Immune Dysfunction and Consequences in Chronic Lymphocytic Leukemia

Authors:
Mayur Narkhede O’Neal Comprehensive Cancer Center at UAB, Birmingham, AL

Search for other papers by Mayur Narkhede in
Current site
Google Scholar
PubMed
Close
 MD
and
Chaitra S. Ujjani Fred Hutchinson Cancer Center, University of Washington, Seattle, WA

Search for other papers by Chaitra S. Ujjani in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Infectious complications are among the leading causes of mortality in chronic lymphocytic leukemia (CLL). Over the past decade, several advances have been made in treating CLL through inhibition of Bruton tyrosine kinase and the antiapoptotic protein BCL-2. As mortality from CLL progression is expected to decline in the next several years, mortality from severe infections is anticipated to increase. Therefore, understanding the nature of immune defects in CLL and developing strategies to augment the impaired immune system are needed to keep pace with advancements in treatment. This review article summarizes the available data on immune dysfunctions, their clinical consequences, therapeutic implications, and current strategies to enhance immune function in patients with CLL.

Submitted February 23, 2024; final revision received October 20, 2024; accepted for publication November 18, 2024.

Disclosures: Dr. Narkhede has disclosed receiving grant/research support from Natera, Genmab, Genentech, Gilead, Gilead/Forty-Seven, EUSA Pharma, Caribou Biosciences, BeiGene, and Cullinan Therapeutics; and serving as a scientific advisor for ADC Therapeutics, Kite Pharma, T.G Therapeutics, BeiGene, AstraZeneca, Adaptive Biotechnologies, AbbVie, and Pharmacyclics. Dr. Ujjani has disclosed receiving grant/research support from AbbVie, AstraZeneca, Lilly, and Gilead; and serving as a consultant for AbbVie, AstraZeneca, Allogene Therapeutics, Ascentage Pharma, Atara Biotherapeutics, Bristol Myers Squibb, BeiGene, Genentech, Janssen Pharmaceuticals, and Pharmacyclics.

Correspondence: Chaitra S. Ujjani, MD, Fred Hutchinson Cancer Center, University of Washington, 825 Eastlake Avenue E, CE3-300, Seattle, WA 98109. Email: Ujjani@uw.edu
  • Collapse
  • Expand
  • 1.

    Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023;73:1748.

  • 2.

    Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2021;32:2333.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018;131:27452760.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Strati P, Parikh SA, Chaffee KG, et al. Relationship between co-morbidities at diagnosis, survival and ultimate cause of death in patients with chronic lymphocytic leukaemia (CLL): a prospective cohort study. Br J Haematol 2017;178:394402.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Muthiah C, Narra R, Atallah E, et al. Evaluating population-level outcomes in chronic lymphocytic leukemia in the era of novel therapies using the SEER registry. Leuk Res 2024;140:107496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood 2015;126:573581.

  • 7.

    Svanberg Teglgaard R, Marquart HV, Hartling HJ, et al. Improved innate immune function in patients with chronic lymphocytic leukemia treated with targeted therapy in clinical trials. Clin Cancer Res 2024;30:19591971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Purroy N, Tong YE, Lemvigh CK, et al. Single-cell analysis reveals immune dysfunction from the earliest stages of CLL that can be reversed by ibrutinib. Blood 2022;139:22522256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013;34:592601.

  • 10.

    Furman RR, Asgary Z, Mascarenhas JO, et al. Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000;164:22002206.

  • 11.

    Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013;27:173206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Shain K, Dalton W, Tao J. The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene 2015;34:46734682.

  • 13.

    Dubois N, Crompot E, Meuleman N, et al. Importance of crosstalk between chronic lymphocytic leukemia cells and the stromal microenvironment: direct contact, soluble factors, and extracellular vesicles. Front Oncol 2020;10:1422.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Landeira-Viñuela A, Arias-Hidalgo C, Juanes-Velasco P, et al. Unravelling soluble immune checkpoints in chronic lymphocytic leukemia: physiological immunomodulators or immune dysfunction. Front Immunol 2022;13:965905.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    DiLillo DJ, Weinberg JB, Yoshizaki A, et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 2013;27:170182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Garaud S, Morva A, Lemoine S, et al. CD5 promotes IL-10 production in chronic lymphocytic leukemia B cells through STAT3 and NFAT2 activation. J Immunol 2011;186:48354844.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood 2021;137:31653173.

  • 18.

    Whitaker JA, Parikh SA, Shanafelt TD, et al. The humoral immune response to high-dose influenza vaccine in persons with monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL). Vaccine 2021;39:11221130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ghia P, Strola G, Granziero L, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 2002;32:14031413.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Zaaboub R, Vimeux L, Contremoulins V, et al. Nurselike cells sequester B cells in disorganized lymph nodes in chronic lymphocytic leukemia via alternative production of CCL21. Blood Adv 2022;6:46914704.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Palma M, Gentilcore G, Heimersson K, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica 2017;102:562572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 2012;120:14121421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mpakou VE, Ioannidou HD, Konsta E, et al. Quantitative and qualitative analysis of regulatory T cells in B cell chronic lymphocytic leukemia. Leuk Res 2017;60:7481.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jak M, Mous R, Remmerswaal E, et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leuk Lymphoma 2009;50:788801.

  • 25.

    Gustafson MP, Abraham RS, Lin Y, et al. Association of an increased frequency of CD14+HLA-DRlo/neg monocytes with decreased time to progression in chronic lymphocytic leukaemia (CLL). Br J Haematol 2012;156:674676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Talbot H, Saada S, Barthout E, et al. BDNF belongs to the nurse-like cell secretome and supports survival of B chronic lymphocytic leukemia cells. Sci Rep 2020;10:12572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sourmerai J, Yousif Z, Gift T, et al. Patterns of IgG testing and rates of hypogammaglobulinemia in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. Clin Immunol 2023;250:109601.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ishdorj G, Streu E, Lambert P, et al. IgA levels at diagnosis predict for infections, time to treatment, and survival in chronic lymphocytic leukemia. Blood Adv 2019;3:21882198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Andersen MA, Eriksen CT, Brieghel C, et al. Incidence and predictors of infection among patients prior to treatment of chronic lymphocytic leukemia: a Danish nationwide cohort study. Haematologica 2018;103:e300303.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sun C, Tian X, Lee YS, et al. Partial reconstitution of humoral immunity and fewer infections in patients with chronic lymphocytic leukemia treated with ibrutinib. Blood 2015;126:22132219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Arens R, Nolte MA, Tesselaar K, et al. Signaling through CD70 regulates B cell activation and IgG production. J Immunol 2004;173:39013908.

  • 32.

    Sampalo A, Navas G, Medina F, et al. Chronic lymphocytic leukemia B cells inhibit spontaneous Ig production by autologous bone marrow cells: role of CD95-CD95L interaction. Blood 2000;96:31683174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Else M, Blakemore SJ, Strefford JC, Catovsky D. The association between deaths from infection and mutations of the BRAF, FBXW7, NRAS and XPO1 genes: a report from the LRF CLL4 trial. Leukemia 2021;35:25632569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Molica S, Levato D, Levato L. Infections in chronic lymphocytic leukemia. Analysis of incidence as a function of length of follow-up. Haematologica 1993;78:374377.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Soumerai J, Gift T, Yousif Z, et al. Infection outcomes and hypogammaglobulinemia in patients with chronic lymphocytic leukemia treated with immunoglobulin replacement therapy. Blood 2023;142:3280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bange EM, Han NA, Wileyto P, et al. CD8 T cells compensate for impaired humoral immunity in COVID-19 patients with hematologic cancer. Res Sq. Preprint posted online February 2, 2021. doi: 10.21203/rs.3.rs-162289/v1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013;121:16121621.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Moreno C, Solman IG, Tam CS, et al. Immune restoration with ibrutinib plus venetoclax in first-line chronic lymphocytic leukemia: the phase 2 CAPTIVATE study. Blood Adv 2023;7:52945303.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Davis JE, Handunnetti SM, Ludford-Menting M, et al. Immune recovery in patients with mantle cell lymphoma receiving long-term ibrutinib and venetoclax combination therapy. Blood Adv 2020;4:48494859.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Manusow D, Weinerman BH. Subsequent neoplasia in chronic lymphocytic leukemia. JAMA 1975;232:267269.

  • 41.

    Bond DA, Huang Y, Fisher JL, et al. Second cancer incidence in CLL patients receiving BTK inhibitors. Leukemia 2020;34:31973205.

  • 42.

    Tsimberidou AM, Wen S, McLaughlin P, et al. Other malignancies in chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol 2009;27:904910.

  • 43.

    Kumar V, Ailawadhi S, Bojanini L, et al. Trends in the risk of second primary malignancies among survivors of chronic lymphocytic leukemia. Blood Cancer J 2019;9:75.

  • 44.

    Solomon BM, Chaffee KG, Moreira J, et al. Risk of non-hematologic cancer in individuals with high-count monoclonal B-cell lymphocytosis. Leukemia 2016;30:331336.

  • 45.

    Shen Y, Coyle L, Kerridge I, et al. Second primary malignancies in chronic lymphocytic leukaemia: skin, solid organ, haematological and Richter’s syndrome. EJHaem 2022;3:129138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Al-Sawaf O, Zhang C, Jin HY, et al. Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun 2023;14:2147.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Byrd JC, Hillmen P, O’Brien S, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood 2019;133:20312042.

  • 48.

    Solomon BM, Rabe KG, Slager SL, et al. Overall and cancer-specific survival of patients with breast, colon, kidney, and lung cancers with and without chronic lymphocytic leukemia: a SEER population-based study. J Clin Oncol 2013;31:930937.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Hamblin TJ. Autoimmune complications of chronic lymphocytic leukemia. Semin Oncol 2006;33:230239.

  • 50.

    Cao L, Wang F, Du XY, et al. Chronic lymphocytic leukemia-associated paraneoplastic pemphigus: potential cause and therapeutic strategies. Sci Rep 2020;10:16357.

  • 51.

    Strati P, Nasr SH, Leung N, et al. Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience. Haematologica 2015;100:11801188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Hall AM, Vickers MA, McLeod E, Barker RN. Rh autoantigen presentation to helper T cells in chronic lymphocytic leukemia by malignant B cells. Blood 2005;105:20072015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Borthakur G, O’Brien S, Wierda WG, et al. Immune anaemias in patients with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab–incidence and predictors. Br J Haematol 2007;136:800805.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wang KY, Shah P, Skavla B, et al. Vaccination efficacy in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2023;64:4256.

  • 55.

    Mauro FR, Giannarelli D, Galluzzo CM, et al. Response to the conjugate pneumococcal vaccine (PCV13) in patients with chronic lymphocytic leukemia (CLL). Leukemia 2021;35:737746.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Vijenthira A, Gong I, Betschel SD, et al. Vaccine response following anti-CD20 therapy: a systematic review and meta-analysis of 905 patients. Blood Adv 2021;5:26242643.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Andrick B, Alwhaibi A, DeRemer DL, et al. Lack of adequate pneumococcal vaccination response in chronic lymphocytic leukaemia patients receiving ibrutinib. Br J Haematol 2018;182:712714.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Ujjani C, Gooley TA, Spurgeon SE, et al. Diminished humoral and cellular responses to SARS-CoV-2 vaccines in patients with chronic lymphocytic leukemia. Blood Adv 2023;7:47284737.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Qin K, Honjo K, Sherrill-Mix S, et al. Exposure of progressive immune dysfunction by SARS-CoV-2 mRNA vaccination in patients with chronic lymphocytic leukemia: a prospective cohort study. PLoS Med 2023;20:e1004157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Baden LR, Swaminathan S, Almyroudis NG, et al. NCCN Clinical Practice Guidelines in Oncology: Prevention and Treatment of Cancer-Related Infections. Version 3.2024. To view the most recent version, visit https://www.nccn.org/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Wierda WG, Brown J, Abramson JS, et al. NCCN Clinical Practice Guidelines in Oncology: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Version 1.2025. To view the most recent version, visit https://www.nccn.org/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Gale RP, Chapel HM, Bunch C, et al. Intravenous immunoglobulin for the prevention of infection in chronic lymphocytic leukemia. A randomized, controlled clinical trial. N Engl J Med 1988;319:902907.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Mustafa SS, Jamshed S, Vadamalai K, Ramsey A. Subcutaneous immunoglobulin replacement for treatment of humoral immune dysfunction in patients with chronic lymphocytic leukemia. PLoS One 2021;16:e0258529.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet 2020;395:12781291.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Tam CS, Brown JR, Kahl BS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial. Lancet Oncol 2022;23:10311043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Al-Sawaf O, Zhang C, Tandon M, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2020;21:11881200.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Dearden C. Disease-specific complications of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2008;2008:450456.

  • 68.

    Arruga F, Gyau BB, Iannello A, et al. Immune response dysfunction in chronic lymphocytic leukemia: dissecting molecular mechanisms and microenvironmental conditions. Int J Mol Sci 2020;21:1825.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Jurado-Camino T, Cordoba R, Esteban-Burgos L, et al. Chronic lymphocytic leukemia: a paradigm of innate immune cross-tolerance. J Immunol 2015;194:719727.

  • 70.

    Manukyan G, Papajik T, Gajdos P, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget 2017;8:8488984901.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Toniolo PA, Liu S, Yeh JE, et al. Deregulation of SOCS5 suppresses dendritic cell function in chronic lymphocytic leukemia. Oncotarget 2016;7:4630146314.

  • 72.

    MacFarlane IA, Jillab M, Smith MR, et al. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors. Oncoimmunology 2017;6:e1330235.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: guardians or drivers of disease? Leukemia 2021;35:36342024.

  • 74.

    Puente XS, Jares P, Campo E. Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions. Blood 2018;131:22832296.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Long M, Beckwith K, Do P, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J Clin Invest 2017;127:30523064.

  • 76.

    Zou YX, Zhu HY, Li XT, et al. The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Hematol Oncol 2019;37:392400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Niemann CU, Herman SE, Maric I, et al. Disruption of in vivo chronic lymphocytic leukemia tumor–microenvironment interactions by ibrutinib–findings from an investigator-initiated phase II study. Clin Cancer Res 2016;22:15721582.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    de Weerdt I, Hofland T, de Boer R, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv 2019;3:26422652.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1505 1505 1505
PDF Downloads 546 546 546
EPUB Downloads 0 0 0