kramm CM, Wagner S, Van Gool S, et al. Improved survival after gross total resection of malignant gliomas in pediatric patients from the HIT-GBM studies. Anticancer Res 2006;26:37733779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Hatoum R, Chen JS, Lavergne P, et al. Extent of tumor resection and survival in pediatric patients with high-grade gliomas: a systematic review and meta-analysis. JAMA Netw Open 2022;5:e2226551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Birk HS, Han SJ, Butowski NA. Treatment options for recurrent high-grade gliomas. CNS Oncol 2017;6:6170.

  • 56.

    Greenhalgh J, Weston J, Dundar Y, et al. Antiepileptic drugs as prophylaxis for postcraniotomy seizures. Cochrane Database Syst Rev 2020;4:CD007286.

  • 57.

    Jakacki RI, Cohen KJ, Buxton A, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children’s Oncology Group ACNS0423 study. Neuro Oncol 2016;18:14421450.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Cohen KJ, Pollack IF, Zhou T, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol 2011;13:317323.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Chambrelant I, Eber J, Antoni D, et al. Proton therapy and gliomas: a systematic review. Radiation 2021;1:218233.

  • 60.

    Mizumoto M, Oshiro Y, Yamamoto T, et al. Proton beam therapy for pediatric brain tumor. Neurol Med Chir (Tokyo) 2017;57:343355.

  • 61.

    Hug EB, Muenter MW, Archambeau JO, et al. Conformal proton radiation therapy for pediatric low-grade astrocytomas. Strahlenther Onkol 2002;178:1017.

  • 62.

    Greenberger BA, Pulsifer MB, Ebb DH, et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int J Radiat Oncol Biol Phys 2014;89:10601068.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Hauswald H, Rieken S, Ecker S, et al. First experiences in treatment of low-grade glioma grade I and II with proton therapy. Radiat Oncol 2012;7:189.

  • 64.

    Skeie BS, Enger PO, Brogger J, et al. Gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg 2012;78:658669.

  • 65.

    Minniti G, Niyazi M, Alongi F, et al. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021;16:36.

  • 66.

    Ziu M, Goyal S, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of radiation therapy in the management of progressive and recurrent glioblastoma in adults. J Neurooncol 2022;158:255264.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Amelio D, Amichetti M. Radiation therapy for the treatment of recurrent glioblastoma: an overview. Cancers (Basel) 2012;4:257280.

  • 68.

    Shrieve DC, Alexander E, Wen PY, et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 1995;36:275282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Tsang DS, Oliveira C, Bouffet E, et al. Repeat irradiation for children with supratentorial high-grade glioma. Pediatr Blood Cancer 2019;66:e27881.

  • 70.

    Pollack IF, Stewart CF, Kocak M, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the pediatric brain tumor consortium. Neuro Oncol 2011;13:290297.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Jennings MT, Sposto R, Boyett JM, et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the Children’s Cancer Group. J Clin Oncol 2002;20:34313437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Cohen KJ, Heideman RL, Zhou T, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro Oncol 2011;13:410416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Bradley KA, Zhou T, McNall-Knapp RY, et al. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children’s oncology group phase 2 study. Int J Radiat Oncol Biol Phys 2013;85:e5560.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Freeman CR, Krischer JP, Sanford RA, et al. Final results of a study of escalating doses of hyperfractionated radiotherapy in brain stem tumors in children: a Pediatric Oncology Group study. Int J Radiat Oncol Biol Phys 1993;27:197206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Gallitto M, Lazarev S, Wasserman I, et al. Role of radiation therapy in the management of diffuse intrinsic pontine glioma: a systematic review. Adv Radiat Oncol 2019;4:520531.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Zaghloul MS, Eldebawy E, Ahmed S, et al. Hypofractionated conformal radiotherapy for pediatric diffuse intrinsic pontine glioma (DIPG): a randomized controlled trial. Radiother Oncol 2014;111:3540.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Hu X, Fang Y, Hui X, et al. Radiotherapy for diffuse brainstem glioma in children and young adults. Cochrane Database Syst Rev 2016;2016:CD010439.

  • 78.

    Zaghloul MS, Akoush H, Ahmed S, et al. Hypofractionated radiation for pediatric diffuse intrinsic pontine glioma (DIPG): younger children have better survival. Int J Radiat Oncol Biol Phys 2018;101:10081009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Zaghloul MS, Nasr A, Tolba M, et al. Hypofractionated radiation therapy for diffuse intrinsic pontine glioma: a noninferiority randomized study including 253 children. Int J Radiat Oncol Biol Phys 2022;113:360368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Freese C, Takiar V, Fouladi M, et al. Radiation and subsequent reirradiation outcomes in the treatment of diffuse intrinsic pontine glioma and a systematic review of the reirradiation literature. Pract Radiat Oncol 2017;7:8692.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Lu VM, Welby JP, Mahajan A, et al. Reirradiation for diffuse intrinsic pontine glioma: a systematic review and meta-analysis. Childs Nerv Syst 2019;35:739746.

  • 82.

    Amsbaugh MJ, Mahajan A, Thall PF, et al. A phase 1/2 trial of reirradiation for diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys 2019;104:144148.

  • 83.

    Duffner PK, Krischer JP, Burger PC, et al. Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neurooncol 1996;28:245256.

  • 84.

    Espinoza JC, Haley K, Patel N, et al. Outcome of young children with high-grade glioma treated with irradiation-avoiding intensive chemotherapy regimens: final report of the head start II and III trials. Pediatr Blood Cancer 2016;63:18061813.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Nicolaides T, Nazemi KJ, Crawford J, et al. Phase I study of vemurafenib in children with recurrent or progressive BRAFV600E mutant brain tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-002). Oncotarget 2020;11:19421952.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Gierke M, Sperveslage J, Schwab D, et al. Analysis of IDH1-R132 mutation, BRAF V600 mutation and KIAA1549-BRAF fusion transcript status in central nervous system tumors supports pediatric tumor classification. J Cancer Res Clin Oncol 2016;142:89100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 2013;37:685698.

  • 88.

    Schindler G, Capper D, Meyer J, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011;121:397405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010;464:431435.

  • 90.

    Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010;464:427430.

  • 91.

    Su F, Viros A, Milagre C, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 2012;366:207215.

  • 92.

    Toll SA, Tran HN, Cotter J, et al. Sustained response of three pediatric BRAFV600E mutated high-grade gliomas to combined BRAF and MEK inhibitor therapy. Oncotarget 2019;10:551557.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Marks AM, Bindra RS, DiLuna ML, et al. Response to the BRAF/MEK inhibitors dabrafenib/trametinib in an adolescent with a BRAF V600E mutated anaplastic ganglioglioma intolerant to vemurafenib. Pediatr Blood Cancer 2018;65:e26969.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Robinson GW, Orr BA, Gajjar A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 2014;14:258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Bautista F, Paci A, Minard-Colin V, et al. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatr Blood Cancer 2014;61:11011103.

  • 96.

    Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32:147153.

  • 97.

    Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016;1:e000023.

  • 98.

    Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731739.

  • 99.

    Desai AV, Robinson GW, Gauvain K, et al. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol 2022;24:17761789.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 2018;19:705714.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Food and Drug Administration. FDA grants accelerated approval to repotrectinib for adult and pediatric patients with NTRK gene fusion-positive solid tumors. Accessed July 12, 2024. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-repotrectinib-adult-and-pediatric-patients-ntrk-gene-fusion-positive

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Solomon BJ, Drilon A, Lin JJ, et al. 1372P Repotrectinib in patients (pts) with NTRK fusion-positive (NTRK+) advanced solid tumors, including NSCLC: update from the phase I/II TRIDENT-1 trial. Ann Oncol 2023;34(Suppl 2):S787788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Bagchi A, Orr BA, Campagne O, et al. Lorlatinib in a child with ALK- fusion-positive high-grade glioma. N Engl J Med 2021;385:761763.

  • 105.

    Doz F, Casanova M, Koh K-N, et al. Alectinib in children and adolescents with solid or CNS tumors harboring ALK-fusions: data from the iMATRIX Alectinib Phase I/II open-label, multi-center study. Cancer Res 2024;84(Suppl 7):Abstract CT039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Bouffet E, Larouche V, Campbell BB, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016;34:22062211.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Larouche V, Atkinson J, Albrecht S, et al. Sustained complete response of recurrent glioblastoma to combined checkpoint inhibition in a young patient with constitutional mismatch repair deficiency. Pediatr Blood Cancer 2018;65:e27389.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Cacciotti C, Choi J, Alexandrescu S, et al. Immune checkpoint inhibition for pediatric patients with recurrent/refractory CNS tumors: a single institution experience. J Neurooncol 2020;149:113122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Needle MN, Molloy PT, Geyer JR, et al. Phase II study of daily oral etoposide in children with recurrent brain tumors and other solid tumors. Med Pediatr Oncol 1997;29:2832.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Grill J, Massimino M, Bouffet E, et al. Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol 2018;36:951958.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Price M, Ballard C, Benedetti J, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2017–2021. Neuro Oncol 2024;26(Suppl 6):vi185.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Thompson EM, Hielscher T, Bouffet E, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 2016;17:484495.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012;123:465472.

  • 114.

    Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 2012;123:473484.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Schwalbe EC, Lindsey JC, Nakjang S, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 2017;18:958971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Carta R, Del Baldo G, Miele E, et al. Cancer predisposition syndromes and medulloblastoma in the molecular era. Front Oncol 2020;10:566822.

  • 117.

    Waszak SM, Northcott PA, Buchhalter I, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018;19:785798.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Dangouloff-Ros V, Varlet P, Levy R, et al. Imaging features of medulloblastoma: conventional imaging, diffusion-weighted imaging, perfusion-weighted imaging, and spectroscopy: from general features to subtypes and characteristics. Neurochirurgie 2021;67:613.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Rogers SN, Udayasankar U, Pruthi S, et al. Imaging of pediatric spine and spinal cord tumors: a COG diagnostic imaging committee/SPR oncology committee/ASPNR white paper. Pediatr Blood Cancer 2023;70(Suppl 4):e30150.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Reddy N, Ellison DW, Soares BP, et al. Pediatric posterior fossa medulloblastoma: the role of diffusion imaging in identifying molecular groups. J Neuroimaging 2020;30:503511.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Iv M, Zhou M, Shpanskaya K, et al. MR imaging-based radiomic signatures of distinct molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 2019;40:154161.

  • 122.

    Tripathi M, Jain N, Jaimini A, et al. Demonstration of diffuse leptomeningeal metastasis in a treated case of medulloblastoma with F-18 FDG PET/CT. Clin Nucl Med 2009;34:530532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Gururangan S, Hwang E, Herndon JE, et al. [18F]fluorodeoxyglucose-positron emission tomography in patients with medulloblastoma. Neurosurgery 2004;55:12801288.

  • 124.

    Zhang M, Wong SW, Wright JN, et al. MRI radiogenomics of pediatric medulloblastoma: a multicenter study. Radiology 2022;304:406416.

  • 125.

    Bennett J, Ashmawy R, Ramaswamy V, et al. The clinical significance of equivocal findings on spinal MRI in children with medulloblastoma. Pediatr Blood Cancer 2017;64:e26472.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 2011;121:381396.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 2013;31:29272935.

  • 128.

    Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017;547:311317.

  • 129.

    Albright AL, Wisoff JH, Zeltzer PM, et al. Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 1996;38:265271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Zeltzer PM, Boyett JM, Finlay JL, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol 1999;17:832845.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Reisinger D, Gojo J, Kasprian G, et al. Predisposition of wingless subgroup medulloblastoma for primary tumor hemorrhage. Neurosurgery 2020;86:478484.

  • 132.

    Patel P, Wallace D, Boop FA, et al. Reoperation for medulloblastoma prior to adjuvant therapy. Neurosurgery 2019;84:10501058.

  • 133.

    Mynarek M, Goschzik T, Kool M, et al. MEDB-04. Young children with metastatic medulloblastoma: frequent requirement for radiotherapy in children with non-WNT/non-SHH medulloblastoma despite highly intensified chemotherapy – results of the MET-HIT2000-BIS4 trial. J Neurooncol 2022;24(Suppl 1):i104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Cohen KJ, Munjapara V, Aguilera D, et al. A pilot study omitting radiation in the treatment of children with newly diagnosed WNT-activated medulloblastoma. Clin Cancer Res 2023;29:50315037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Michalski JM, Janss AJ, Vezina LG, et al. Children’s Oncology Group phase iii trial of reduced-dose and reduced-volume radiotherapy with chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 2021;39:26852697.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Leary SES, Packer RJ, Li Y, et al. Efficacy of carboplatin and isotretinoin in children with high-risk medulloblastoma: a randomized clinical trial from the Children’s Oncology Group. JAMA Oncol 2021;7:13131321.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Kahalley LS, Peterson R, Ris MD, et al. Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J Clin Oncol 2020;38:454461.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Unnikrishnan S, Yip AT, Qian AS, et al. Neurocognitive outcomes in multiethnic pediatric brain tumor patients treated with proton versus photon radiation. J Pediatr Hematol Oncol 2023;45:e837846.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Eaton BR, Fong GW, Ingerski LM, et al. Intellectual functioning among case-matched cohorts of children treated with proton or photon radiation for standard-risk medulloblastoma. Cancer 2021;127:38403846.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Haas-Kogan D, Indelicato D, Paganetti H, et al. National Cancer Institute Workshop on Proton Therapy for Children: considerations regarding brainstem injury. Int J Radiat Oncol Biol Phys 2018;101:152168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Gajjar A, Robinson GW, Smith KS, et al. Outcomes by clinical and molecular features in children with medulloblastoma treated with risk-adapted therapy: results of an international phase III trial (SJMB03). J Clin Oncol 2021;39:822835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Jakacki RI, Burger PC, Zhou T, et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s Oncology Group phase I/II study. J Clin Oncol 2012;30:26482653.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: report of a COG randomized phase II screening trial. Pediatr Blood Cancer 2021;68:e29031.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Le Teuff G, Castaneda-Heredia A, Dufour C, et al. Phase II study of temozolomide and topotecan (TOTEM) in children with relapsed or refractory extracranial and central nervous system tumors including medulloblastoma with post hoc bayesian analysis: a european ITCC study. Pediatr Blood Cancer 2020;67:e28032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Pasquier E, Kavallaris M, Andre N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 2010;7:455465.

  • 146.

    Slavc I, Mayr L, Stepien N, et al. Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers (Basel) 2022;14:5128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Winnicki C, Leblond P, Bourdeaut F, et al. Retrospective national “real life” experience of the SFCE with the metronomic MEMMAT and MEMMAT-like protocol. J Clin Med 2023;12:1415.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Peyrl A, Chocholous M, Sabel M, et al. Sustained survival benefit in recurrent medulloblastoma by a metronomic antiangiogenic regimen: a nonrandomized controlled trial. JAMA Oncol 2023;9:16881695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Robison NJ, Campigotto F, Chi SN, et al. A phase II trial of a multi-agent oral antiangiogenic (metronomic) regimen in children with recurrent or progressive cancer. Pediatr Blood Cancer 2014;61:636642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Gaab C, Adolph JE, Tippelt S, et al. Local and systemic therapy of recurrent medulloblastomas in children and adolescents: results of the P-HIT-REZ 2005 study. Cancers (Basel) 2022;14:471.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1684 1684 1684
PDF Downloads 1160 1160 1160
EPUB Downloads 0 0 0