Pediatric Acute Lymphoblastic Leukemia, Version 2.2025, NCCN Clinical Practice Guidelines In Oncology

Authors:
Hiroto Inaba St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center

Search for other papers by Hiroto Inaba in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
David Teachey Abramson Cancer Center at the University of Pennsylvania/Children’s Hospital of Philadelphia

Search for other papers by David Teachey in
Current site
Google Scholar
PubMed
Close
 MD
,
Colleen Annesley Fred Hutchinson Cancer Center/Seattle Children’s Hospital

Search for other papers by Colleen Annesley in
Current site
Google Scholar
PubMed
Close
 MD
,
Sandeep Batra Indiana University Melvin and Bren Simon Comprehensive Cancer Center/Riley Children’s Health

Search for other papers by Sandeep Batra in
Current site
Google Scholar
PubMed
Close
 MD
,
Jill Beck Fred & Pamela Buffett Cancer Center/Children’s Hospital & Medical Center

Search for other papers by Jill Beck in
Current site
Google Scholar
PubMed
Close
 MD
,
Susan Colace The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute/Nationwide Children’s Hospital

Search for other papers by Susan Colace in
Current site
Google Scholar
PubMed
Close
 MD, MSCI
,
Stacy Cooper Johns Hopkins Kimmel Cancer Center/Johns Hopkins Children’s Center

Search for other papers by Stacy Cooper in
Current site
Google Scholar
PubMed
Close
 MD
,
Mari Dallas Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute/University Hospitals Rainbow Babies & Children’s Hospital

Search for other papers by Mari Dallas in
Current site
Google Scholar
PubMed
Close
 MD
,
Satiro De Oliveira UCLA Jonsson Comprehensive Cancer Center/UCLA Mattel Children’s Hospital

Search for other papers by Satiro De Oliveira in
Current site
Google Scholar
PubMed
Close
 MD
,
Kara Kelly Roswell Park Comprehensive Cancer Center/Roswell Park Oishei Children’s Cancer and Blood Disorders Program

Search for other papers by Kara Kelly in
Current site
Google Scholar
PubMed
Close
 MD
,
Carrie Kitko Vanderbilt-Ingram Cancer Center/Monroe Carell Jr. Children’s Hospital at Vanderbilt

Search for other papers by Carrie Kitko in
Current site
Google Scholar
PubMed
Close
 MD
,
Mira Kohorst Mayo Clinic Comprehensive Cancer Center

Search for other papers by Mira Kohorst in
Current site
Google Scholar
PubMed
Close
 MD
,
Matthew Kutny O’Neal Comprehensive Cancer Center at UAB/Children’s of Alabama

Search for other papers by Matthew Kutny in
Current site
Google Scholar
PubMed
Close
 MD
,
Norman Lacayo Stanford Cancer Institute/Lucile Packard Children’s Hospital

Search for other papers by Norman Lacayo in
Current site
Google Scholar
PubMed
Close
 MD
,
Cathy Lee-Miller University of Wisconsin Carbone Cancer Center/American Family Children’s Hospital

Search for other papers by Cathy Lee-Miller in
Current site
Google Scholar
PubMed
Close
 MD
,
Kathleen Ludwig UT Southwestern Simmons Comprehensive Cancer Center/Children’s Medical Center Dallas

Search for other papers by Kathleen Ludwig in
Current site
Google Scholar
PubMed
Close
 MD
,
Lisa Madden UC Davis Comprehensive Cancer Center

Search for other papers by Lisa Madden in
Current site
Google Scholar
PubMed
Close
 MD
,
Kelly Maloney University of Colorado Cancer Center/Children’s Hospital Colorado

Search for other papers by Kelly Maloney in
Current site
Google Scholar
PubMed
Close
 MD
,
David Mangum Huntsman Cancer Institute at the University of Utah/Primary Children’s Hospital

Search for other papers by David Mangum in
Current site
Google Scholar
PubMed
Close
 MD
,
Stephanie Massaro Yale Cancer Center/Smilow Cancer Hospital/Yale New Haven Children’s Hospital

Search for other papers by Stephanie Massaro in
Current site
Google Scholar
PubMed
Close
 MD, MPH
,
David McCall The University of Texas MD Anderson Cancer Center

Search for other papers by David McCall in
Current site
Google Scholar
PubMed
Close
 MD
,
Perry Morocco The UChicago Medicine Comprehensive Cancer Center

Search for other papers by Perry Morocco in
Current site
Google Scholar
PubMed
Close
 MD
,
Brad Muller St. Jude Children’s Research Hospital/The University of Tennessee Health Science Center

Search for other papers by Brad Muller in
Current site
Google Scholar
PubMed
Close
 MD
,
Lindsey Murphy City of Hope National Medical Center

Search for other papers by Lindsey Murphy in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Valentina Nardi Mass General Cancer Center/Dana-Farber/Boston Children’s Cancer and Blood Disorders Center

Search for other papers by Valentina Nardi in
Current site
Google Scholar
PubMed
Close
 MD
,
Jenna Rossoff Robert H. Lurie Comprehensive Cancer Center of Northwestern University/Ann & Robert H. Lurie Children’s Hospital of Chicago

Search for other papers by Jenna Rossoff in
Current site
Google Scholar
PubMed
Close
 MD
,
Laura Schuettpelz Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine/St. Louis Children’s Hospital

Search for other papers by Laura Schuettpelz in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Bijal Shah Moffitt Cancer Center

Search for other papers by Bijal Shah in
Current site
Google Scholar
PubMed
Close
 MD
,
Jessica Sun Duke Cancer Institute/Duke Children’s Hospital & Health Center

Search for other papers by Jessica Sun in
Current site
Google Scholar
PubMed
Close
 MD
,
Victor Wong UC San Diego Moores Cancer Center/Rady Children’s Hospital-San Diego

Search for other papers by Victor Wong in
Current site
Google Scholar
PubMed
Close
 MD
,
Gregory Yanik University of Michigan Rogel Cancer Center/C.S. Mott Children’s Hospital

Search for other papers by Gregory Yanik in
Current site
Google Scholar
PubMed
Close
 MD
,
Ajibola Awotiwon National Comprehensive Cancer Network

Search for other papers by Ajibola Awotiwon in
Current site
Google Scholar
PubMed
Close
 MBBS, MSc
, and
Katie Stehman National Comprehensive Cancer Network

Search for other papers by Katie Stehman in
Current site
Google Scholar
PubMed
Close
 PA-C, MMS
Restricted access

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Pediatric Acute Lymphoblastic Leukemia (ALL) were developed as a result of meetings convened by a multidisciplinary panel of pediatric ALL experts, with the goal of providing recommendations on standard treatment approaches based on current evidence. The NCCN Guidelines for pediatric ALL focus on risk assessment and stratification of risk-adapted therapy; treatment strategies for BCR::ABL1 (Philadelphia chromosome [Ph])-negative and BCR::ABL1-positive B-cell lineage, T-cell lineage, and infant ALL; and supportive care considerations. This selection from the NCCN Guidelines for pediatric ALL focuses on the diagnosis of and management of pediatric T-ALL.

Discussion Writing Committee Members:

Hiroto Inaba, David Teachey, Valentina Nardi, Ajibola Awotiwon, and Katie Stehman

To view disclosures of external relationships for the NCCN Guidelines panel, go to https://www.nccn.org/guidelines/guidelines-panels-and-disclosure/disclosure-panels

The full NCCN Guidelines for Pediatric Acute Lymphoblastic Leukemia are not printed in this issue of JNCCN. The complete and most recent version of these guidelines is available free of charge at NCCN.org.

NCCN CATEGORIES OF EVIDENCE AND CONSENSUS

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

NCCN CATEGORIES OF PREFERENCE

Preferred intervention: Interventions that are based on superior efficacy, safety, and evidence; and, when appropriate, affordability.

Other recommended intervention: Other interventions that may be somewhat less efficacious, more toxic, or based on less mature data; or significantly less affordable for similar outcomes.

Useful in certain circumstances: Other interventions that may be used for selected patient populations (defined with recommendation).

All recommendations are considered appropriate.

NCCN recognizes the importance of clinical trials and encourages participation when applicable and available.

Trials should be designed to maximize inclusiveness and broad representative enrollment.

PLEASE NOTE

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines® is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their application or use in any way.

  • Collapse
  • Expand
  • 1.

    National Cancer Institute. SEER cancer statistics review, 1975-2015: Leukemia, annual incidence rates (acute lymphocytic leukemia). Accessed January 24, 2023. Available at: https://seer.cancer.gov/csr/1975_2015/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024;74:1249.

  • 3.

    Esparza SD, Sakamoto KM. Topics in pediatric leukemia–acute lymphoblastic leukemia. MedGenMed 2005;7:23.

  • 4.

    Jabbour EJ, Faderl S, Kantarjian HM. Adult acute lymphoblastic leukemia. Mayo Clin Proc 2005;80:15171527.

  • 5.

    National Cancer Institute. SEER cancer statistics review, 1975-2015: Overview, median age at diagnosis. Accessed January 24, 2023. Available at: https://seer.cancer.gov/csr/1975_2015/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    National Cancer Institute. SEER cancer statistics review, 1975-2015: Overview, age distribution of incidence cases by site. Accessed January 24, 2023. Available at: https://seer.cancer.gov/csr/1975_2015/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Teachey DT, O’Connor D. How I treat newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma in children. Blood 2020;135:159166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol 2019;20:e142154.

  • 9.

    Polonen P, Mullighan CG, Teachey DT. Classification and risk stratification in T-lineage acute lymphoblastic leukemia. Blood. Published online October 2, 2024. doi:10.1182/blood.2023022920

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ma H, Sun H, Sun X. Survival improvement by decade of patients aged 0-14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep 2014;4:4227.

  • 11.

    Pulte D, Gondos A, Brenner H. Improvement in survival in younger patients with acute lymphoblastic leukemia from the 1980s to the early 21st century. Blood 2009;113:14081411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Geyer MB, Hsu M, Devlin SM, et al. Overall survival among older US adults with ALL remains low despite modest improvement since 1980: SEER analysis. Blood 2017;129:18781881.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pulte D, Jansen L, Gondos A, et al. Survival of adults with acute lymphoblastic leukemia in Germany and the United States. PLoS One 2014;9:e85554.

  • 14.

    Sive JI, Buck G, Fielding A, et al. Outcomes in older adults with acute lymphoblastic leukaemia (ALL): results from the international MRC UKALL XII/ECOG2993 trial. Br J Haematol 2012;157:463471.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wermann WK, Viardot A, Kayser S, et al. Comorbidities are frequent in older patients with de novo acute lymphoblastic leukemia (ALL) and correlate with induction mortality: analysis of more than 1200 patients from GMALL data bases. Blood 2018;132:660.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Miller KD, Fidler-Benaoudia M, Keegan TH, et al. Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 2020;70:443459.

  • 17.

    Pieters R, De Lorenzo P, Ancliffe P, et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant-06 protocol: results from an international phase III randomized study. J Clin Oncol 2019;37:22462256.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    van der Sluis IM, de Lorenzo P, Kotecha RS, et al. Blinatumomab added to chemotherapy in infant lymphoblastic leukemia. N Engl J Med 2023;388:15721581.

  • 19.

    Stock W. Adolescents and young adults with acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2010;2010:2129.

  • 20.

    Faderl S, O’Brien S, Pui CH, et al. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer 2010;116:11651176.

  • 21.

    Karimi M, Cohan N, Zareifar S, et al. Initial presentation of childhood leukaemia with facial palsy: three case reports. BMJ Case Rep. Published online December 9, 2009. doi:10.1136/bcr.10.2008.1046

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kraigher-Krainer E, Lackner H, Sovinz P, et al. Numb chin syndrome as initial manifestation in a child with acute lymphoblastic leukemia. Pediatr Blood Cancer 2008;51:426428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 2022;36:17201748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Amin HM, Yang Y, Shen Y, et al. Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias. Leukemia 2005;19:15671572.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Weinkauff R, Estey EH, Starostik P, et al. Use of peripheral blood blasts vs bone marrow blasts for diagnosis of acute leukemia. Am J Clin Pathol 1999;111:733740.

  • 26.

    Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol 2016;96:447460.

  • 27.

    Cortelazzo S, Ferreri A, Hoelzer D, Ponzoni M. Lymphoblastic lymphoma. Crit Rev Oncol Hematol 2017;113:304317.

  • 28.

    Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 2011;29:532543.

  • 29.

    Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am 2015;62:6173.

  • 30.

    Borowitz MJ, Chan JKC, Bene MC, Arber DA. T-lymphoblastic leukaemia/lymphoma. In: Swerdlow SH, Campo E, Harris NL, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edition. Lyon, France: IARC; 2017:209212.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004;350:15351548.

  • 32.

    Bassan R, Gatta G, Tondini C, Willemze R. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol 2004;50:223261.

  • 33.

    Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995;9:17831786.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009;10:147156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Inukai T, Kiyokawa N, Campana D, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children’s Cancer Study Group Study L99-15. Br J Haematol 2012;156:358365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ma M, Wang X, Tang J, et al. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia. Front Med 2012;6:416420.

  • 37.

    Patrick K, Wade R, Goulden N, et al. Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol 2014;166:421424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Raetz EA, Teachey DT. T-cell acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2016;2016:580588.

  • 39.

    Wood BL, Devidas M, Summers RJ, et al. Prognostic significance of ETP phenotype and minimal residual disease in T-ALL: a Children’s Oncology Group study. Blood 2023;142:20692078.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008;8:380390.

  • 41.

    Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012;2012:389396.

  • 42.

    Hernandez Tejada FN, Galvez Silva JR, Zweidler-McKay PA. The challenge of targeting notch in hematologic malignancies. Front Pediatr 2014;2:54.

  • 43.

    O’Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007;204:18131824.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269271.

  • 45.

    Asnafi V, Buzyn A, Le Noir S, et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood 2009;113:39183924.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Breit S, Stanulla M, Flohr T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006;108:11511157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Clappier E, Collette S, Grardel N, et al. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010;24:20232031.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol 2013;31:43334342.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Jenkinson S, Kirkwood AA, Goulden N, et al. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2016;30:3947.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Zuurbier L, Homminga I, Calvert V, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 2010;24:20142022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Polonen P, Di Giacomo D, Seffernick AE, et al. The genomic basis of childhood T-lineage acute lymphoblastic leukaemia. Nature 2024;632:10821091.

  • 52.

    Mulder RL, Font-Gonzalez A, Green DM, et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2021;22:e5767.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Mulder RL, Font-Gonzalez A, Hudson MM, et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2021;22:e4556.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Pui CH, Nichols KE, Yang JJ. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat Rev Clin Oncol 2019;16:227240.

  • 55.

    Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 2000;355:165169.

  • 56.

    Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013;45:242252.

  • 57.

    Hunger SP, Sklar J, Link MP. Acute lymphoblastic leukemia occurring as a second malignant neoplasm in childhood: report of three cases and review of the literature. J Clin Oncol 1992;10:156163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol 2015;16:16771690.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia: results from the Children’s Oncology Group AALL0434 Methotrexate Randomization. J Clin Oncol 2018;36:29262934.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bader P, Kreyenberg H, Henze GH, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 2009;27:377384.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer–Childhood Leukemia Cooperative Group. N Engl J Med 1998;339:591598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 2008;111:54775485.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115:32063214.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Eckert C, Hagedorn N, Sramkova L, et al. Monitoring minimal residual disease in children with high-risk relapses of acute lymphoblastic leukemia: prognostic relevance of early and late assessment. Leukemia 2015;29:16481655.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Eckert C, von Stackelberg A, Seeger K, et al. Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia - long-term results of trial ALL-REZ BFM P95/96. Eur J Cancer 2013;49:13461355.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Schrappe M, Valsecchi MG, Bartram CR, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118:20772084.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Van der Velden VH, Corral L, Valsecchi MG, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23:10731079.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Wood BL, Winter SS, Dunsmore KP, et al.-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood 2014;124:1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 2017;3:e170580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Carlson CS, Emerson RO, Sherwood AM, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat Commun 2013;4:2680.

  • 71.

    Denys B, van der Sluijs-Gelling AJ, Homburg C, et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2013;27:635641.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Faham M, Zheng J, Moorhead M, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2012;120:51735180.

  • 73.

    Gaipa G, Cazzaniga G, Valsecchi MG, et al. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica 2012;97:15821593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Ladetto M, Bruggemann M, Monitillo L, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia 2014;28:12991307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Stow P, Key L, Chen X, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115:46574663.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Wood B, Wu D, Crossley B, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood 2018;131:13501359.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Cherian S, Soma LA. How I diagnose minimal/measurable residual disease in B lymphoblastic leukemia/lymphoma by flow cytometry. Am J Clin Pathol 2021;155:3854.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Campana D. Minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2010;2010:712.

  • 79.

    Bruggemann M, Schrauder A, Raff T, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010;24:521535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Neale GA, Coustan-Smith E, Stow P, et al. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004;18:934938.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Wu D, Emerson RO, Sherwood A, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH. Clin Cancer Res 2014;20:45404548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Wu D, Sherwood A, Fromm JR, et al. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med 2012;4:134ra63.

  • 83.

    Kerst G, Kreyenberg H, Roth C, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005;128:774782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550554.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Coustan-Smith E, Sancho J, Hancock ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:26912696.

  • 86.

    Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:5258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    O’Connor D, Enshaei A, Bartram J, et al. Genotype-specific minimal residual disease interpretation improves stratification in pediatric acute lymphoblastic leukemia. J Clin Oncol 2018;36:3443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Coustan-Smith E, Sandlund JT, Perkins SL, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J Clin Oncol 2009;27:35333539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Hayashi RJ, Winter SS, Dunsmore KP, et al. Successful outcomes of newly diagnosed T lymphoblastic lymphoma: results from Children’s Oncology Group AALL0434. J Clin Oncol 2020;38:30623070.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Hayashi RJ, Hermiston ML, Wood BL, et al. MRD at the end of induction and EFS in T-cell lymphoblastic lymphoma: Children’s Oncology Group trial AALL1231. Blood 2024;143:20532058.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Ko RH, Ji L, Barnette P, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010;28:648654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Coustan-Smith E, Gajjar A, Hijiya N, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004;18:499504.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Paganin M, Fabbri G, Conter V, et al. Postinduction minimal residual disease monitoring by polymerase chain reaction in children with acute lymphoblastic leukemia. J Clin Oncol 2014;32:35533558.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Paganin M, Zecca M, Fabbri G, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia 2008;22:21932200.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27:51685174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Panzer-Grumayer ER, Schneider M, Panzer S, et al. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95:790794.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Borowitz MJ, Wood BL, Devidas M, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood 2015;126:964971.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Pulsipher MA, Han X, Maude SL, et al. Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov 2022;3:6681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet 2013;381:19431955.

  • 100.

    Seibel NL. Treatment of acute lymphoblastic leukemia in children and adolescents: peaks and pitfalls. Hematology Am Soc Hematol Educ Program 2008:374380.

  • 101.

    Kamps WA, Bokkerink JP, Hakvoort-Cammel FG, et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991-1996). Leukemia 2002;16:10991111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008;111:44774489.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 2000;95:33103322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Seibel NL, Steinherz PG, Sather HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 2008;111:25482555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 2008;112:16461654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 1995;85:20252037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 2003;101:38093817.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Mitchell CD, Richards SM, Kinsey SE, et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 2005;129:734745.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Pui CH. Central nervous system disease in acute lymphoblastic leukemia: prophylaxis and treatment. Hematology Am Soc Hematol Educ Program 2006:142146.

  • 110.

    Moricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood 2016;127:21012112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Teuffel O, Kuster SP, Hunger SP, et al. Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Leukemia 2011;25:12321238.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Avramis VI, Sencer S, Periclou AP, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 2002;99:19861994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Vrooman LM, Blonquist TM, Stevenson KE, et al. Efficacy and toxicity of pegaspargase and calaspargase pegol in childhood acute lymphoblastic leukemia: results of DFCI 11-001. J Clin Oncol 2021;39:34963505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Sandley M, Angus J. Asparaginase therapy in patients with acute lymphoblastic leukemia: expert opinion on use and toxicity management. Leuk Lymphoma 2023;64:776787.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Maese L, Loh ML, Choi MR, et al. Recombinant erwinia asparaginase (JZP458) in acute lymphoblastic leukemia: results from the phase 2/3 AALL1931 study. Blood 2023;141:704712.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    U.S. Food and Drug Administration. FDA approves a new dosing regimen for asparaginase erwinia chrysanthemi (recombinant). Accessed August 4, 2023. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-new-dosing-regimen-asparaginase-erwinia-chrysanthemi-recombinant

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    ClinicalTrials.gov. A study to investigate blinatumomab in combination with chemotherapy in patients with newly diagnosed B-lymphoblastic leukemia. Accessed January 29, 2024. Available at: https://clinicaltrials.gov/study/NCT03914625

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Angiolillo AL, Schore RJ, Kairalla JA, et al. Excellent outcomes with reduced frequency of vincristine and dexamethasone pulses in standard-risk B-lymphoblastic leukemia: results from Children’s Oncology Group AALL0932. J Clin Oncol 2021;39:14371447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    ClinicalTrials.gov. Inotuzumab ozogamicin and post-induction chemotherapy in treating patients with high-risk B-all, mixed phenotype acute leukemia, and B-LLy. Accessed January 29, 2024. Available at: https://www.clinicaltrials.gov/study/NCT03959085

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Burke MJ, Salzer WL, Devidas M, et al. Replacing cyclophosphamide/cytarabine/mercaptopurine with cyclophosphamide/etoposide during consolidation/delayed intensification does not improve outcome for pediatric B-cell acute lymphoblastic leukemia: a report from the COG. Haematologica 2019;104:986992.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Tasian SK, Assad A, Hunter DS, et al. A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the Part 1 safety phase. Blood 2018;132:555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Teachey DT, Devidas M, Wood BL, et al. Children’s Oncology Group trial AALL1231: A phase III clinical trial testing bortezomib in newly diagnosed T-cell acute lymphoblastic leukemia and lymphoma. J Clin Oncol 2022;40:21062118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Winter SS, Dunsmore KP, Devidas M, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer 2015;62:11761183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    ClinicalTrials.gov. Imatinib mesylate and combination chemotherapy in treating patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia. Accessed January 29, 2024. Available at: https://clinicaltrials.gov/study/NCT03007147

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    ClinicalTrials.gov. Azacitidine and combination chemotherapy in treating infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Accessed January 29, 2024. Available at: https://www.clinicaltrials.gov/study/NCT02828358

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Hunger SP, Tran TH, Saha V, et al. Dasatinib with intensive chemotherapy in de novo paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (CA180-372/COG AALL1122): a single-arm, multicentre, phase 2 trial. Lancet Haematol 2023;10:e510520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Chrzanowska M, Kolecki P, Duczmal-Cichocka B, Fiet J. Metabolites of mercaptopurine in red blood cells: a relationship between 6-thioguanine nucleotides and 6-methylmercaptopurine metabolite concentrations in children with lymphoblastic leukemia. Eur J Pharm Sci 1999;8:329334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989;7:18161823.

  • 129.

    Hawwa AF, Collier PS, Millership JS, et al. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia. Br J Clin Pharmacol 2008;66:826837.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    McLeod HL, Coulthard S, Thomas AE, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999;105:696700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    McLeod HL, Relling MV, Crom WR, et al. Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 1992;18:S2329.

  • 132.

    Collie-Duguid ES, Pritchard SC, Powrie RH, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999;9:3742.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    McLeod HL, Lin JS, Scott EP, et al. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 1994;55:1520.

  • 134.

    Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651662.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther 2019;105:10951105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Bhatia S, Landier W, Shangguan M, et al. Nonadherence to oral mercaptopurine and risk of relapse in Hispanic and non-Hispanic white children with acute lymphoblastic leukemia: a report from the children’s oncology group. J Clin Oncol 2012;30:20942101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Gossai NP, Devidas M, Chen Z, et al. Central nervous system status is prognostic in T-cell acute lymphoblastic leukemia: a Children’s Oncology Group report. Blood 2023;141:18021811.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Winick N, Devidas M, Chen S, et al. Impact of initial CSF findings on outcome among patients with National Cancer Institute standard- and high-risk B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. J Clin Oncol 2017;35:25272534.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Richards S, Pui CH, Gayon P. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2013;60:185195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Balduzzi A, Valsecchi MG, Uderzo C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 2005;366:635642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Leung W, Campana D, Yang J, et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011;118:223230.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Eapen M, Rubinstein P, Zhang MJ, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007;369:19471954.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Peters C, Dalle JH, Locatelli F, et al. Total body irradiation or chemotherapy conditioning in childhood ALL: a multinational, randomized, noninferiority phase III study. J Clin Oncol 2021;39:295307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Davies SM, Ramsay NK, Klein JP, et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J Clin Oncol 2000;18:340347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Bunin N, Aplenc R, Kamani N, et al. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant 2003;32:543548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Berg SL, Blaney SM, Devidas M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 2005;23:33763382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Dunsmore KP, Winter SS, Devidas M, et al. Children’s Oncology Group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol 2020;38:32823293.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Burns MA, Place AE, Stevenson KE, et al. Identification of prognostic factors in childhood T-cell acute lymphoblastic leukemia: results from DFCI ALL Consortium Protocols 05-001 and 11-001. Pediatr Blood Cancer 2021;68:e28719.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Schrauder A, Reiter A, Gadner H, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006;24:57425749.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 2007;109:51365142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Whitlock JA, Malvar J, Dalla-Pozza L, et al. Nelarabine, etoposide, and cyclophosphamide in relapsed pediatric T-acute lymphoblastic leukemia and T-lymphoblastic lymphoma (study T2008-002 NECTAR). Pediatr Blood Cancer 2022;69:e29901.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Horton TM, Whitlock JA, Lu X, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children’s Oncology Group. Br J Haematol 2019;186:274285.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Parker C, Waters R, Leighton C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010;376:20092017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Tallen G, Ratei R, Mann G, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 2010;28:23392347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Place AE, Karol SE, Forlenza CJ, et al. Pediatric patients with relapsed/refractory acute lymphoblastic leukemia harboring heterogeneous genomic profiles respond to venetoclax in combination with chemotherapy. Blood 2020;136:3738.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Richard-Carpentier G, Jabbour E, Short NJ, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 2020;20:212218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Bhatla T, Hogan LM, Teachey DT, et al. Daratumumab in pediatric relapsed/refractory acute lymphoblastic leukemia or lymphoblastic lymphoma: DELPHINUS study. Blood 2024;144:22372247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    Issa GC, Aldoss I, Thirman MJ, et al. Menin inhibition with revumenib for KMT2A-rearranged relapsed or refractory acute leukemia (AUGMENT-101). J Clin Oncol 2024:JCO2400826.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Raetz EA, Borowitz MJ, Devidas M, et al. Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a Children’s Oncology Group study[corrected]. J Clin Oncol 2008;26:39713978.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Eckert C, Parker C, Moorman AV, et al. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur J Cancer 2021;151:175189.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Jeha S, Pei D, Choi J, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol 2019;37:33773391.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Hogan LE, Bhatla T, Teachey DT, et al. Efficacy and safety of daratumumab (DARA) in pediatric and young adult patients (pts) with relapsed/refractory T-cell acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LL): Results from the phase 2 DELPHINUS study. J Clin Oncol 2022;40:10001.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5823 5823 939
PDF Downloads 3278 3278 574
EPUB Downloads 0 0 0